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Abstract 
A formula is derived for the central nucleon-nucleon potential, based on an 
analysis of the physical origin of the nucleon-nucleon attraction by pion ex-
change. The decrease of the dynamical mass of the interaction field, ex-
changed pion in this case, is the principal mechanism responsible for the nuc-
lear attraction in a similar way that the decrease of the kinetic energy of the 
exchange electron in the diatomic molecule is directly responsible for the co-
valent molecular attraction. The minimum value of this central nucleon-nucleon 
potential and the position of the minimum are similar with the values re-
ported in literature for a potential calculated by lattice QCD, which shares the 
features of the phenomenological nucleon-nucleon potentials. The Schrodin-
ger equation with this central nucleon-nucleon potential was solved numeri-
cally for different values of the pion mass. The binding energy increases with 
the decrease of the pion mass. For masses higher than the real pion mass the 
nucleon-nucleon system is unbound. We discuss on the two pion exchange 
and hard core repulsion. The minimum value of the potential for two pion 
exchange is comparable with the minimum value of the CD Bonn potential. 
For a hard core radius of 0.5 fm the binding energy is equal to the deuteron 
binding energy. 
 
Keywords 
Pion Exchange, Dynamical Mass, Central Nucleon-Nucleon Potential, Bound 
State 

 

1. Introduction 

The effective degrees of freedom in the nuclear interaction at low energy, in par-
ticular in the nuclear bound state, are the nucleons and the pions. The pion ex-
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change is the basic mechanism of nucleon-nucleon (NN) attraction at low ener-
gy [1]-[6]. 

As it is well known the current masses of quarks (antiquarks) u (ū) and d (đ) 
are very small; the nucleon and pion masses are mainly of dynamical origin 
(“kinetic” energy). The confinement of the quarks into nucleon and pion asso-
ciate an energy, given by the Heisenberg uncertainty relation, which is just the 
dynamical mass. 

The long range structure of the nucleon is given roughly by the pion [7] [8], 
which also gives the range of nuclear forces. In particular, the Compton wave-
length of the pion m cπ π=  , which has a value of 1.41 fm for the charged 
pion, gives the range Nr  of the nucleon extension. The pion in nucleon can be 
represented by a degree of freedom of current mass ≅  0, localized into a region 
of radius Nr π=  . This localization into the nucleon associates an energy (dy-
namical mass) 2E pc c m cπ π≅ = =  , given by the uncertainty relation, which 
is just the mass of the pion. 

At the formation of a nuclear bound state this dynamical mass decreases, 
which determines a mass defect and consequently a binding energy for the 
nucleon-nucleon state [9] [10]. Indeed, when two nucleons approach each other 
to form a bound state, in particular the deuteron, they put in common their 
pion degrees of freedom (pion exchange). This is equivalent with a slight 
de-localization of the pion degree of freedom from a region of radius Nr π≅   
to a region of radius ( ) ( )Nr R Rπ+ ∆ = + ∆ , where ( )R∆  is direct propor-
tional to the distance R between the two bound nucleons and is strongly depen-
dent on the probability of the pion to penetrate the potential barrier between the 
two nucleons [10]. The dynamical mass gets: 

( )
cE

Rπ
∆ ≅ + ∆





                          (1) 

and is lower than the initial one (that in the free nucleon). To form a bound state, 
the decrease of the dynamical mass of the pion degree of freedom: 

( )
c cE

Rπ π

∆ = −
+ ∆

 

 

                       (2) 

must be larger than the kinetic energy acquired by the system of two nucleons 
due to their localization at a distance R each other: 

This mechanism of nuclear binding has similarities with the mechanism of 
molecular binding of diatomic molecules [11]. In fact Heisenberg was the first 
who presented the attractive force between proton and neutron in analogy to 
that in the hydrogen molecular ion 2H+ , where the electron is the particle ex-
changed between the two protons [2]. 

2. Feynman Approach to the Molecular and Nuclear 
Exchange Interactions 

Let’s start with the physical interpretation of the mechanism of 2H+  ion binding 
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presented by Feynman in [11]. 
In the 2H+  ion, since there are two protons, there is more space where the 

electron can have a low potential energy than in the case of hydrogen atom. The 
exchanged electron spreads out lowering its kinetic energy, in accord with un-
certainty relation. This kinetic energy decrease is at the origin of the molecular 
attraction in covalent bond, in particular in the 2H+  ion [11] [12] [13] [14]. 

For large distances between the two protons of the 2H+  ion the electrostatic 
potential energy of the exchanged electron is nearly zero over most of the space 
between the protons and the electron moves nearly like a free particle in empty 
space but with a negative energy [11]: 

2

2 H
e

p W
m

= −                           (3) 

where HW  is the binding energy (+13.6 eV) of the hydrogen atom. This means 
that p is an imaginary number: 

2 e Hp i m W=                        (4) 

The probability amplitude A for a particle of definite energy to get from one 
place to another a distance R away is proportional to [11]: 

( )e~
i pR

A
R



                        (5) 

where p is the momentum corresponding to the definite energy. Replacing p one 
obtains that the amplitude of jumping of electron from one proton to the other, 
for large separation R between the two protons, will vary as [11]: 

( ) 0
2e e~

e Hm W R R a

A
R R

− −

=


                  (6) 

where 0a  is the Bohr radius. 
If the particle goes in one direction the amplitude is [11]: 

0~ e R aA −                           (7) 

One can note that this exponential function limits drastically the amplitude of 
electron exchange for large separation. 

The nuclear interaction which takes place between a neutron and a proton by 
pion exchange is described by Feynman with similar arguments [11]. Since in 
the nuclear process the proton and the neutron have almost equal masses, the 
exchanged pion will have zero total energy. But for a pion of mass mπ : 

2 2 2 2 4E p c m cπ= +                      (8) 

where E and p are the total energy and the momentum of the pion. 
Since the exchanged pion have practically zero total energy the momentum is 

again imaginary [11]: 

p im cπ=                         (9) 

This means the amplitude for the pion to jump from one nucleon to another 
is for large R: 
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( )~ e em c R RA π π− −=

                     (10) 

The exponential function is typical for a Yukawa potential or exponential po-
tential, and again it limits drastically the exchange for large R. 

3. The Central Nucleon-Nucleon Potential Due to Pion  
Exchange 

In fact, the exponential factor is well known from the tunneling of a potential 
barrier of width R by a particle with an energy much lower than the barrier 
height. The probability of transmission is the (absolute) square of the amplitude 
[11], this means in our case: 

2~ e RP π−                            (11) 

The increase ( )R∆  of the radius of localization region of the pion degree of 
freedom, which appears in formulae (1) and (2), is strongly limited by this ex-
ponential function (11), i.e. the probability for the exchanged pion to penetrate 
(tunnel) the potential barrier between the two nucleons. From a physical point 
of view one expects that this probability of transmission is 1 for a barrier width 

0R → . Therefore ( )R∆ , which is proportional both to the distance R between 
the nucleons and to the probability of transmission of the exchanged pion, is 
equal to: 

( ) 2e RR R π−∆ =                        (12) 

By replacing (12) in formula (2), we obtain the decrease of the dynamical mass 
of the pion degree of freedom, which is at the origin of nuclear attraction. In fact 
with sign minus this decrease is just the NN potential due to pion exchange [10]: 

( )
2

2 2

e*
Re e

R

R R

c c c RV R E
R

π

π π
π ππ π

−

− −= −∆ = − = −
+ +



 

  

  

     (13) 

where 2c m cπ π=  . 
The NN potential V(R) as a function of inter-nucleon distance R is shown in 

Figure 1 for a charged pion exchange between the two nucleons ( )1.41 fmπ = . 
This potential has some similarities with that obtained by lattice QCD [15] [16], 
which shares the features of the phenomenological NN potentials: an attractive 
well at intermediate and larger distances and a hard core repulsion at small 
range, with the maximum depth of the potential in the intermediate range [1] [2] 
[3] [4] [5]. The minimum value of the potential (−22 MeV) and the position of 
the minimum (0.7 fm) in Figure 1, are comparable with the values shown in 
Figure 3 from [15]: about −25 MeV and 0.7 fm. The fall of the potential towards 
zero value in Figure 1 for small R (R < 0.6 fm) is compatible with the beginning 
of the hard core repulsion region [1] [2] [3] [4] [5] [15] which gets dominant at 
short range. 

The potential in Figure 1 is a little larger, in particular the fall towards higher 
values of R is slower than in the case of potential obtained in [15]. But the results 
in [15] were obtained for a pion mass (530 MeV) higher than the real pion mass.  
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Figure 1. The NN potential in the case of charged pion exchange. 

 
For a lower pion mass (360 MeV) the range of the potential gets wider also 
[15]. 

We solved numerically the Schrodinger equation for the potential V(R) given 
in relation (13), for different values of the pion mass mπ : 

( ) ( ) ( ) ( )
2

2
R V R R E Rψ ψ ψ

µ
− ∆ + =
                (14) 

where µ  is the reduced mass of the two nucleons. 
From a numerical point of view, the Schrodinger equation in central potential 

has been solved using the substitution: ( ) ( )R R Rψ φ=  which, in turn, gives a 
standard Sturm-Liouville eigenvalue problem with a constant coefficient for the 
second order derivative: 

( ) ( ) ( ) ( )
22

2

d
2 d

R
V R R E R

R
φ

φ φ
µ

− + =
                 (15) 

We look for the ground state, this means zero centrifugal energy (l = 0). 
The spatial dimension has been truncated as [ ]0,20 fmR∈  with a standard 

discretization in equal intervals of 310 fmR −∆ = . Such large radial extension is 
needed in order to resolve properly the states lying closely to the continuum 
( 0E <≅ ). The eigenvalue problem is solved by means of a finite difference me-
thod with the boundary values ( ) ( )0 0 0φ φ′= =  and imposing an exponential 
decay at large radius. The resulting Hamiltonian is diagonalized and the eigen-
values (energy) are obtained. 

In Figure 2 is given the dependence of the total energy of the two nucleons in 
function of the exchanged pion mass mπ . For the real pion mass corresponds 
about −0.1 MeV, this means a very small binding energy. 
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Figure 2. The total energy of the two nucleons as a function of the pion mass mπ . 

 
The total energy of the two nucleons decreases, this means the binding energy 

increases with the decrease of the pion mass. For masses higher than the real 
pion mass the total energy gets positive (unbound state). This underline the cen-
tral role of the pion as main player in the production of nuclear attraction, as 
largely accepted in literature [1]-[6]. 

4. The Two Pion Exchange and the Hard Core Repulsion 

The maximum molecular attraction is realized in the diatomic molecular bond 
by exchange of two electrons [11]. This is the case of the hydrogen molecule H2 
in which the two hydrogen atoms put in common (exchange) their electrons. 

Similarly, the maximum of NN attraction is given by the exchange of two 
pions. Each nucleon puts in common (exchanges) a pion degree of freedom with 
the other nucleon. This means two pion degrees of freedom are slightly 
de-localized. The NN potential in this case is practically two times the potential 
given by relation (13). The minimum value of the potential gets −44 MeV, which 
is comparable with the minimum value (−50 MeV) of the CD Bonn potential 
[2]. 

If one adds to this two pion exchange potential 2 V(R), where V(R) is given by 
relation (13), a hard core repulsion at 0 0.6 fmr ≤ , a typical value for phenome-
nological nucleon-nucleon potentials [1] [2] [3] [4] [5], it results the NN poten-
tial shown in Figure 3. 

The Schrodinger equation for this two pion exchange potential 2V(R) with 
hard core repulsion was solved numerically for different values of the hard core 
radius 0r . In Figure 4 it is shown the total energy of the two nucleons in func-
tion of the hard core radius. 

For a value of the hard core repulsion radius equal to 0.5 fm, the binding 
energy is equal to the deuteron binding energy. For this hard core radius  
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Figure 3. The NN potential in the case of two pion exchange and hard core repulsion at 
0.6 fm. 

 

 
Figure 4. The total energy of the two nucleons as a function of hard core repulsion radius 

0r  for the two pion exchange potential. 

 
( 0 0.5 fmr = ) in Figure 5 is given the dependence of the total energy of the two 
nucleons bound by two pion exchange in function of the pion mass mπ . 

With pion mass increase, for pion masses higher than about 60 MeV, the total 
energy increases, i.e. the binding energy decreases, and gets zero at about 190 
MeV, a result comparable with that obtained in [4] for deuteron binding 
energy. In [17] the binding energy becomes zero at about 300 MeV. 
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Figure 5. The total energy of the two nucleons as a function of the pion mass mπ , for 
the two pion exchange potential and a hard core repulsion radius 0 0.5 fmr = . 

5. Discussion and Conclusions 

The pion exchange is at the origin of the nuclear attraction, in a similar way that 
the electron exchange is at the origin of attraction in the molecular covalent 
bond. The decrease of the kinetic energy (in fact dynamical mass decrease from a 
relativistic point of view) of the exchange electron in the 2H+  ion, directly re-
sponsible for the formation of the molecular bound state, is replaced by the de-
crease of the dynamical mass of the pion degree of freedom in the case of the 
nuclear attraction by pion exchange. The slight de-localization of the pion de-
gree of freedom, which is at the origin of this dynamical mass decrease, is dras-
tically limited by an exponential function, which represents the probability for 
the pion to penetrate the potential barrier between the two nucleons. A similar 
exponential function exists in the case of molecular bond. 

The analytical formula of the central nuclear potential (13) derived for the NN 
interaction by pion exchange does not contain any unknown parameter. The 
minimum value of the NN potential and the position of the minimum are simi-
lar with the values reported in literature for the central NN potential obtained by 
lattice QCD, which shares the features of the phenomenological NN potentials. 
A very small binding energy (0.1 MeV) was obtained by solving numerically the 
Schrodinger equation. The binding energy increases for pion masses lower than 
the real pion mass. For masses higher than the real pion mass the nucle-
on-nucleon system is unbound. 

The fall of the potential (13) towards zero value for small R (Figure 1) is 
compatible with the beginning of the well known hard core repulsion region 
which is dominant at short range. On the other hand the Yukawa potential, de-
rived in analogy with the coulomb attraction (virtual photon exchange), gets in-
finite attractive for 0R →  due to factor 1 R−  [1] [2]. 

https://doi.org/10.4236/jmp.2018.98090


N. B. Mandache, D. I. Palade 
 

 

DOI: 10.4236/jmp.2018.98090 1467 Journal of Modern Physics 
 

Since the maximum value of 2e RR π−   is 0.26 fm (for 2R π=  ), this means 
substantially smaller than 1.41 fmπ = , relation (13) can be written in a good 
approximation as: 

( ) 22 e RRV R m c π
π

π

−≈ − 



                     (16) 

The NN nuclear potential is proportional to the mass of the interaction field. 
It is also proportional to the ratio R π , which is directly related to the slight 
de-localization of the pion degree of freedom and its (dynamical) mass decrease. 
This de-localization is drastically limited by the exponential function, which is 
similar to an exponential potential except the factor 2. Due to this exponential 
function the width of potential (16) gets larger for pion masses lower than the 
real pion mass and this explains the increase of the binding energy with the pion 
mass decrease (Figure 2). For too small pion masses this dependence reverses 
because the depth of potential (16) becomes too low. 

In the case of two pion exchange the minimum of the potential gets compara-
ble with the minimum value of the CD Bonn potential. The potential in this case 
is in a good approximation: 

( ) 22
2 2 e RRV R m c π
π π

π

−≈ − 



                   (17) 

The dependence of the type e xx −  of the nuclear potential, where 2x R π=  , 
is similar with the attractive part of the Rydberg potential used to describe the 
molecular covalent bonding [18]. 

A hard core repulsion was added to this two pion exchange potential and the 
Schrodinger equation was solved numerically for different values of the hard 
core repulsion radius. For a radius of 0.5 fm the binding energy is equal to the 
deuteron binding energy. 

Let’s compare the strength of the nuclear potential ( )2V Rπ  from relation (17)  

with the coulombian potential 
2

C
qV
R

= . The ratio of the two potentials for 

R π=   is: 

( ) ( ) 2 2
2 2

12 e 2 eC
cV V

qπ π π α
− −= =



                (18) 

where α  is the e.m coupling constant, a typical result for the relative strength 
of the nuclear interaction to the e.m. interaction. 

If we analyze the mechanism of NN interaction at quark level, we could say 
that by pion exchange between two nucleons some quark degrees of freedom are 
implicitly exchanged and in consequence are slightly de-localized. The confine-
ment region of a quark slightly increases and accordingly its dynamical mass 
decreases. This suggests to interpret the nuclear interaction as a residual strong 
interaction. 
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Abstract 
This paper integrates the Flat Space Cosmology (FSC) model into the Fried-
mann equations containing a cosmological term. The Lambda Λ  term 
within this model scales according to 2 23 tH c  and 23 tR . Use of the Be-
kenstein-Hawking definition of closed gravitational system total entropy pro-
vides for FSC cosmic parameter definitions in terms of S . Cosmic time, 
radius, total matter mass-energy and vacuum energy in this model scale in 
exactly the same way as S . This analysis opens the way for understanding 
gravity, dark energy and dark matter as being deeply connected with cosmic 
entropy. The recent theoretical work of Roger Penrose and Erik Verlinde is 
discussed in this context. The results of this FSC model analysis dovetail nice-
ly with Verlinde’s work suggesting gravity as being fundamentally an emer-
gent property of cosmic entropy. This emergent-property-of-entropy defini-
tion of gravity, if true, would also indicate that gravitational inertia, dark mat-
ter and dark energy are simply manifestations of cosmic entropy. Thus, they 
would likely have no identifiable connection to quantum physics, including 
the standard particle model. 
 

Keywords 
Cosmology Theory, Dark Energy, Dark Matter, Cosmic Entropy, Entropic 
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1. Introduction and Background 

Flat Space Cosmology (FSC) is a mathematical model of universal expansion 
which has proven to be remarkably accurate in comparison to observations [1] 
[2] [3] [4] [5]. FSC was initially developed as a heuristic mathematical model of 
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the Hawking-Penrose idea that an expanding universe arising from a singularity 
state can be modeled as a time-reversed giant black hole. This idea was an exten-
sion of Penrose’s paper [6] on the singularities of black holes and cosmology. 
Hawking’s doctoral thesis took the idea further by proving the validity of 
time-reversal in the treatment of general relativity as it concerns cosmology [7]. 
Finally, the FSC model completes this idea by incorporating scaling black hole 
equations suitable for cosmology. Thus, the proven accuracy of FSC with respect 
to current astronomical observations does not appear to be an accident. 

FSC has recently been proven to be a general relativity model by successfully 
integrating the FSC assumptions into the Friedmann equations which include a 
cosmological term and a global curvature term k set to zero. The relevant equa-
tions are repeated in this paper for clarity. One of the results of integrating 
FSC into the Friedmann equations is that the following relation holds true in 
FSC:

 2 2 43
8π 8π
H c c

G G
Λ

≅                            (1) 

This is merely a reflection that global space-time in FSC is flat during the 
cosmic expansion. As stipulated by the space-time curvature rules of general re-
lativity, a globally flat universe must have a net energy density of zero. Otherwise, 
if the positive energy density and negative energy density terms were not equal 
in magnitude, there would be an observable global space-time curvature repre-
sentative of the greater energy density term. 

The purpose of this paper is to show how the FSC Friedmann equations 
evolve further from Equation (1) and what they might imply with respect to the 
fundamental nature of gravity, dark energy and dark matter. Before doing so, 
however, it is useful to review the five current assumptions of FSC and its ob-
servational correlations. 

1.1. The Five Assumptions of Flat Space Cosmology 

1) The cosmic model is an ever-expanding sphere such that the cosmic hori-
zon always translates at speed of light c with respect to its geometric center at all 
times t. The observer is defined to be at this geometric center at all times t. 

2) The cosmic radius tR  and total matter mass tM  follow the Schwarz-
schild formula 22t tR GM c≅  at all times t. 

3) The cosmic Hubble parameter is defined to be t tH c R≅  at all times t. 
4) Incorporating our cosmological scaling adaptation of Hawking’s black hole 

temperature formula, at any radius tR , cosmic temperature tT  is inversely 
proportional to the geometric mean of cosmic total matter mass tM  and the 
Planck mass plM . plR  is defined as twice the Planck length (i.e., as the 
Schwarzschild radius of the Planck mass black hole). With subscript t for any 
time stage of cosmic evolution and subscript pl for the Planck scale epoch, and 
incorporating the Schwarzschild relationship between tM  and tR , 
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1 1          2B
4π

1               2C
4π

                                 2D

B t
t pl t pl

t
B t pl

t
pl B t

t t
pl B

t
t

c ck T
G M M R R

cM
Gk T M

cR
R k T

cR T
R k

cH
R


≅ ≅

  
 ≅  
  

    ≅   
    
  
 ≅  
  

 ≅


 
























                (2) 

5) Total entropy of the cosmic model follows the Bekenstein-Hawking black 
hole formula [8] [9] 

2

2

π
 t

t

p

R
L

S ≅                            (3) 

As previously reported [Tatum, et al (2015)], a number of past and current 
cosmological parameters can be calculated using the FSC model and are found 
to be in tight correlation with observations and the Hawking-Penrose theory. 
The accuracy of these correlations with observations is largely accomplished by 
incorporating the appropriate cosmological scaling formula for cosmic temper-
ature [see the top equation in relation (2)]. This equation, by incorporating ele-
mentary and fundamental constants of nature, allows for FSC scaling from the 
Planck scale to the current scale. Thus, FSC can be considered a quantum cos-
mology model. 

1.2. Cosmological Parameter Derivations of FSC 

Incorporation of the FSC assumptions into the cosmological scaling temperature 
formula allows for the following cosmological parameter definitions. Current 
observational parameters are calculated in the right-hand column. The only free 
parameter in any of these equations is the cosmic temperature. The currently 
observed cosmic temperature value: T0 = 2.72548 K. 

3 2 7 2 3 2 7 2

02 2 2 1 2 2 2 2 1 2
0

,       
32π 32πB B

c cR R
k T G k T G

≅ ≅
 

                (4) 

2 2 2 1 22 2 2 1 2
0

03 2 5 2 3 2 5 2

32π32π ,      BB k T Gk T GH H
c c

≅ ≅
 

                (5) 

3 2 5 2 3 2 5 2

02 2 2 1 2 2 2 2 1 2
0

,      
32π 32πB B

c ct t
k T G k T G

≅ ≅
 

                 (6) 

3 2 11 2 3 2 11 2

02 2 2 3 2 2 2 2 3 2
0

,       
64π 64πB B

c cM M
k T G k T G

≅ ≅
 

               (7) 

3 2 15 2 3 2 15 2
2 2

02 2 2 3 2 2 2 2 3 2
0

,       
64π 64πB B

c cMc M c
k T G k T G

≅ ≅
 

             (8) 
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( )1
0

18 1 12.167862848658891 10 s 66.89325791854758 km s MpcH − − − −= × ⋅ ⋅  

This derived current Hubble parameter value fits very closely with the low end 
range of the 2015 Planck Collaboration consensus observational value of 67.8 
+/− 0.9 km∙s−1∙Mpc−1 

( )17 9
0

0

1 4.612837941379141 10 s 14.61694683819266 10 sidereal yrst
H

≅ = × ×  

(multiplying by 1 sidereal yr/3.155814954 × 107 s) 

( )26 9
0

0

1.382894024801713 10 m 14.61720137583068 10 light-yrscR
H

≅ = × ×  

(multiplying by 1 Julian light-yr/9.4607304725808 × 1015 m) 
This current cosmic radius value correlates with current cosmic time by Ro = 

cto. For reasons given in the seminal FSC papers, a perpetually flat and finite 
space-time cosmology model has no need to incorporate a superluminal infla-
tionary mechanism to solve the flatness and horizon problems. 

3
79 3

0
0

4π 1.107784564915062 10 m
3

cVol
H

 
= = × 

 
 

0
0

3
529.311265291518025 10 kg

2
c
GH

M = = ×  

This total matter mass number can be compared very favorably to a rough es-
timate made from astronomical observations. The visible matter consists of 
roughly 100 billion galaxies averaging roughly 100 billion stars each, of average 
star mass equal to roughly 1.4 × 1030 kg (70 percent of solar mass), totaling to 
roughly 1.4 × 1052 kg. The 2015 Planck Collaboration report indicates a universal 
matter ratio of approximately 5.47 parts dark matter to 1 part visible (baryonic) 
matter. This brings the total estimated matter in the observable universe to ap-
proximately 9.1 × 1052 kg. A recent study [10] of average mass density of inter-
galactic dust gives a value of approximately 10−30 kg∙m−3. Since this is approx-
imately 1 part intergalactic dust to 1000 parts galactic and perigalactic matter, 
intergalactic dust does not appreciably modify the total observational estimated 
mass of matter given above. Accordingly, this observational estimate is remarka-
bly close to the above FSC theoretical calculation of total cosmic matter mass. By 
the FSC Friedmann equations (below), the positive total matter mass-energy 
must always be equal in absolute magnitude to the negative dark energy. This 
predicts a 50/50 cosmic energy density percentage ratio as opposed to the ap-
proximately 30/70 ratio currently claimed by standard cosmology proponents. 
However, without unequivocally proving cosmic acceleration, standard cosmol-
ogy cannot yet rightfully claim this 30/70 ratio. This has been discussed in nu-
merous recent analyses of the Supernova Cosmology Project compilation data 
[11] [12] [13] [14] and in a recent FSC paper [15]. 

5

0
92 6

0

8.368547901344209 10 J
2

c
G

c
H

M = = ×  
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( )
2

27 30
0

3
8.405303329200976 10 kg m critical mass density

8π
H
G

ρ − −= = × ⋅  

This closely approximates the observational critical density. 
2 2

10 302
0

3
7.554309895973191 10 J m

8π
cc H

G
ρ − −= = × ⋅  

This closely approximates the observational critical energy density and the 
observational vacuum energy density. They are equal in absolute magnitude in 
FSC. 

2. Flat Space Cosmology Friedmann Equations 

With respect to the Friedmann equations, those incorporating a non-zero cos-
mological term (i.e., a dark energy term) are now the most relevant since the 
1998 Type Ia supernovae discoveries. Therefore, accepting Friedmann’s starting 
assumptions of homogeneity, isotropism and an expanding cosmic system with 
a stress-energy tensor of a perfect fluid, we have his cosmological equation 

2 2

2

2 8π
3

kca G c
a

ρ+ + Λ
≅



                       (9) 

This equation is derived from the 00 component of the Einstein field equa-
tions. Since the global curvature term k is always zero in FSC, Equation (9) re-
duces to 

2
2

2 8π
3 3
G ca

a
H ρ Λ

≅ ≅



+





                   (10) 

With rearrangement, we have 
2 23

8π 8π
H c
G G

ρΛ
− ≅                       (11) 

This is the relevant Friedmann equation for cosmic mass density. Multiplying 
all terms by c2 gives us the relevant Friedmann equation for cosmic energy den-
sity 

2 2 4
23

8π 8π
H c c c

G G
ρΛ

− ≅                      (12) 

At this point it is crucial to remember that Friedmann’s energy density deriva-
tion of Einstein’s field equations for the cosmic system as a whole (i.e., globally) 
can be interpreted in the form of additive space-time curvatures represented by 
the individual terms. The first term can be read as the positive energy density 
(i.e., the positive space-time curvature) term; the second term can be read as the 
negative energy density (i.e., the negative space-time curvature) term; and the 
third term can be read as the summation (i.e., net) energy density term for global 
cosmic space-time curvature. Since global space-time is treated as constantly and 
perfectly flat in FSC, the third term must always have a net value of zero energy 
density. This is entirely in keeping with the general theory of relativity, as ap-
plied to cosmology, as well as current cosmological observations of flatness (i.e., 
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critical density). Hence, in FSC 
2 23

8π 8π
H c
G G

Λ
≅                           (13) 

And 
2 2 43

8π 8π
H c c

G G
Λ

≅                          (14) 

From these respective critical mass density and energy density equations, it is 
obvious that the FSC model defines the Lambda term Λ  by 

2

2

3H
c

Λ ≅                           (15) 

In FSC and other realistic linear Milne-type models, Hubble parameter H is a 
quantity which scales with cosmic time and is defined as 

cH
R

≅                            (16) 

where c is the speed of light and R is the cosmic radius as defined by the 
Schwarzschild formula 

2

2GMR
c

≅                           (17) 

where M represents the total matter mass of the cosmic system and G is the uni-
versal gravitational constant. Therefore, FSC Equation (15) substituted by equa-
tion (16) gives 

2

3
R

Λ ≅                            (18) 

So the Lambda term Λ  is also a scalar quantity (i.e., like the Hubble para-
meter, not actually a constant) over the great span of cosmic time. This indicates 
that FSC is a dynamic dark energy quintessence model. 

Crucially, Equation (18) allows one to compare the Lambda term Λ  with 
total entropy for the FSC cosmic system over the span of cosmic time. Recalling 
the Bekenstein-Hawking derivation of black hole entropy [Bekenstein (1974); 
Hawking (1976)] as directly proportional to the event horizon surface area 

( )24πR , we can apply their formula for cosmic entropy 
2

2

π
 t

t

p

R
L

S ≅                           (19) 

Then substituting Equation (18) into Equation (19) and rearranging terms 

2

3π

pSL
Λ ≅                           (20) 

Thus, the Lambda term Λ  in FSC is inversely proportional to total cosmic 
entropy S at all times. Substituting Equation (20) into Equation (15) gives 

2

2 2

π

p

cS
H L

≅                          (21) 
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and 

π

p

cH
L S

≅                           (22) 

And, since the reciprocal of the Hubble parameter is the measure of cosmic 
time t in FSC 

π
pL St

c
≅                           (23) 

So cosmic time is always directly proportional to S , with entropy S as de-
fined by Bekenstein and Hawking. Thus, the “entropic arrow of time” is clearly 
defined in the FSC model. 

The dark energy density cosmological term is not only expressed as 

( )4 8πc GΛ  in FSC Friedmann Equation (14) but, by incorporating equation 
(20) into this term, we now have a dark energy density equation 

4 4 2 2

2

3 3
8π 8π8 p

c c H c
G GGSL

Λ
≅ ≅                    (24) 

where in any of these terms can be used interchangeably to quantify the absolute 
magnitude of the cosmic dark energy density at all times. 

Given the above relations, simple algebraic rearrangements allow for expres-
sions of the following FSC parameters in terms of S  

π

p

cS t
L

=                         (25) 

Showing direct proportionality between cosmic entropy and cosmic time t. 

π

p

S R
L

=                          (26) 

Showing direct proportionality between cosmic entropy and cosmic radius R. 

2

2 π

p

GS M
c L

=                        (27) 

Showing direct proportionality between cosmic entropy and total cosmic mat-
ter mass M. 

5 5
1 2

3 3
2 22 232π 32π

U

B B

c cS T T
k G k G

− −= =
 

               (28) 

Showing indirect proportionality between cosmic entropy and cosmic tem-
peratures TU and T. 

1π

p

cS H
L

−=                         (29) 

Showing indirect proportionality between cosmic entropy and Hubble para-
meter H. 
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1
23π

p

S
L

−
= Λ                          (30) 

Showing indirect proportionality between cosmic entropy and cosmic Lamb-
da. 

2
4

2 π

p

GS Mc
c L

=                      (31A) 

( )4

2 π

p

GS V E
c L

= ⋅                     (31B) 

Showing direct proportionality between cosmic entropy and total cosmic 
matter mass-energy and negative vacuum energy. 

2

2
M c
R G

=                           (32) 

Showing the Schwarzschild relation between total cosmic matter mass M and 
radius R. 

2 4

2 4
GM c

GR
=                          (33) 

Showing an FSC Newtonian gravitational force relation based upon the 
Schwarzschild relation. 

4
2

2
cMc R
G

=                       (34A) 

4

2
cV E R
G

⋅ =                      (34B) 

Showing FSC energy definitions of total cosmic matter mass-energy and va-
cuum energy. 

2 2

22
Mc GM R

R
=                      (35A) 

2

22
V E GM R

R
⋅

=                      (35B) 

Showing FSC matter mass-energy and vacuum energy relations with FSC 
Newtonian gravitational work (incorporating E = Mc2, of course). 

2 2 2

2 2 0
2 2

Mc V E GM GMR R
R R

   ⋅
+ = − =   

   
           (36) 

Showing how conservation of energy works in the expanding FSC closed 
energy system. Such a spatially flat cosmic system, if it begins with net zero 
energy, must always be at net zero energy. 

3. Discussion 

Incorporation of the FSC assumptions into the Friedmann equations containing 
a cosmological term provides unique insights into the possible nature of gravity, 
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dark energy and dark matter. The cosmological term is usually expressed in the 
form of a negative energy density in counterbalance to the positive energy den-
sity of total matter (baryonic plus dark matter). Given the recent discovery of 
dark energy [16] [17] [18], and in the context of general relativity, dark energy is 
believed to represent a systemic negative gravitational energy within the cosmo-
logical vacuum. It seems reasonable to assume that dark energy and the negative 
vacuum energy represented by Friedmann’s cosmological term are one and the 
same. The important question concerns whether dark energy is a completely 
new physical entity or one which we already know by another name. 

Gravitational energy within the vacuum of a closed gravitating system has 
long been known to be a negative energy. For an excellent discusson as to why 
gravitational energy, in the form of potential energy, must be a negative energy 
in comparison to matter energy, the interested reader is referred to pages 11 - 14 
and 289 - 293 in Alan Guth’s excellent book entitled, “The Inflationary Universe” 
[19]. Gravitational systems perform work on mass bodies when aggregating 
them. Thus, by E = mc2, all aggregating bodies acquire additional increments of 
mass corresponding to their newly-acquired energy. By convention, this is re-
garded as a gain in the positive energy of matter. However, the generalized va-
cuum part of any such closed system must gain an equal amount of negative 
energy during all such gravitational interactions, in order to obey the Law of 
Conservation of Energy. No net energy can be gained or lost by a gravitating 
closed system, whether it is expanding, contracting or fixed in radius. Thus, in-
creasingly negative gravitational energy of the vacuum becomes a strong candi-
date for dark energy. 

In this context, it is easy to understand the meaning of FSC mass density and 
energy density Equations (13) and (14), respectively. Equality between these to-
tal matter and vacuum energy terms is mandatory in a closed system such as 
FSC. And, because these terms are of opposite signs with respect to their energy 
densities, the net global energy density of a spatially flat closed gravitating sys-
tem must be perpetually zero from inception. The FSC assumptions, by virtue of 
the Schwarzschild formula relationship between total matter mass Mt and radius 
Rt , and by virtue of the Hubble parameter definition as c/Rt, create a flat un-
iverse perpetually at the Friedmann critical energy density of ( )2 23 8πH c G . By 
incorporating the Schwarzschild relation [Equation (32)] into total matter and 
vacuum energy Equations (34A) and (34B), one can readily see how Newtonian 
gravitational work (now slightly modified by incorporating E = mc2, of course) 
can be expressed in Equations (35A) and (35B). Incorporating the correct nega-
tive energy signage of vacuum energy (i.e., dark energy) into Equation (36) 
shows how a closed net zero energy (i.e., flat) gravitating universe could evolve 
from a net zero energy quantum fluctuation event. 

In sharp contrast to FSC, standard inflationary cosmology has an entirely dif-
ferent explanation for cosmological flatness in universal observations going all 
the way back to the very early universe [the Cosmic Microwave Background 
(CMB) radiation was released before 3 one-hundred-thousandths (0.0000277) of 
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the current age of the universe]. Standard cosmology maintains that a quantum 
fluctuation event within a zero energy pre-Big Bang state kicked off the universal 
expansion. It also maintains that gravity was the first of four fundamental forces 
to “freeze out” following an exceedingly brief exponential inflationary phase. 
Standard model cosmologists believe our current universe to contain an ex-
tremely small net negative energy. In other words, they believe in cosmic accele-
ration (as opposed to constant velocity light speed expansion), despite these 
current observations of extreme flatness. However, if our universe began from a 
zero energy state and now has a non-zero energy density, however small, this 
would appear to violate conservation of energy! Furthermore, one must ask what 
kind of force drove the inflationary (“inflaton”) field if gravity did not already 
exist at the inception of the universe. Cosmic inflation energy appears to be sus-
piciously like early cosmic dark energy, which must be negative gravitational 
energy in nature. The Big Bang theory is derived from general relativity, which is 
entirely a gravity theory. To require that a gravity theory incorporate a 
pre-gravity phase within its cosmology, however brief in duration, sounds very 
much like nonsense. Moreover, cosmic inflation is an ad hoc theory 
“…contrived with the goal of arranging for the density perturbations to come 
out right” [Guth (1997), page 238]. Cosmic inflation, in its many different ad 
hoc forms, appears to be a deeply flawed theory, as nicely elaborated by one of 
its founders [20]. 

The purpose of this paper, however, is not to explain why the FSC model, now 
integrated into the flat universe Friedmann equations with a cosmological term, 
rigorously follows observations of cosmic flatness within the CMB. This point 
has been made in previous FSC publications [Tatum (2015)]. Rather, it is the 
purpose of this paper to further explore the possible nature of gravity, dark 
energy and dark matter. While the FSC model clearly indicates that dark energy 
is systemic negative gravitational energy, the key question becomes “How does 
this finite constant velocity expanding cosmic system work at its most funda-
mental level? Specifically, what is the fundamental nature of its gravity, especial-
ly in relation to dark energy and dark matter?” 

Possible clues to the fundamental nature of gravity and dark energy are pro-
vided in the new FSC Friedmann equations incorporating a cosmic entropy term. 
In Equation (18) Lambda term Λ  is always inversely proportional to the 
square of the cosmic radius. Thus, Lambda scales approximately 121.26 base 10 
orders of magnitude from the Planck scale. Interestingly, 10121 is the magnitude 
of the “cosmological constant problem” [21] [22]. Furthermore, Equation (18) is 
seen (in rearranged form) on page 277 of Roger Penrose’s latest book [23], if one 
assumes the standard 24πR  formula for the cosmic horizon surface area Acosm. 
Notably, this equation occurs in Penrose’s discussion of cosmic entropy, which 
assumes the Bekenstein-Hawking definition of cosmic entropy [see FSC Equa-
tion (19)]. So, while Lambda in general relativity is assumed to be a constant by 
proponents of standard cosmology, the FSC model and Penrose clearly indicate 
Lambda to be a declining scalar of negative energy density in an expanding 
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closed general relativity model. Lambda is clearly an inverse scalar of cosmic en-
tropy, as best seen in FSC Equation (20). However, most importantly, as seen by 
integrating Equation (26) into (34B), total vacuum energy scales in direct pro-
portion to total cosmic entropy, specifically in the form of S . One must keep 
in mind that the Bekenstein-Hawking definition of cosmic entropy is a unit-less 
ratio, so S  is also a measure of cosmic entropy, but on a scale identical to 
that of the other scaling FSC parameters. Figure 1 and Figure 2 below graphi-
cally show the intimate relationship between scaling FSC parameters and total 
cosmic entropy term S . It is entirely appropriate to use S  as a cosmolog-
ical clock because Equation (25) clearly demonstrates that FSC models the “en-
tropic arrow of time.” Notice also that the recently-introduced FSC “Universal 
Temperature” Tu [24] inversely scales to the same degree as S  (60.63 logs of 
10 from the Planck scale). Tu has a direct one-to-one correspondence to the T 
Kelvin temperature scale by the Universal Temperature definition, 2

uT T= . 
This idea that total cosmic entropy can be regarded as a cosmological clock is 

not entirely new, although the FSC model clearly indicates the similarly scaling 
entropy clock to be in the form of S . Furthermore, the FSC Friedmann en-
tropy equations introduced in this paper clearly point to cosmic entropy being 
fundamental to the nature of gravity. Penrose introduces the concept of gravita-
tional entropy to readers on page 256 of his book. Gravitational entropy differs 
significantly from the entropy of an equilibrated ideal gas, wherein maximum 
average particle separation at a given temperature characterizes the maximum 
entropy state. In contrast, in a gravitating universe, the ongoing clustering of 
stars and galaxies, and particularly black holes, is in the direction of greater gra-
vitational entropy! This is made abundantly clear by comparing deep space ob-
servational astronomy with observations of (approximately) co-moving galaxies. 
Supermassive black holes, in particular, are now thought to be huge repositories 
of total cosmic entropy. 

A review of the possible fundamental nature of gravity with respect to cosmic 
entropy should begin with a landmark paper by Erik Verlinde [25]. In this paper, 
Verlinde makes a very persuasive argument that cosmic entropy manifests itself 
as gravity! He shows in great detail, by a heuristic approach, how gravity could 
well be an emergent property of cosmic entropy. In other words, at the quantum 
level, our conventional conception of gravity as a fundamental force might be 
just as meaningless as a conception of consciousness within two connecting 
neurons. Emergent properties are most evident in complex systems with high 
degrees of freedom. They are difficult, if not impossible, to observe at the smal-
lest scales. This could very well nullify the assumption of string theorists that 
gravity should ultimately be definable fundamentally at the quantum scale. This 
does not bode well for a “quantum gravity” theory to be any different from FSC 
“quantum cosmology” as first presented in 2015 and now presented in its final 
form in the present paper. 

If Verlinde’s compelling emergent property argument ultimately prevails, gra-
vitational inertia (including that of dark matter!) and dark energy would also be  
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Figure 1. Universal Temperature Tu, Radius and Total Matter Mass vs. Entropy. 

 
emergent properties of cosmic entropy. The total matter mass attributable to 
gravitational entropy, by equations (27) and (31A), must include dark matter. 
This may well explain why dark matter does not integrate into the standard par-
ticle model. The majority of the dark matter yet to be discovered may not, in fact, 
be particulate, but rather the previously unaccounted for entropic gravitational 
inertia of visible matter. 

Verlinde’s heuristic approach to a fundamental understanding of gravity as an 
emergent property of cosmic entropy dovetails nicely with this updated FSC 
cosmology model. FSC also began as a heuristic model, as did Einstein’s (and 
Planck’s) photon. Importantly, neither approach relies in any way on a curved 
(i.e., non-flat) geometrical description of gravity. Although general relativity’s 
curved space-time is a supremely accurate and beautiful geometrical description 
of gravity, it is not fundamental to the nature of gravity. W.S. Krogdahl, for in-
stance, achieved a similarly accurate mathematical model of gravity and cos-
mology in flat space-time by starting his development with the integration of E = 
mc2 into Newtonian gravity [26] [27] [28]. Krogdahl’s approach appears to be 
vindicated by Equations (33) thru (36) in the present paper. These equations also 
give meaning to Newton’s discovery that the force of gravity is inversely propor-
tional to R2! 
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Figure 2. Universal temperature Tu, vacuum energy and total mass-energy vs. entropy. 

4. Summary and Conclusions 

The purpose of this paper has been to integrate the highly successful FSC model 
assumptions into the Friedmann equations in an effort to explore the funda-
mental nature of gravity, dark matter and dark energy. In doing so, there should 
be no doubt that the results are within the rules of general relativity, particularly 
in light of the fact that black hole equations already follow the rules of general 
relativity.  

The results of this exercise are quite intriguing. The Lambda term Λ  in FSC 
must follow Equations (15) and (18), indicating that FSC is a dynamic scalar 
dark energy (quintessence) model of the wCDM type (the FSC equation of state 
term w is perpetually −1.0). Lambda is shown to be a declining scalar of negative 
gravitational vacuum energy density (i.e., dark energy density). However, 
Lambda is an inverse scalar of total cosmic entropy S by Equations (20) and (30). 
Total matter mass-energy, vacuum energy and cosmic time are shown to be di-
rectly proportional to total cosmic entropy in the form of S . Thus, the “en-
tropic arrow of time” is clearly demonstrated in FSC, and S  can be used as 
the FSC time clock, due to the direct proportionality shown in Equation (25) 
between cosmic entropy S  and cosmic time t (see Figure 1 and Figure 2). 

A search of recent literature concerning the possible relationship between to-
tal cosmic entropy and gravitational interactions identifies Roger Penrose, Ste-
phen Hawking, and Erik Verlinde as pioneers in this field. Penrose’s book shows 
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how gravitational entropy clearly differs from the entropy of an ideal gas in the 
sense that gravitational clustering in the form of stars, galaxies and black holes, 
is representative of a high (gravitational) entropy state. Black holes, in particular, 
are huge reservoirs of entropy in its highest possible state. In fact, the FSC model, 
in this context of gravitational entropy, clearly indicates that black holes may be 
equivalently defined as localized zones of maximum possible gravitational en-
tropy, from the Planck scale to the scale of the current universe. 

Verlinde’s paper on the origin of gravity shows very clearly how gravity could 
be an emergent property of total cosmic entropy. If so, then gravity may be no 
more definable at the quantum level than consciousness can be defined within 
two connecting neurons. Moreover, if gravity is truly an emergent property of 
total cosmic entropy, then it existed from the inception of universal expansion, 
as opposed to “freezing out” after a pre-gravity inflationary phase. This emer-
gent property of entropy concept would also indicate that all gravitational ma-
nifestations, including gravitational inertia, dark matter and dark energy, are 
emergent properties, with no likely identifiable connection to quantum physics, 
including the standard particle model. 
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Abstract 
The rationale for Flat Space Cosmology (FSC) calculations of gravitational 
entropy in the form of S  is presented. These calculations indicate a tight 
correlation with the COBE DMR measurement showing CMB RMS tempera-
ture variations of 18 micro Kelvins. The COBE dT/T anisotropy ratio of 0.66 
× 10−5 falls within the FSC gravitational entropy range calculated for the be-
ginning and ending conditions of the recombination/decoupling epoch. Thus, 
the FSC model incorporating gravity as an emergent property of entropy sug-
gests that the CMB temperature anisotropy pattern could simply be a map of 
gravitational entropy, as opposed to a magnified “quantum fluctuation” event 
at a finite beginning of time. 
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1. Introduction and Background 

In the July 2018 issue of Journal of Modern Physics, the paper entitled, “Clues to 
the Fundamental Nature of Gravity, Dark Energy and Dark Matter,” makes a 
persuasive case in support of gravity being an emergent property of cosmic en-
tropy S [1]. This argument is bolstered by Verlinde’s landmark paper on the 
subject [2] and by Roger Penrose’s conception of gravitational entropy [3]. Not-
ably, Penrose’s presentation on cosmic entropy, which relies on the Bekens-
tein-Hawking definition of black hole entropy [4] [5], relates the magnitude of 
cosmic horizon surface area ( )24 Rπ  with the Lambda term Λ  in the same 
way as the Flat Space Cosmology (FSC) model. FSC and Penrose (page 277) have 
derived Λ  as always being equal to 23 tR . This, of course, implies that va-
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cuum energy density ( )4 8c GπΛ  is not a cosmological constant over the great 
span of cosmic time, but rather a constantly declining cosmological parameter. 
This relationship applies only to a general relativity model (such as FSC) of an 
expanding universe with a finite scaling horizon surface area. Only in a finite 
universe model can there be a holographic principle. 

The key to understanding gravitational entropy, as presented by Penrose 
(pages 256-258), is that in a gravitating universe, the ongoing clustering of stars 
and galaxies is in the direction of greater cosmic entropy. Black holes, in partic-
ular, are thought to be local reservoirs of maximum entropy. If so, then galactic 
supermassive black holes must be huge repositories of cosmic entropy. As pre-
sented in “Clues to the Fundamental Nature of Gravity, Dark Energy and Dark 
Matter,” gravitational entropy in the form of S  scales in direct proportion to 
FSC cosmic time, cosmic radius, cosmic matter mass, and cosmic vacuum ener-
gy (i.e., dark energy). Cosmic entropy in the correct scale form of S  is always 
inversely proportional to “Universal Temperature” Tu, as defined by 2

uT T= , 
wherein 2T  is in degrees Kelvin squared. This equal-scaling and proportionali-
ty between cosmic gravitational entropy and these FSC parameters allows one to 
easily calculate the gravitational entropy at any time and temperature in the 
cosmic past or future. Of particular interest, for the purposes of this paper, is the 
relative gravitational entropy during the cosmic microwave background (CMB) 
recombination/decoupling epoch in comparison to the gravitational entropies at 
one year after the Planck epoch and at current cosmic time in years. Plasma 
physics and particle physics tells us that the recombination/decoupling event 
began when our early universe was at about 3000 K. The great preponderance of 
the CMB radiation was released during the cosmic time interval extending from 
when the universe was at 3000 K to the abrupt “end of decoupling” approx-
imately 115,000 years later [6]. 

The astute observer will note that there is some difference between the time vs 
temperature curves used in standard inflationary cosmology as opposed to FSC. 
This is the subject of the June 2018 Journal of Modern Physics paper entitled, 
“Temperature Scaling in Flat Space Cosmology in Comparison to Standard 
Cosmology” [7]. A comparison of these two models in terms of cosmic temper-
ature vs cosmological redshift z is given below. In the FSC model [8] [9] [10], the 
following formula is used 

2 1 2

2 1t

o

T
z

T
 
 
 

≅ −                          (1) 

wherein Tt is the cosmic radiation temperature at any time t and To is the cur-
rent observed CMB temperature of 2.72548 K. In standard inflationary cosmol-
ogy, the following formula is used 

( )2.725 1CMBT z≅ +                        (2) 

wherein TCMB represents the CMB radiation temperature. As derived in the 
“Temperature Scaling” FSC paper, 
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( )2 11 21.085781647371578 10  K yr sidereal yearsysT t = × ⋅       (3) 

wherein 2T  is in Kelvin squared units and tys is cosmic time in sidereal years. 
In this context, the current paper analyzes what the FSC model can tell us 

about the likely effect of gravity on the CMB anisotropy pattern. The implica-
tions are discussed in terms of the well-known Sachs-Wolfe effect (See Discus-
sion section below). Particular emphasis is given to the gravitational entropy 

S  values corresponding to the recombination/decoupling epoch beginning 
and ending cosmic temperatures. The ensuing discussion will focus on the im-
plications of these gravitational entropy calculations, and what effect gravita-
tional entropy may have had on this CMB anisotropy pattern. 

2. Results 

Equation (3) gives an FSC cosmic time value of about 12,064 years at the begin-
ning of the recombination/decoupling epoch (3000 K). Thus, for reasons given 
in the Discussion section, the “end of decoupling” event happened in the FSC 
model at approximately 127,000 years (924.63 K) after the Planck epoch. The 
Planck epoch is the time of the Planck-scale universe and is often considered to 
be the approximate moment of the “Big Bang” in standard cosmology. The 
“Clues to the Fundamental Nature of Gravity, Dark Energy and Dark Matter” 
paper derives 

p

cS t
L
π

=                          (4) 

Showing the direct proportionality relationship between gravitational entropy 
S  and cosmic time t. Speed of light c and Planck length Lp are assumed to be 

constants over cosmic time. Thus, if we operationally define S  in terms of 
years, 

S  = 1 at 1 year of cosmic time at temperature 3.295 × 105 K 
S  = 12,064 at 12,064 years of cosmic time at temperature 3000 K 
S  = 127,000 at 127,000 years of cosmic time at temperature 924.63 K 
S  = 14.617 × 109 at 14.617 × 109 years of cosmic time at temperature 

2.72548 K 
The above CMB gravitational entropies (12,064 and 127,000) can then be re-

lated to current cosmic entropy (14.617 × 109) as follows: 
[ S  at the beginning of CMB emission]/[ S at current time] = 8.25 × 10−7 

(0.825 × 10−6) 
[ S at the ending of CMB emission]/[ S at current time] = 8.69 × 10−6 

(0.869 × 10−5) 

3. Discussion 

Sachs and Wolfe [11], using a gravitational redshift theoretical argument, sug-
gested that CMB temperature anisotropy could be a result of inhomogeneous 
gravitational particle clustering already present at the time of recombina-
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tion/decoupling. Their 1967 gravitational redshift argument for what is known 
as “the Sachs-Wolfe effect” is now widely believed to be correct [12]. The 
Sachs-Wolfe effect is widely considered to be the source of large angular scale 
temperature fluctuations in the CMB. 

However, in a spatially flat universe, the Sachs-Wolfe effect can also be consi-
dered to be the source of the smaller angular scale fluctuations of the CMB tem-
perature anisotropy [13]. The Boomerang Collaboration [14] reported CMB 
anisotropy observations closely fitting “the theoretical predictions for a spatially 
flat cosmological model with an exactly scale invariant primordial power spec-
trum for the adiabatic growing mode” [Bucher (2015), page 6]. The Boomerang, 
Wilkinson Microwave Anisotropy Probe (WMAP) [15], and Planck satellite [16] 
CMB anisotropy studies have all confirmed global spatial flatness of the universe 
at the time of the recombination/decoupling epoch. Therefore, in terms of the 
“gravitational potential variations” explanation first proposed by Sachs and 
Wolfe, little in the theory of CMB temperature anisotropy has changed since 
1967. What has changed since the time of the Sachs and Wolfe paper is the pre-
cision of measurements of the CMB temperature anisotropy. Both the WMAP 
study and the more sensitive Planck study have confirmed the CMB temperature 
anisotropy to be on the order of approximately one part per 100,000 (10−5). 

At the time of these CMB study reports, the extreme flatness observations of 
the CMB temperature anisotropy were credited as a victory for cosmic inflation. 
However, there was no basis to determine which particular theoretical version of 
inflation was correct, or even whether another flat space cosmology theory 
without an inflationary mechanism (such as FSC) could, in fact, be an even bet-
ter explanation of global cosmic flatness observations. The following quote from 
physicist Philip Gibbs sums it up best: “The problem… is that no particular 
model of inflation has been shown to work yet. It is possible that work has not 
yet been completed or that a more recent specific model will be shown to be 
right” [17] [18]. In a soon-to-be-published FSC paper, this author will clearly 
show why the FSC model is superior to the standard inflationary model, using a 
series of specific FSC model predictions dating back to 2015. 

As mentioned in the Introduction and Background section, current best esti-
mates of the cosmic time interval during which the CMB radiation was released 
suggest that the recombination/decoupling epoch lasted approximately 115,000 
years. In standard cosmology this is believed to have occurred between approx-
imately 372,000 and 487,000 years after a “Big Bang” at or near the Planck 
epoch. In the FSC model, the temperature scaling is slightly different [Tatum, et 
al (2018)], placing the beginning of the recombination/decoupling epoch (3000 
K) at approximately 12,064 years after the Planck epoch. Adding the estimated 
time interval of approximately 115,000 years puts the FSC “end of decoupling” 
event at about 127,000 years after the Planck epoch. 

Gravitational entropy S  in the FSC model follows the same log value scale 
as cosmic time. Thus, there should be a uniform progression from maximum 
gravitational potential “smoothness,” corresponding to any operationally-defined 
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“minimal” or “beginning” anisotropy, to ongoing and progressively greater gra-
vitational inhomogeneity (i.e., “filaments”, “clusters” and “voids”). Furthermore, 
this is consistent with the concept that cosmic entropy smoothly increases as the 
expanding cosmic horizon surface area (the Bekenstein-Hawking measure of 
entropy) increases. Thus, it would seem reasonable to assume that, if the CMB 
temperature anisotropy pattern is in keeping with the Sachs-Wolfe effect for a 
spatially flat universe, and if gravity is truly an emergent property of cosmic en-
tropy as indicated by Verlinde, the FSC gravitational entropy values pertaining 
to the recombination/decoupling epoch should also be a measure of the CMB 
temperature anisotropy. 

The COBE DMR experiment measured CMB RMS temperature variations of 
18 micro Kelvins (1.8 × 10−5 K) [19]. This gives a dT/T anisotropy ratio of 
(0.000018)/2.725, equaling 6.6 × 10−6 or 0.66 × 10−5. Little has changed in this 
respect, judging from the subsequent WMAP and Planck CMB temperature 
anisotropy findings (also approximately 10−5). 

It is intriguing that the FSC gravitational entropy ratios provided and calcu-
lated at the end of the Results section are 0.825 × 10−6 at the beginning of recom-
bination/decoupling and 0.869 × 10−5 at the “end of decoupling.” It should be 
noted that the “last scattering surface” is actually a 115,000 year thick segment of 
microwave radiation spectrum rather than an infinitely thin “surface” at a single 
redshift. In this context, the COBE DMR dT/T anisotropy ratio of 0.66 × 10−5 
can only be, in some way, an averaging of the actual ratio numbers pertaining to 
the beginning and ending conditions responsible for the “last scattering surface.” 
Therefore, the FSC model incorporating gravity as an emergent property of en-
tropy suggests that the CMB temperature anisotropy pattern could simply be a 
map of gravitational entropy, as opposed to a magnified “quantum fluctuation” 
event at a finite beginning of time. 

4. Summary and Conclusions 

The purpose of this paper has been to show how the CMB temperature aniso-
tropy pattern could be a map of gravitational entropy as defined by Roger Pen- 
rose in his book entitled, “Fashion, Faith and Fantasy in the New Physics of the 
Universe.” This is particularly relevant with respect to Erik Verlinde’s theory 
that gravity is an emergent property of cosmic entropy. Verlinde’s theory dove-
tails nicely with the July 2018 Journal of Modern Physics paper entitled, “Clues 
to the Fundamental Nature of Gravity, Dark Energy and Dark Matter.” 

In the present paper, the rationale for FSC calculations of gravitational entro-
py in the form of S  is presented. These calculations indicate a tight correla-
tion with the COBE DMR measurement showing CMB RMS temperature varia-
tions of 18 micro Kelvins. The COBE dT/T anisotropy ratio of 0.66 × 10−5 falls 
within the FSC gravitational entropy range calculated for the beginning and 
ending conditions of the recombination/decoupling epoch. Thus, the FSC model 
incorporating gravity as an emergent property of entropy suggests that the CMB 
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temperature anisotropy pattern could simply be a map of gravitational entropy, 
as opposed to a magnified “quantum fluctuation” event at a finite beginning of 
time. 
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Abstract 
An essential simplification of approach to the Schrödinger perturbation series 
for energy does hold when the perturbation events are arranged along a cir-
cular scale of time. The aim of the present paper is to demonstrate how such a 
scale of time leads to the recurrence calculation process of the Schrödinger 
energy terms belonging to an arbitrary perturbation order N. This process 
seems to have never been represented before. Only a non-degenerate quantum 
state and its perturbation due to the space-dependent potential are considered 
in the paper. 
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1. Introduction 

In science an identical result obtained in two different ways does not necessarily 
mean an effect of a secondary importance. An example is the Schrödinger 
perturbation formalism. In order to get it Schrödinger elaborated a special 
treatment of the inhomogeneous differential equations in course of which the 
energies and wave functions of a stationary quantum state perturbed by a 
time-independent potential could be calculated with the aid of the energies and 
wave functions representing the unperturbed quantum states of a given system 
[1]. Usually the unperturbed system was less complicated than a perturbed one, 
and the perturbation was limited to the potentials difference entering the 
perturbed and original state. 

An effective formalism leading to the Schrödinger results is based usually on 
an iterative process; see e.g. [2]. When an original Hamiltonian 0Ĥ  is 
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perturbed by Ĥλ ′ , we have to solve the time-independent Schrödinger 
equation given in the form 

per per per perˆ ,H Eψ ψ=                      (1) 

the problem is approached by a substitution 
per

0
ˆ ˆ ˆ ,H H Hλ ′= +                       (2) 

per 2
0 1 2ψ ψ λψ λ ψ= + + +                   (3) 

and 
per 2

0 1 2 .E E E Eλ λ= + + +                    (4) 

The 0Ĥ , 0E  and 0ψ  are respectively the unperturbed Hamiltonian, energy 
and wave function, whereas Ĥλ ′ , 2

1 2, ,E Eλ λ   and 2
1 2, ,λψ λ ψ   represent 

respectively the perturbed quantities. The solution of (4) can be obtained 
gradually for different powers of λ. In the next step the size of the parameter λ is 
put equal to 1; see [2]. 

This rather tedious procedure does not apply time, which makes it similar to 
the original Schrödinger approach [1]. For 1λ =  the notation of (4) is usually 
changed into the expression 

per
0 1 2 3E E E E E− = ∆ + ∆ + ∆ +               (4a) 

where 1 2 3, , ,E E E∆ ∆ ∆   are the perturbation energies corresponding to the 
so-called perturbation orders N equal respectively to N = 1, N = 2, N = 3, etc. 

The time entered the Schrödinger perturbation theory—limited to the stationary 
quantum states—with the development of diagrams introduced by Feynman [3] 
[4]. But these diagrams were based on a different kind of the time scale than 
applied in the present paper. In order to clarify the origin of a difference 
between the Feynman and present perturbation formalism, a step towards the 
time backround entering both methods seems to be of use. 

2. Physics of a Quantum System and the Notion of Time 
Both physical and philosophical features connected with the notion of time are 
combined systematically with scientific experience and observations of everyday 
life. A separate component of our view on time is provided by human 
imagination. In effect the idea of the time notion is extended—with a variable 
degree of certainty—from the atomic world to universe. 

In fact time is a parameter the knowledge of which depends both on the 
properties of the examined object as well as the abilities possessed by an observer. 
If we limit our “universe” to a single hydrogen atom and the observer’s ability to 
distinguish between the atomic nucleus and electron together with the possibility 
to estimate the size of a distance between these two objects, we can obtain two 
kinds of observations. One of them is created by assuming that a constant 
distant does hold between the nucleus and electron. This situation cannot serve 
to establish any notion of time because no change of the distance parameter can 
be detected and observed. However another situation is obtained when the 
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distance between two particles changes systematically in a planar motion of the 
electron particle, which has its trajectory say along an ellipse. In this case the 
observer’s measurements are spread along the interval length which is equal to a 
difference between the larger and smaller semiaxis of the ellipse. If the motion is 
perfectly periodic, any point observed within the interval length repeats after the 
same period of the motion time T. 

In effect all time points accessible by observations are enclosed within the 
interval 

0 ,t T< <                           (5) 

which repeats incessibly because no limit is imposed on the electron motion 
along the ellipse. 

But a huge amount of everyday observations is evidently against the limit 
given in (5). In fact a finite amount of T is replaced by infinity, so 

0 .t< < ∞                             (6) 

On the other hand, an analysis of the contemporary situation as an effect of an 
earlier situation combined with imagination implies the past events qualitatively 
separated from the present situation by a time interval which can be also of an 
infinite size. This gives the interval 

t−∞ < < ∞                            (7) 

where t = 0 can be assumed to be close to the present time. 
The interval (7) encloses practically all possible events in nature but does not 

explain much what happens, will happen, or has happened, within (6) or (7). A 
characteristics of time is often expected to be obtained from physics. In fact we 
look for an objective method to define this character. Perhaps the best known 
result is given by the second law of thermodynamics which applies the notion of 
entropy and states that “later” means systematically a larger entropy than the 
entropy at an “earlier” time. An objection which can be raised here is connected 
mainly with the fact of applying the thermodynamics and entropy: these notions 
concern macroscopic systems built up regularly from a huge number of individual 
components. 

But difficulties with a physical approach to time concern also the quantum 
domain. First the time intervals of numerous quantum processes are too short to 
be satisfactorily controlled on both the theoretical and experimental level. 
However opposite cases can be also considered. If an atom is in its lowest energy 
state, called also a ground state, and no external forces or collisions act on it, this 
atomic state can be preserved infinitely with no change. Therefore—according to 
the present state of our knowledge—no idea or scale of time can be applied in 
describing such an atom. However, a different situation is obtained when—at 
some moment—the atom is perturbed, for example by an action of an external 
field which can be chosen to be independent of time. If the time moment of 
inclusion of the perturbation potential is denoted by 

,bt t=                               (8) 
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at any time moment 

bt t>                              (9) 

the properties of the atom are changed in comparison to those possessed in (8). 
But we can assume that in effect of the action of the perturbation potential 

perV                             (10) 

till some 

,e bt t                           (11) 

the atom will approach another stationary state. In effect of that the atom 
properties at 

et t                            (12) 

will be not much different than those possessed near 

.et t=                            (13) 

In other words the atom behaves at (12) as an unchanged object equal to that 
obtained at (13), therefore the notion of time looses again its sense. But a 
question arises now how the time is going on between bt t=  and et t= . An 
attempt to answer this question became a major subject of the paper. 

The answer is obtained with the aid of an analysis of the events which 
accompany the perturbation process. According to Leibniz [5] [6] it is the 
sequence of events which is legitimate to provide us with a knowledge of the 
character of the time scale associated with a given process. In this case the 
problem of the size of the time intervals between subsequent events becomes of a 
secondary importance, but the accent is put on the properties (regularities) of 
the changes of the system exhibited in course of the time flow. 

One of the aims of the present paper is to compare two scales of time applied 
to the case of the perturbation process. The first—based on a linear scale 
extended from the minus to plus infinity [see (6) and (7)]—was involved in the 
Feynman’s approach to quantum mechanics [3] [4], another scale—of an 
essentially circular character—has been developed by the author [7]-[14]. 

3. Feynman’s Approach and Present Approach to the 
Schrödinger Perturbation Energy 

An essential difference between these two approaches is that in a majority of 
calculations postulated according to the Feynman’s scheme of diagrams— 
especially for a large perturbation order N—there exists no reference between 
the energy terms provided by the Schrödinger perturbation theory and the 
Feynman diagrams. A reason of that is the fact that for large N the number of 
the Feynman diagrams equal to 

( )1 !NP N= −                            (14) 

does exceed dramatically the number of the Schrödinger terms given by the 
formula [15] [16]: 
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( )
( )

2 2 !
.

! 1 !N
N

S
N N

−
=

−
                       (15) 

The ratio between NP  and NS  is 

( )
( )

2
! 1 !

;
2 2 !

N

N

N NP
S N

−  =
−

                     (16) 

evidently it increases rapidly with N. For example for 20N =  the ratio (16) 
attains the number of 

820

20

0.688 10 .
P
S

= ×                      (16a) 

This means that in average about 80.7 10×  results of the integration 
prescribed by the Feynman diagrams should be combined in order to obtain one 
Schrödinger energy term. The task seems to be complicated even with the use of 
computers. 

On the other hand, an evident advantage of the circular time scale is that it 
can provide us with a one-to-one correspondence between the diagrams based 
on the scale and the Schrödinger energy terms. This facilitates enormously any 
development of the Schrödinger perturbation calculation and serves to control 
its results. 

4. Basic Characteristics of the Circular Scale of Time 

The first rule concerning diagrams of the present theory is that they can be 
classified according to the perturbation orders 

1,2,3,4,N =                        (17) 

characteristic for the Schrödinger perturbation scheme. This means that the 
number of time points taken into account on any diagram belonging to N is 
equal to N. But only one diagram for each N is represented by N uncontracted 
time points labelled successively by 

1,2,3,4, , .N                        (18) 

From the number N of time points entering any diagram the points 

1,2,3,4, 1M N= = −                    (19) 

should be taken into account in formation of contractions of the time points 
characteristic for that diagram. A reason for that limitation is due to the fact that 
the point N, which is considered as a beginning-end point of the scale, does not 
enter contractions. 

The contractions can be simple, i.e. between two points of time, viz. 

1 2: 1: 2,t t =  

1 3: 1: 3,t t =  

1 4: 1: 4,t t =                          (20) 

or 
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2 3: 1: 3,t t =  

2 4: 2 : 4,t t =                         (20a) 

or 
3 4: 3 : 4, ,t t =                        (20b) 

but also double contractions like 

1 2 3: : 1: 2 : 3,t t t =  

1 2 4: : 1: 2 : 4,t t t =  

1 3 4: : 1: 3 : 4, ,t t t =                      (20c) 

and still more extended contractions with more than three time points involved 
in them can exist. 

Evidently the time points are arranged on the scale, as well as in contraction 
ensembles, according to their rise in time: 

1 2 3 4t t t t< < < <                       (21) 

There are also possible combined time-points contractions, for example 

1 2 3 4: : 1: 2 3: 4t t t t =                     (22) 

or 

1 4 2 3: : 1: 4 2 : 3,t t t t =                    (23) 

which indicate a simultaneous presence of two different contractions. The rule, 
however, for formation of such combined sets of contractions is that the loops 
created by them on a diagram cannot cross (see e.g. [7]). This means that, for 
example, such contractions combination like 

1 3 2 4: : 1: 3 2 : 4t t t t =                     (24) 

cannot exist. 
Physically any contraction of the time points creates one or more loops of 

time supplementary to the main—single for a given diagram—loop of time. 
These supplementary loops will be called the side loops of time. They can be 
regularly represented by the energy perturbation terms of the order lower than 
the actually examined N. The main loop of time should contain the beginning-end 
point characteristic for any considered N. This special time point—as it is stated 
above—does not participate in contractions. 

5. Loops of Time and Schrödinger Perturbation Terms for 
Energy 

In this Section the loops of time obtained for the circular-scale diagrams are 
referred to the Schrödinger perturbation terms for energy. A single diagram 
without contractions is present for any N; for the case of N = 7 such diagram is 
drawn on Figure 1. The energy term corresponding to this diagram is 

.VPVPVPVPVPVPV                         (25) 

The number of V is 7, but the number of P is 6. 
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Figure 1. Diagram representing the energy term for the 
perturbation order N = 7 having no contractions of the 
time points. 

 

In general the symbol V represents the matrix element 
per .a V b                          (26) 

The expression (25) begins with the matrix element (26) taken for a n=  and 
b p n= ≠  where n is the index of quantum state submitted to perturbation. The 
next V represent the matrix elements 

per per per per per, , , , ,p V q q V r r V s s V t t V u       (27) 

and the last V in (25) is 
per .u V n                        (27a) 

The successive symbols P in (25) are respectively 

1 1 1, , ,
n p n q n r

P P P
E E E E E E

= = =
− − −

 

1 1 1, , ,
n s n t n u

P P P
E E E E E E

= = =
− − −

           (28) 

and the whole expression (25) is a multiple sum performed over the 
quantum-state indices 

, , , , , , .p q r s t u n≠
                      (29) 

The indices change from state 1 to infinity with the omission of state n in each 
sum. 

A contraction of two points, say 

: 1: 2,p q =                          (30) 

means creation of a side loop of time on the diagram of Figure 1 between the 
points 1 and 2; see Figure 2. In this case the perturbation term (25) changes into  

2VP VPVPVPVPV V                    (31) 

where 

( ) ( )
2

2 2

1 1

n p n q

P
E E E E

= =
− −

                (32) 
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(b) 

Figure 2. Diagrams representing the energy perturbation terms for N = 7 obtained from a small modification of 
diagrams valid for the perturbation order N = 6. The numbers below diagrams indicate the time contraction and 
energy term given in Table 1. 
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and 

1V E= ∆                          (32a) 

which is the first-order perturbation energy. 
Contractions 2 : 3 , 3: 4 , 4 : 5  and 5 : 6  give respectively the perturbation 

terms: 
2VPVP VPVPVPV V                     (33) 

with 

( ) ( )
2

2 2

1 1 ,
n rn q

P
E EE E

= =
−−

                (33a) 

the term 
2VPVPVP VPVPV V                     (34) 

with 

( ) ( )
2

2 2

1 1 ,
n r n s

P
E E E E

= =
− −

               (34a) 

the term 
2VPVPVPVP VPV V                   (35) 

with 

( ) ( )
2

2 2

1 1 ,
n s n t

P
E E E E

= =
− −

              (35a) 

the term 
2VPVPVPVPVP V V                   (36) 

with 

( ) ( )
2

2 2

1 1 .
n t n u

P
E E E E

= =
− −

               (36a) 

The summations entering (33)-(36) are extended respectively over  
, , , , ,p q r s t u n= ≠                   (33b) 

, , , , ,p q r s t u n= ≠                   (34b) 

, , , , ,p q r s t u n= ≠                   (35b) 

, , , , .p q r s t u n= ≠                   (36b) 

Similar notation applies for other contractions than presented above. For 
example a double contraction 

: : 1: 2 : 3p q r =                     (37) 

gives for the energy term coming from the main loop the expression 

( )23 .VP VPVPVPV V                (38) 

The term 
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( ) ( )2 2
1V E= ∆                        (39) 

is due to the side loops 1:2 and 2:3 separately. The term due to the main loop is 
represented by 

3VP VPVPVPV                      (40) 

where 

( ) ( ) ( )
3

3 3 3

1 1 1 .
n rn p n q

P
E EE E E E

= = =
−− −

          (41) 

Three other P present in (40) are those given in (28) and summations concern 
the states 

, , .s t u                         (42) 

In total the summations entering the brackets in (40) are extended over the 
states 

, , , .p q r s t u n= = ≠                   (43) 

It is easy to prolongate the above notation to other contractions of the time 
points than considered between (30) and (43). 

The sign of a perturbation term is dictated by the number of the bracket pairs 
which enter that term. For an odd number of the bracket pairs [see (25), (38)] 
the whole energy term should be taken with a positive sign, for an even number 
of the bracket pairs [see (31), (33)-(36)] the perturbation term should be taken 
with a minus sign. 

6. Recurrence Procedure for Calculating the Schrödinger 
Perturbation Terms Belonging to Arbitrary N 

It seems that the best way to represent this procedure is to apply it to an example. 
A particular task let be to derive the perturbation terms belonging to N = 7 from 
the terms belonging to 

7.N <                             (44) 

The energy perturbation terms corresponding to N entering (44) are briefly 
derived and given in Appendix. A question which can arise may be how similar 
terms should be calculated in the case of N = 7. 

The choice of N = 7 means that a new free time point on the scale which can 
be submitted to contractions is 

1 6.N − =                             (45) 

This implies that 6 42S =  terms belonging to N = 6 should be modified in 
order to take into account the presence of a free time point 6 absent in the case 
of N = 6. In practice this means that all contributions coming to energy from the 
main loop of time for N = 6 can be made valid also for N = 7 on condition—at 
the end of any bracket term corresponding to the mentioned main loop of 
time—the product 
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PV                             (46) 

is added; see Table 1. The diagrams corresponding to the energy terms obtained 
in the way outlined below (45) are presented in Figure 2. This reduces the 
number of unknown terms for N = 7, namely 

7 132,S =                           (47) 

to 

7 6 132 42 90.S S− = − =                      (48) 

But the presence of point 6 on the time scale implies that this point has also to 
participate in contractions. The number of these contractions is obtained when 
contraction 

1: 6,                            (49) 

together with all admissible contractions of the time points on a circular scale 
between 1 and 6, are taken into account. The contraction (49) and its energy 
terms are 

2
51: 6 Δ .VP V E→−                     (50) 

This contraction provides us with contribution equal to 14 Schrödinger 
energy terms because the number of terms in 5E∆  is 5 14S = . In the next step 
we obtain 5 terms, viz. 

3
1 41: 2 : 6 Δ Δ ,VP V E E→                   (51) 

because of 1 1S =  and 4 5S = . Two perturbation terms are given by 
3

2 31: 3 : 6 Δ Δ ,VP V E E→                   (52) 

because of 2 1S =  and 3 2S = ; the same number of terms holds for contraction 
3

3 21: 4 : 6 Δ Δ .VP V E E→                  (53) 

Contraction 
3

4 11: 5 : 6 Δ ΔVP V E E→                  (54) 

gives 4 5S =  terms since it is by symmetry similar to (51); 

( )24
1 31: 2 : 3 : 6 Δ ΔVP V E E→−               (55) 

gives two terms because of 3 2S = ; 

( )24
1 21: 2 : 4 : 6 Δ ΔVP V E E→−               (56) 

is a one-term contraction ( )1 2 1S S= = ; 
4

1 3 11: 2 : 5 : 6 Δ Δ ΔVP V E E E→−                (57) 

gives two terms because of 3 2S = ; 
4

2 1 21: 3 : 4 : 6 Δ Δ ΔVP V E E E→−               (58) 

is a one-term contraction; 

( )24
2 11: 3 : 5 : 6 Δ ΔVP V E E→−                (59) 
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Table 1. Energy perturbation terms belonging to N = 7 obtained by adding the product 
PV from (46) into the main bracket terms entering the perturbation energy for N = 6. The 

terms 15, 25, 26, 27 and 28 can combine into 2
4VP VPV E− ∆ ; the terms 6 and 7, 16 and 

17, 19 and 20, and 29 and 30 combine into four terms containing the factor of 3E∆ . 

 contraction energy term 

1 no contraction VPVPVPVPVPVPV  

2 1: 2  2
1ΔVP VPVPVPVPV E−  

3 1: 3  2
2ΔVP VPVPVPV E−  

4 1: 2 : 3  ( )23
1ΔVP VPVPVPV E  

5 2 : 3  2
1ΔVPVP VPVPVPV E−  

6 1: 4  
2

3ΔVP VPVPV E−  
7 1: 4 2 : 3  

8 1: 2 : 4  3
1 2Δ ΔVP VPVPV E E  

9 1: 3 : 4  3
2 1Δ ΔVP VPVPV E E  

10 1: 2 : 3 : 4  ( )34
1ΔVP VPVPV E−  

11 2 : 4  2
2ΔVPVP VPVPV E−  

12 2 : 3 : 4  ( )23
1ΔVPVP VPVPV E  

13 3 : 4  2
1ΔVPVPVP VPVPV E−  

14 1: 2 3 : 4  ( )22 2
1ΔVP VP VPVPV E  

15 1: 5  2VP VPVVPVPVPV−  

16 1: 2 : 5  
3

1 3Δ ΔVP VPV E E  
17 1: 2 : 5 3 : 4  

18 1: 3 : 5  ( )23
2ΔVP VPV E  

19 1: 4 : 5  
3

3 1Δ ΔVP VPV E E  
20 1: 4 : 5 2 : 3  

21 1: 2 : 3 : 5  ( )24
1 2Δ ΔVP VPV E E−  

22 1: 2 : 4 : 5  4
1 2 1Δ Δ ΔVP VPV E E E−  

23 1: 3 : 4 : 5  ( )24
2 1Δ ΔVP VPV E E−  

24 1: 2 : 3 : 4 : 5  ( )45
1ΔVP VPV E  

25 1: 5 2 : 3  2 2
1ΔVP VPV VP VPV E  

26 1: 5 2 : 4  2 2
2ΔVP VPV VP V E  

27 1: 5 2 : 3 : 4  ( )22 3
1ΔVP VPV VP V E  

28 1: 5 3 : 4  2 2
1ΔVP VPV VPVP V E  

29 2 : 5  
2

3ΔVPVP VPV E−  
30 2 : 5 3 : 4  

31 2 : 3 : 5  3
1 2Δ ΔVPVP VPV E E  

32 2 : 3 : 4 : 5  ( )34
1ΔVPVP VPV E−  

33 2 : 4 : 5  3
2 1Δ ΔVPVP VPV E E  
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Continued 

34 3 : 5  2
2ΔVPVPVP VPV E−  

35 1: 2 3 : 5  2 2
1 2Δ ΔVP VP VPV E E  

36 3 : 4 : 5  ( )23
1ΔVPVPVP VPV E  

37 1: 2 3 : 4 : 5  ( )32 3
1ΔVP VP VPV E−  

38 4 : 5  2
1ΔVPVPVPVP VPV E−  

39 1: 2 4 : 5  ( )22 2
1ΔVP VPVP VPV E  

40 1: 3 4 : 5  2 2
2 1Δ ΔVP VP VPV E E  

41 1: 2 : 3 4 : 5  ( )33 2
1ΔVP VP VPV E−  

42 2 : 3 4 : 5  ( )22 2
1ΔVPVP VP VPV E  

 
gives also one term; 

( )24
3 11: 4 : 5 : 6 Δ ΔVP V E E→−                (60) 

is a two-terms contraction symmetrical to (55). The remaining one-term 
contractions joining points 1 and 6 are 

( )35
1 21: 2 : 3 : 4 : 6 Δ Δ ,VP V E E→                  (61) 

( )25
1 2 11: 2 : 3 : 5 : 6 Δ Δ Δ ,VP V E E E→                (62) 

( )25
1 2 11: 2 : 4 : 5 : 6 Δ Δ Δ ,VP V E E E→                (63) 

( )35
2 11: 3 : 4 : 5 : 6 Δ Δ ,VP V E E→                 (64) 

( )56
11: 2 : 3 : 4 : 5 : 6 Δ .VP V E→−                  (65) 

In total we obtain from (50)-(65) the number of terms connected with the 
interaction between the time points 1 and 6 equal to: 

14 5 2 2 5 2 1 2 1 1 2 1 1 1 1 1 42.+ + + + + + + + + + + + + + + =        (66) 

In fact this is a number of the Schrödinger energy terms equal to 

6 42.S =                           (67) 

The diagrams corresponding to the terms obtained in (66), or (67), are 
represented in Figure 3. The calculation of the energy terms corresponding to 
diagrams entering (67) reduces the unknown number of the energy terms for N 
= 7 to 

7 62 132 84 48.S S− × = − =                  (68) 

In order to present the terms (68)—see Figure 4—we take into account that 
the “interaction” of the time point 6 with point 1 can be extended by the 
“interaction” of point 2 with 6 in the absence of the interaction with point 1. 
This provides us with contraction 

2
42 : 6 Δ ;VPVP V E→−                    (69) 

because of 4 5S =  this formula contains five Schrödinger terms. 
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(b) 

Figure 3. Diagrams representing the energy perturbation terms for N = 7 obtained from 
contractions of the time points 1 and 6, as well as contractions done together with the points 
between 1 and 6. The numbers below diagrams refer to the formulae in the text. 
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(b) 

Figure 4. Diagrams representing the energy perturbation terms for N = 7 which did not enter Figure 2 and Figure 3. Numbers 
below diagrams refer to the formulae presented in the text. 
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If beyond of (69) we take into account also all possible contractions of the 
time points which are between 2 and 6 (see Figure 4), we obtain 

3
1 32 : 3 : 6 Δ ΔVPVP V E E→                     (70) 

which contributes two energy terms, 

( )23
22 : 4 : 6 ΔVPVP V E→                     (71) 

which gives a single energy term, 
3

3 12 : 5 : 6 Δ ΔVPVP V E E→                    (72) 

which is again a combination of two terms, and 

( )24
1 22 : 3 : 4 : 6 ,VPVP V E E→− ∆ ∆                (73) 

4
1 2 12 : 3 : 5 : 6 ,VPVP V E E E→− ∆ ∆ ∆                (74) 

( )24
2 12 : 4 : 5 : 6 ,VPVP V E E→ − ∆ ∆                (75) 

( )45
12 : 3 : 4 : 5 : 6 ,VPVP V E→ ∆                 (76) 

which are all single energy terms. Together with contraction 2 : 6  in (69) all 
interactions containing points 2 and 6 [equations (69)-(76)] give the number of 
energy terms equal to 

55 2 1 2 1 1 1 1 14 .S+ + + + + + + = =               (77) 

In effect the lacking number of diagrams for N = 7 is reduced to 

7 6 52 48 14 34.S S S− × − = − =                 (78) 

A new “interaction” which is between points 3 and 6, symbolized by 

3: 6,                           (79) 

but involving also contractions with the points 4 and 5 placed between 3 and 6, 
gives 

4 5S =                           (80) 

new energy diagrams corresponding to contractions 
2

33 : 6 ,VPVPVP V E→− ∆                   (81) 

3
1 23 : 4 : 6 ,VPVPVP V E E→ ∆ ∆                 (82) 

3
2 13 : 5 : 6 ,VPVPVP V E E→ ∆ ∆                 (83) 

( )1
4 33 : 4 : 5 : 6 .VPVPVP V E→ − ∆                (84) 

In fact the formulae (81)-(84) give 

42 1 1 1 5 S+ + + = =                      (85) 

energy terms. 
But this situation ignores a mutual relation between points 1 and 2 being 

outside contraction 3: 6 . This relation is represented by contraction of 1 and 2 
given in (86) below. In effect we have two possibilities which have to be 
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considered: one is when 1 and 2 remain free, but another one is when 1 and 2 
“interact” in the form of contraction 

1: 2                               (86) 

independently of the presence of (79) and (80). In result the number of diagrams 
represented by (80) should be taken twice: once it should be combined with free 
time points 1 and 2 [the terms (81)-(84)], otherwise it should be combined with 
the “interaction” of 1 and 2 given by contraction 1: 2 . In this second case the 
following 5 energy terms are obtained: 

2 2
1 31: 2 3: 6 ,VP VP V E E→ ∆ ∆                (87) 

( )22 3
1 21: 2 3: 4 : 6 ,VP VP V E E→− ∆ ∆             (88) 

2 3
1 2 11: 2 3: 5 : 6 ,VP VP V E E E→− ∆ ∆ ∆             (89) 

( )42 4
11: 2 3: 4 : 5 : 6 ,VP VP V E→ ∆              (90) 

if we note that 3E∆  in (87) combines two terms. 
The number of diagrams still necessary to calculate is 

7 6 5 42 2 34 10 24.S S S S− × − − × = − =              (91) 

The last but one step is “interaction” of point 6 with point 4, namely 

4 : 6.                           (92) 

Since point 5 should not be isolated from the “interaction” with 4 and 6, still 
one contraction, namely 

4 : 5 : 6,                         (93) 

has to be considered together with (92). But because the points 1, 2, and 3 are 
remaining free beyond of 4 and 6, the two energy diagrams which correspond 
respectively to (92) and (93) should combine with situations due to the presence 
of 1, 2, and 3. These points give 4 5S =  cases: 

1,2,3 are free                       (94) 

and four contractions of (94) which are 
1: 2, 1: 3, 1: 2 : 3 and 2 : 3.                 (95) 

The five situations given in (94) and (95) combined with two cases presented 
in (92) and (93) give in total 

42 10S× =                         (96) 

of new energy terms belonging to N = 7. These are: 
2

24 : 6 ,VPVPVPVP V E→− ∆                   (97) 

( )23
14 : 5 : 6 ,VPVPVPVP V E→ ∆                 (98) 

2 2
1 21: 2 4 : 6 ,VP VPVP V E E→ ∆ ∆                (99) 

( )32 3
11: 2 4 : 5 : 6 ,VP VPVP V E→− ∆              (100) 

( )22 2
21: 3 4 : 6 ,VP VP V E→ ∆                (101) 
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( )22 3
2 11: 3 4 : 5 : 6 ,VP VP V E E→− ∆ ∆            (102) 

2 2
1 22 : 3 4 : 6 ,VPVP VP V E E→ ∆ ∆              (103) 

( )32 3
12 : 3 4 : 5 : 6 ,VPVP VP V E→− ∆             (104) 

( )23 2
1 21: 2 : 3 4 : 6 ,VP VP V E E→− ∆ ∆             (105) 

( )43 3
11: 2 : 3 4 : 5 : 6 .VP VP V E→ ∆              (106) 

The effect of (92)-(106) is reduction of the unknown terms to the number  

7 6 5 42 4 24 10 14.S S S S− × − − × = − =              (107) 

But the number 14 in (107) can be obtained from a single contraction which 
remains to be considered, namely that between 6 and 5: 

5 : 6.                            (108) 

For in case of (108) four time points remain free on the scale: 1, 2 , 3 and 4. 
Their combinations are: 

1,2,3, and 4 remain free                      (109) 

or the points give contractions: 
1: 2, 1: 3, 1: 4, 2 : 3, 2 : 4, 3 : 4,  

1: 2 : 3, 1: 2 : 4, 1: 3 : 4, 2 : 3 : 4,  

1: 2 : 3 : 4, 1: 2 3: 4, 1: 4 2 : 3.                 (110) 

The effect of (109) and (110) is that they give precisely 5 14S =  configurations 
of the time points 1, 2, 3 and 4 necessary to construct the remainder of energy 
diagrams dictated by the result in (107). The energy terms due to (108)-(110) 
are: 

2
15 : 6 ,VPVPVPVPVP V E→− ∆                (111) 

( )22 2
11: 2 5 : 6 ,VP VPVPVP V E→ ∆              (112) 

2 2
2 11: 3 5 : 6 ,VP VPVP V E E→ ∆ ∆                (113) 

2 2
3 11: 4 5 : 6 and 1: 4 2 : 3 5 : 6 ,VP VP V E E→ ∆ ∆          (114) 

which is a combination of two energy terms, 

( )22 2
12 : 3 5 : 6 ,VPVP VPVP V E→ ∆                (115) 

( )33 2
11: 2 : 3 5 : 6 ,VP VPVP V E→− ∆                (116) 

3 2
1 2 11: 2 : 4 5 : 6 ,VP VP V E E E→− ∆ ∆ ∆               (117) 

( )23 2
2 11: 3 : 4 5 : 6 ,VP VP V E E→− ∆ ∆               (118) 

( )44 2
11: 2 : 3 : 4 5 : 6 ,VP VP V E→ ∆                 (119) 

2 2
2 12 : 4 5 : 6 ,VPVP VP V E E→ ∆ ∆                 (120) 

( )22 2
13 : 4 5 : 6 ,VPVPVP VP V E→ ∆                 (121) 
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( )33 2
12 : 3 : 4 5 : 6 ,VPVP VP V E→− ∆             (122) 

( )32 2 2
11: 2 3: 4 5 : 6 .VP VP VP V E→− ∆            (123) 

In Table 2 we collect the Schrödinger terms belonging to N = 7 which are due 
to the time contractions given below (78). 

In effect the total value of the Schrödinger perturbation energy belonging to N 
= 7 is given by a sum of: (a) the terms present in Table 1, (b) the terms given in 
formulae (50)-(65), (c) the terms in the formulae (69)-(76), (d) the terms 
collected in Table 2. 

In the next section we present the balance of the Huby-Tong number of the 
perturbation energy terms with the total number of energy diagrams obtained— 
for a given N—from contractions of the time points on the circular scale. 

7. Balance of the Number of Perturbation Energy Terms 
Obtained from the Huby-Tong Formula and within the 
Framework of the Present Theory 

Let us take the perturbation orders N = 8, 9 and 10 for which the number of the 
Schrödinger perturbation terms calculated from the Huby-Tong formula [see 
(15)] is respectively equal to: 

( )
8

2 8 2 !
429,

8!7!
S

× −
= =                    (124) 

( )
9

2 9 2 !
1430,

9!8!
S

× −
= =                   (125) 

( )
10

2 10 2 !
4862.

10!9!
S

× −
= =                   (126) 

These results will be compared with the number of time diagrams obtained on 
the circular scale taken for the same N as quoted above. The calculations 
performed with the aid of the circular scale are of a recurrent character which 
means that the knowledge of diagrams for N − 1, N − 2, etc., is used for 
calculation of the diagrams characteristic for N. The general rule is the same as 
presented in the preceding Section: we consider for a given N the time scale 
characteristic by the presence of the number of N − 1 time points suitable to 
contractions and add one time point to that ensemble. 

Beginning with N = 8 we have 7 time points “active” on the scale because the 
8th point is the beginning-end point which cannot participate in contractions. 
The time point 7 is new for the “active” part of the scale for N = 7 which had 
only 6 points of an active kind; see Section 6. The presence of point 7 gives 

7 132S =                           (127) 

new diagrams valid for N = 8 on condition a modification of the diagrams 
energy by PV present in formula (46) is taken into account. 

The next set of 7S  diagrams participating in calculation of the terms 
belonging to N = 8 is obtained from contraction 
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Table 2. The 34 Schrödinger energy terms belonging to N = 7 due to the time 
contractions presented below the formula (78). Each of expressions having 3E∆  
combines two Schrödinger terms. 

2
3VPVPVP V E∆−  [see (81)], 

3
1 2VPVPVP V E E∆ ∆  [see (82)], 

3
2 1VPVPVP V E E∆ ∆  [see (83)], 

( )32
1VPVPVP V E∆−  [see (84)], 

2 2
1 3VP VP V E E∆ ∆  [see (87)], 

( )22 3
1 2VP VP V E E− ∆ ∆  [see (88)], 

2 3
1 2 1VP VP V E E E− ∆ ∆ ∆  [see (89)], 

( )42 4
1VP VP V E∆  [see (90)], 

2
2VPVPVPVP V E∆−  [see (97)], 

( )23
1VPVPVPVP V E∆  [see (98)], 

2 2
1 2VP VPVP V E E∆ ∆  [see (99)], 

( )32 3
1 VP V PVP V E∆−  [see (100)], 

( )22 2
2VP VP V E∆  [see (101)], 

( )22 3
2 1VP VP V E E− ∆ ∆  [see (102)], 

2 2
1 2VPVP VP V E E∆ ∆  [see (103)], 

( )32 3
1VPVP VP V E− ∆  [see (104)], 

( )23 2
1 2VP VP V E E− ∆ ∆  [see (105)], 

( )43 3
1VP VP V E∆  [see (106)], 

2
1VPVPVPVPVP V E∆−  [see (111)], 

( )22 2
1VP VPVPVP V E∆  [see (112)], 

2 2
2 1VP VPVP V E E∆ ∆  [see (113)], 

2 2
3 1VP VP V E E∆ ∆  [see (114)], 

( )22 2
1VPVP VPVP V E∆  [see (115)], 

( )33 2
1VP VPVP V E− ∆  [see (116)], 

3 2
1 2 1VP VP V E E E− ∆ ∆ ∆  [see (117)], 

( )23 2
2 1VP VP V E E− ∆ ∆  [see (118)], 

( )44 2
1VP VP V E∆  [see (119)], 

2 2
2 1VPVP VP V E E∆ ∆  [see (120)], 

( )22 2
1VPVPVP VP V E∆  [see (121)], 

( )33 2
1VPVP VP V E− ∆  [see (122)], 

( )32 2 2
1VP VP VP V E− ∆  [see (123)]. 

 

1: 7                             (128) 

done together with contractions of the time points between 1 and 7 (namely 2, 3, 
4 , 5 and 6). 

Other components of 8S  are given by 
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6 42S =                          (129) 

diagrams due to contraction 2 : 7  combined with points 3, 4 , 5 and 6 enclosed 
between 2 and 7. Only one set of terms equal to (129) is obtained in this way 
because the only free time point 1 on the scale does not combine with any other 
time point. 

The situation becomes different for contraction 

3: 7                             (130) 

which—together with points 4, 5, and 6—can give 

5 14S =                           (131) 

diagrams for any arrangement of points 1 and 2. Since two such arrangements 
are possible (for contracted and free pair see Sec. 6), so in fact contraction (130) 
gives 52 28S =  energy terms. 

The contraction 

4 : 7,                           (132) 

together with its associates, gives only 4 5S =  terms but these terms apply to 

5 5S =  situations dictated by the arrangement of the time points 1, 2, and 3. In 
effect 5 5 25× =  energy terms are obtained. 

The remaining situations are given by contractions 

5 : 7                           (133) 

and 

6 : 7.                           (134) 

The contraction in (133) has its associate in contraction 

5 : 6 : 7,                         (133a) 

so two diagrams given by (133) and (133a) should be multiplied by 

5 14S =  

arrangements of the time points 1, 2, 3, and 4 which are outside of 
contractions (133) and (133a). This gives 2 14×  new energy terms. 

Finally a single contraction (134) corresponds to 

6 42S =                           (135) 

arrangements of the points 1, 2, 3, 4, and 5 outside 6 : 7  giving the number of 
energy terms equal to 6S  in (135). 

The total number of terms for N = 8 due to contractions taken into account 
between the formulae (127) and (135) becomes: 

7 6 5 4 4 5 62 2 2
264 42 28 25 28 42 429
S S S S S S S× + + × + × + × +

= + + + + + =
             (136) 

which is the result equal to that given in (124). This implies a complete number 
of necessary contractions considered in the N = 8 case. 

Calculations similar to those for N = 8 can be done for other N, too. The 
components entering them can be arranged in a more transparent way than in 
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the case of (136); see Table 3. The results fully agree with those obtained in (125), 
(126) and those calculated from (15). 

8. Summary 

The present paper considers the well-known Schrödinger perturbation series for 
energy of a non-degenerate quantum state; the applied perturbation potential 
does not depend on time. 

A usual problem of the Schrödinger perturbation theory is that their formulae 
are derived in a tediously obtainable and complicated way. This concerns 
especially the case when a large order N of the perturbation energy is examined. 
A difficulty concerns also the Schrödinger perturbation calculation developed 
with the aid of the Feynman diagrams. Here large N imply a huge number of 
diagrams which have to be derived and considered in calculations; in effect the 
number of the Feynman diagrams can exceed by several orders of times the 
number of kinds of the perturbation terms entering the Schrödinger theory [3]. 
It should be noted that the scale of time applied by Feynman is a conventional 
scale extended from minus to plus infinity; see Section 2. 

The paper demonstrates that a difficulty connected with construction of the 
Schrödinger perturbation terms can be overcomed with the aid of a circular scale 
of time. According to Leibniz, time is a successive sequence of events, or sets of 
events. In such a picture the time intervals between separate events, or their sets, 
play a secondary role. The history of a system is built up by following the 
development in time of the system configurations. 

In case of the Schrödinger theory the time events are assumed to represent a 
gradual change of a quantum state upon the action of the perturbation potential. 
The events are successive collisions of the quantum system with that potential. 
The number of collisions is grouped in sets according to the size of the 
perturbation orders N: the N points of time are belonging to any set. These 
points are assumed to be arranged successively along a topological circle. In each 
set of N points one of the points does represent the beginning-end point of the 
circular scale belonging to that N. 

A result which seems to be important is that all kinds of the Schrödinger 
perturbation terms can be obtained—almost automatically, i.e. without calcula- 
tions—from the arrangements of the time points present on the circle. To this 
purpose a special kind of interactions between the time points—called also 
contractions—should be assumed. A general rule concerning contractions is that 
the time loops created by them do not cross. In effect, the number of diagrams 
obtained due to contractions for a given N agrees precisely with the number of 
kinds of the Schrödinger perturbation terms for that N. 

The main aim of the paper became to present a recursive process to obtain all 
kinds of the Schrödinger perturbation terms belonging to a given N. This means 
we assume that the terms characteristic for 1, 2, 3,N N N− − −   are known, 
and from them—and the points arrangement on the circular scale—all terms for 
N can be obtained. The main feature of the process is to take properly into  
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Table 3. Number of the perturbation terms for different N obtained from the Huby-Tong 
formula in equation (15) compared with the terms number derived on the basis of the 
present theory; see also [17]. 

N = 2: 1 1 21S S S= =  

N = 3: 1 2 2 1 31 1 2S S S S S+ = + = =  

N = 4: 1 3 2 2 3 1 42 1 2 5S S S S S S S+ + = + + = =  

N = 5: 1 4 2 3 3 2 4 1 55 2 2 5 14S S S S S S S S S+ + + = + + + = =  

N = 6: 1 5 2 4 3 3 4 2 5 1 614 5 4 5 14 42S S S S S S S S S S S+ + + + = + + + + = =  

N = 7: 1 6 2 5 3 4 4 3 5 2 6 1

742 14 10 10 14 42 132
S S S S S S S S S S S S

S
+ + + + +

= + + + + + = =
 

N = 8: ( )
1 7 2 6 3 5 4 4 5 3 6 2 1 1

82 132 42 28 25 429
S S S S S S S S S S S S S S

S
+ + + + + +

= × + + + = =
 

N = 9: 
( )

1 8 2 7 3 6 4 5 5 4 6 3 7 2 8 1

92 429 132 84 70 2 715 1430
S S S S S S S S S S S S S S S S

S
+ + + + + + +

= × + + + = × = =
 

N = 10: ( )
1 9 2 8 3 7 4 6 5 5 6 4 7 3 8 2 9 1

102 1430 429 264 210 196 4862
S S S S S S S S S S S S S S S S S S

S
+ + + + + + + +

= × + + + + = =
 

 
account the fact that any time point present on the scale—beyond of the 
beginning-end point—should “interact” with other time points on that scale in a 
way characteristic for the contraction properties possessed by the time points on 
the scale. 

In result we find that a tedious process of solving the perturbed Schrödinger 
equation—established in an ordinary three-dimensional space—can be replaced, 
with the aid of a new scale of time, by a very simple calculation of the 
Schrödinger energy solution. 
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Appendix: Perturbation Energy Calculation Due to the 
Present Method Outlined for Low N (from N = 1 to N = 6) 
We begin with the result that for N = 1 the perturbation energy is 

per
1 ,E V n V n∆ = =                      (A1) 

and the loop of time is a topological circle with a single time point on it [7]-[14]. 
Consequently to the rule outlined in the present paper [see (46)] for N = 2 we 
have 

2 .E VPV∆ =                           (A2) 

The presence of a single P in (2) indicates a single infinite summation over the 
unperturbed quantum states with exclusion of the perturbed state n; see (28) and 
(29). The time scale—beyond of the beginning-end point—has only one point 
on it [7]-[14]. 

The first step for N = 3 is to substitute PV at the end of the expression on the 
right of (A2). We obtain the first (positive) term for 3E∆  which is a double sum 
over the quantum states: 

.VPVPV                           (A3) 

But beyond of the beginning-end point on the scale we have still two free time 
points on it, say 1 and 2. They should contract together giving the next term of 

3E∆  equal to 
2 ;VP V V−                         (A4) 

this term is a single sum over the unperturbed states. The 3E∆  is 
2

3 .E VPVPV VP V V−∆ =                  (A5) 

In order to calculate the first two terms for N = 4 we increase the term in (A3) 
again by PV at the brackets end, and the same we are doing with the larger 
bracket term in (A4). We obtain two terms belonging to 4E∆ : 

VPVPVPV                         (A6) 

and 
2 2

1.VP VPV V VP VPV E− = − ∆                  (A7) 

A suplementary point 3 which comes for N = 4 can contract with points 1 and 
2 entering the scale already for N = 3. The interaction between 3 and 1 gives two 
contractions: 

1: 3, 1: 2 : 3,                         (A8) 

whereas the interaction between 3 and 2 alone is reduced to contraction 
2 : 3.                            (A9) 

The energy terms representing (A8) are respectively  
2 2

2VP V VPV VP V E− = ∆−                  (A10) 

and 

( )23 3
1VP V V V VP V E∆=                 (A11) 

and the term represented by (A9) is 
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2 2
1.VPVP V V VPVP V E− ∆= −                (A12) 

Terms (A6), (A7) and (A10)-(A12) give together 4 5S =  terms which is the 
number of the Schrödinger energy terms predicted by Huby and Tong [15] [16]. 
The sum of these terms gives: 

( )

2 2
4 1 2

23 2
1 1.

E VPVPVPV VP VPV E VP V E

VP V E VPVP V E

= − −

+ −

∆ ∆ ∆

∆ ∆
         (A13) 

The first five Schrödinger terms belonging to 5E∆  are given by modification 
of (A13). These are: 

( )

2 2
1 2

23 2
1 1

, , ,

and .

VPVPVPVPV VP VPVPV E VP VPV E

VP VPV E VPVP VPV E

∆ ∆

−∆ ∆

− −
      (A14) 

The remaining nine terms of 5E∆  come, first, from five contractions of a 
supplementary point 4 with point 1 and points between 1 and 4: 

1: 4, 1: 2 : 4, 1: 3 : 4, 1: 2 : 3 : 4, 1: 4 2 : 3.             (A15) 

They give respectively the five terms 

( )32 3 3 4
3 1 2 2 1 1, , , ,VP V E VP V E E VP V E E VP V E∆ ∆ ∆ ∆ ∆ ∆− −  (A15a) 

since the first term is due to combination of 2 terms, namely these given by the 
first and last contraction expression in (A15). 

Other Schrödinger terms are due to contraction between points 2 and 4: 

2 : 4, 2 : 3 : 4;                       (A16) 

and between points 

3 : 4.                           (A17) 

The last contraction leaves points 1 and 2 as free to contract together, so (A17) 
gives in fact two kinds of the Schrödinger terms: one term for uncontracted 1 
and 2, and one for the contracted case. In effect we have four terms belonging to 

5E∆  coming from (A16) and (A17): 

( )22 3
2 1, ,VPVP V E VPVP V E∆− ∆  

( )22 2 2
1 1, ,VPVPVP V E VP VP V E∆− ∆              (A18) 

where the last term is due to contraction 1: 2 3: 4 . 
The sum of results obtained in (A14)-(A18) gives the 5th order perturbation 

energy combined by 14 Schrodinger terms: 

( )

( ) ( )

( )

2 2
5 1 2

23 2
1 1

2 3 3
3 1 2 2 1

3 24 2 3
1 2 1

22 2 2
1 1 .

E VPVPVPVPV VP VPVPV E VP VPV E

VP VPV E VPVP VPV E

VP V E VP V E E VP V E E

VP V E VPVP V E VPVP V E

VPVPVP V E VP VP V E

∆ ∆ ∆

∆ ∆

∆ ∆ ∆ ∆

= − −

+ −

− + +

−

∆

∆ ∆ ∆

∆ ∆

− +

− +

     (A19) 
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The last perturbation order of energy considered in Appendix is N = 6. In the 
first step we obtain 14 components of 6E∆  by modifying the energy 
components of 5E∆ . They are obtained by adding PV at the end of the main 
brackets term: 

,VPVPVPVPVPV  

2 2
1,VP VPVPVPV V VP VPVPVPV E− ∆= −  

2 2
2 ,VP VPVPV VPV VP VPVPV E− = − ∆  

( ) ( )2 23 3
1 ,VP VPVPV V VP VPVPV E∆=  

2 2
1,VPVP VPVPV V VPVP VPVPV E− ∆= −  

2
3,VP VPV E∆−  

3
1 2 ,VP VPV E E∆ ∆  

3
2 1,VP VPV E E∆ ∆  

( )34
1 ,VP VPV E∆−  

2
2 ,VPVP VPV E∆−  

( )23
1 ,VPVP VPV E∆  

2
1VPVPVP VPV E− ∆  

( )22 2
1 .VP VP VPV E∆                      (A20) 

The term having 3E∆  as a multiplier combines two Schrödinger terms. 
The next 14 terms belonging to 6E∆  are different than (A20); they are: 

2
41: 5 ,VP V E∆→ −  

3
1 31: 2 : 5 ,VP V E E∆ ∆→  

( )23
21: 3 : 5 ,VP V E∆→  

3
3 11: 4 : 5 ,VP V E E∆ ∆→  

( )24
1 21: 2 : 3 : 5 ,VP V E E∆ ∆→ −  

4
1 2 11: 2 : 4 : 5 ,VP V E E E∆ ∆ ∆→ −  

( )24
2 11: 3 : 4 : 5 ,VP V E E∆ ∆→ −  

( )45
11: 2 : 3 : 4 : 5 .VP V E→ ∆                   (A21) 

The 4E∆  combines 5 Schrödinger terms and 3E∆  combines 2 terms. On 
the other hand, the last 14 terms of 6E∆  combine with the terms of (A20):  

2
32 : 5 ,VPVP V E→− ∆  

3
1 22 : 3 : 5 ,VPVP V E E→ ∆ ∆  
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3
2 12 : 4 : 5 ,VPVP V E E→ ∆ ∆  

( )34
12 : 3 : 4 : 5 ,VPVP V E→− ∆  

2
23 : 5 ,VPVPVP V E→− ∆  

( )23
13 : 4 : 5 ,VPVPVP V E→ ∆  

2 2
1 21: 2 3 : 5 ,VP VP V E E→ ∆ ∆  

( )32 3
11: 2 3 : 4 : 5 ,VP VP V E→ − ∆  

2
14 : 5    ,VPV PV PV P V E→ − ∆  

( )22 2
11: 2 4 : 5  ,VP V PVP V E→ ∆  

2 2
2 11: 3 4 : 5 ,VP VP V E E→ − ∆ ∆  

( )33 2
11: 2 : 3 4 : 5 ,VP VP V E→ − ∆  

( )22 2
12 : 3 4 : 5  .VPV P VP V E→ ∆               (A22) 

In total we obtain for N = 6 from (A20)-(A22) the number of terms 

614 14 14 42 .S+ + = =                     (A23) 

The perturbation energy 6E∆  is equal to a sum of the terms presented in 
(A20)-(A22). 
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Abstract 
In this work, we make a brief exposition of the Jefimenko’s generalized theory 
of gravitation, describe its conceptual content, explain the mathematical ap-
paratus used for the formulations of the theory and present the fundamental 
equations of the theory. We elucidate the main difference between Newton’s 
original theory of gravitation and the generalized theory of gravitation. 
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1. Introduction 

It is obvious that the reader will quickly and easily perceive any new scientific 
theory not from a monograph, but from an article published in a readable scien-
tific journal. Gravitational interaction of celestial bodies is a very mysterious 
phenomenon. It is traditionally attributed (without any further explanation) to 
the action of forces of “universal gravitation”. But where are the threads, the 
ropes, the chains or the springs that pull celestial bodies one to the other? How 
does the Earth “know” that it needs to revolve around the Sun? How does it “feel” 
where the Sun is located? As far as we know there exists no material connection 
between celestial bodies. But if there is no material connection, does it not mean 
that gravitational interactions are not a manifestation of the action of forces, but 
a manifestation of the existence of some heretofore overlooked agent or me-
chanism? The Jefimenko’s generalized theory of gravitation answers this ques-
tion with perfect clarity. 

Therefore, we decided to present the conceptual content of the Jefimenko’s 
generalized theory of gravitation in a possibly short article. 

The Jefimenko’s generalized theory of gravitation arose from the analogy be-

How to cite this paper: Chubykalo, A., 
Espinoza, A. and Carlos, D.P. (2018) Con-
ceptual Content of the Generalized Theory 
of Gravitation of Jefimenko. Journal of 
Modern Physics, 9, 1522-1544. 
https://doi.org/10.4236/jmp.2018.98094  
 
Received: May 24, 2018 
Accepted: July 15, 2018 
Published: July 18, 2018   
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2018.98094
http://www.scirp.org
https://doi.org/10.4236/jmp.2018.98094
http://creativecommons.org/licenses/by/4.0/


A. Chubykalo et al. 
 

 

DOI: 10.4236/jmp.2018.98094 1523 Journal of Modern Physics 
 

tween the laws of gravitation and electromagnetism; that is, there existed a 
second gravitational field called cogravitational field, analogous to the magnetic 
field. Such analogy was proposed for the first time by Heaviside in a paper “A 
gravitational and electromagnetic Analogy” [1] published more than a century 
ago, where he supposed there must exist a second field due to moving masses 
and acting over moving masses only, called by Jefimenko, cogravitational field 
(sometimes this field is called Heaviside’s field). The Heaviside paper was for-
gotten for a long time until Jefimenko returned his work and made improve-
ment to the Heaviside’s work in two books published and reissued since the 90’s 
decade [2] [3]. Although there are, detractors of the Jefimenko’s theory of gravi-
tation1 (see for example [5]). 

The gravitodynamical theory [4] assumes that gravitational interactions are 
mediated by gravitational and cogravitational force fields. 

A gravitational field is a region of space where a mass experience a gravita-
tional force. Quantitatively, a gravitational field is defined in terms of the gravi-
tational field vector g  by the same equation by which it is defined in Newton’s 
theory: 

,tm= −g F                          (1) 

where F  is the force exerted by the gravitational field on a stationary test mass 
mt. 

A cogravitational field is a region of space where a mass experience a cogravi-
tational force. Quantitatively, a cogravitational field is defined in terms of the 
cogravitational field vector K  by the equation 

( ) ,tm= ×F v K                        (2) 

where F  is the force exerted by the cogravitational field on a stationary test 
mass tm , moving with velocity v . As noted in Chapter 1 of [3], cogravitational 
fields are created by moving masses only and act upon moving masses only. It 
should be noted that the cogravitational field K  has not yet been actually ob-
served. However, it is very likely that it can be revealed by the Gravity Probe B 
launched in 2004 by NASA in a polar orbit around the Earth. For the various 
theoretical considerations demanding the existence of the cogravitational field 
see O. Jefimenko [2] pp. 80-100. 

It is assumed that both gravitational and cogravitational fields propagate in 
space with finite velocity. This velocity is not yet known, but is believed to be 
equal to the velocity of light. However, the generalized theory of gravitation is 
compatible with a propagation velocity of gravitation different from the velocity 
of light and is not affected by the actual speed with which gravitation propagates. 
Although we say that gravitational and cogravitational fields “propagate,” it is 
not entirely clear what physical entity actually propagates, since by definition 
gravitational and cogravitational fields are “region of space”. It is conceivable 
that what actually propagates is some particles that somehow create gravitational 

 

 

1Called by us in a previous work gravitodynamical theory [4]. 
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and cogravitational fields. It is possible that these particles have already been de-
scribed (see [6]), and it is possible that some of their effects have already been 
observed (see [7] pp. 137-223). Yet, there is not enough information about these 
particles for making any definite statement about their existence, nature, or 
properties. 

The generalized theory of gravitation agrees with the principle of causality 
because, as we shall presently see, in this theory the gravitational and cogravita-
tional fields are expressed in terms of retarded integrals whose integrands are the 
causative sources of the fields. 

The generalized theory of gravitation agrees also with the law of conservation 
of momentum because according to this theory, gravitational-cogravitational 
fields are repositories of gravitational-cogravitational field momentum, and be-
cause mechanical momentum of a body moving in a gravitational-cogravitational 
field can be converted into the field momentum and the field momentum can be 
converted into the mechanical momentum of the body. As the result of this 
conversion, the sum of the mechanical and field momentum of the combined 
field-body system is always the same, and the total momentum of the system is 
thus conserved (see Chapter 8 in [3]). 

According to the generalized theory of gravitation, gravitational-cogravitational 
fields are also repositories of field energy. Kinetic energy of a body moving in a 
gravitational-cogravitational field can be converted into the energy of the field, 
and the energy of the field can be converted into kinetic energy of the body. As a 
result of this conversion, the sum of the mechanical and field energy of the com-
bined field-body system is always the same, and the total energy of the system is 
thus conserved (see Chapter 8 in [3] for a general proof of energy conservation 
in such systems). 

Obviously, there are not derivations of the formulas presented in this text, be-
cause this is a review about the work made by Jefimenko. Also it is important to 
note that we can obtain all the results by replacing all variables and constants 
presented in Table 1 in Maxwell equations. Too, it is important to note that this 
theory is developed from two standpoints, one of them is to postulate the re-
tarded solutions and making use of the identities from vectorial calculus, we get 
the Jefimenko equations, and equivalently, we can potulate the system of Jefi-
menko equations and we get the retarded solutions given by (3) and (4). 

2. Fundamental Equations of the Generalized Theory of  
Gravitation 

The two principal equations of the generalized theory of gravitation are the equ-
ations for the gravitational field and g  the cogravitational field K : 

[ ] ( )
3 2 2

1 1d dGG V V
t r tr r c c

  ∂ ∂   ′ ′= − + +    ∂ ∂     
∫ ∫

v
g r

            (3) 

And 
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Table 1. Corresponding electromagnetic and gravitational-cogravitational symbols and 
constants. 

Electric Gravitational 

q (charge) m (mass) 

  (volume charge density)   (volume mass density) 

σ (surface charge density) σ (surface mass density) 

λ (line charge density) λ (line mass density) 

φ (scalar potential) φ (scalar potential) 

A  (vector potential) A  (vector potential) 

J  (convection current density) J  (mass-current density) 

I (electric current) I (mass current) 

E  (electric field) g  (gravitational field) 

B  (magnetic field) K  (cogravitational field) 

0ε  (permittivity of space) 1 4πG−  

0µ  (permeability of space) 24πG c−  

01 4πε−  or 2
0 4πcµ−  G (gravitational constant) 

 
[ ] [ ]

2 3 2

1 d ,G V
tc r r c

  ∂  ′= − + ×  ∂   
∫

v v
K r

 
             (4) 

where g  is the gravitational field created by the mass m distributed in space 
with density  , ( ) ( ) ( )

1 22 2 2r x x y y z z ′ ′ ′= − + − + −   is the distance from the 
source point ( ), ,x y z′ ′ ′ , where the volume element of integration dV ′  is lo-
cated, to the field point ( ), ,x y z , where g  is been observed or computed, r  
is the radius vector directed from dV ′  to the field point, v  is the velocity 
with which the mass distribution   moves (the product v  constitutes the 
“mass-current density), and c is the velocity of the propagation of gravitation 
(usually assumed to be the same as the velocity of light). The square brackets in 
these equations are the retardation symbol indicating that the quantities between 
the brackets are to be evaluated for the “retarded” time, t t r c′ = − , where t is 
the time for which g  and K  are evaluated. The integration in the integrals of 
Equations (3) and (4) is over all space. 

According to Equations (3) and (4), the gravitational field has three causative 
sources: the mass density, the time derivative of  , and the time derivative of 
the mass-current density v ; cogravitational field has two causative sources: the 
mass-current density v  and the time derivative of v . 

In addition to Equations (3) and (4) for the gravitational and cogravitational 
fields, the following equations constitute the mathematical foundation of the 
generalized theory of gravitation: 

1) The mass conservation equation (“continuity equation”) 

( ) ,
t

∂
∇ ⋅ = −

∂
v 
                            (5) 
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or, in the integral form, 

d d .v V
t
∂

⋅ = −
∂∫ ∫S



                         (6) 

According to these equations, whenever a mass contained in a region of space 
diminishes or increases, there is an outflow or inflow of mass from or into this 
region. 

2) Force acting on the mass distribution of density   

( )d ,V= + ×∫F g v K                        (7) 

where v  is the velocity of   and the integral is extended over the region of 
space containing the mass under consideration. 

3) Density of the field energy contained in the gravitational-cogravitational 
field 

( )2 2 21 ,
8πvU c

G
= − +g K                       (8) 

it is important to note that the gravitational-cogravitational field energy is nega-
tive. This means that no energy can be extracted from the gravitation-
al-cogravitational field by destroying the field. In the contrary, energy must be 
delivered to the field in order to destroy the field. 

4) Field energy contained in a region of the gravitational-cogravitational field 

( )2 2 21 d ,
8π

U c V
G

= − +∫ g K                    (9) 

where the integration is extended over the region under consideration. 
5) Energy flow vector in the gravitational-cogravitational field (“gravitational 

Poynting vector”) 
2

.
4π
c

G
= ×P K g                         (10) 

This vector represents the direction and rate of gravitational-cogravitational 
energy flow per unit area at a point of space under consideration. Equation (10) 
together with Equation s. (3), (4), (5) and (8) ensures the conservation of energy 
in gravitational-cogravitational interactions. 

6) Density of the field momentum contained in the gravitational-cogravitational 
field 

1 .
4πvf G

= ×G K g                         (11) 

7) Field momentum contained in the gravitational-cogravitational field 

1 d ,
4πf V

G
= ×∫G K g                       (12) 

where the integration is extended over the region under consideration. 
8) Correlations between the mechanical momentum, mG , and the gravita-

tional-cogravitational field 
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( )

( ) ( ) ( )2 2 2 2

d 1 d
d 4π

1 1 d d d ,
4π 2

M V
t G t

c c
G

∂
= − ×

∂
 + + − ⋅ − ⋅  

∫

∫ ∫ ∫

G K g

g K S g g S K K S
  

  (13) 

where g  and K  are the gravitational and cogravitational fields in the system 
under consideration. In this equation, the derivative on the left represents the 
rate of change of the momentum of a body located in a gravitational-cogravitational 
field, the volume integral represents the rate of change of the field momentum in 
the region of the field where the bode is located, and the surface integrals 
represent the flux of the field momentum through the surface enclosing the re-
gion under consideration. Together with Equations (3), (4), (5), (7) and (11) this 
equation ensures the conservation of momentum in gravitational-cogravitational 
interactions. 

3. Gravitational and Cogravitational Forces According to the 
Generalized Theory of Gravitation 

One of the most important differences between Newton’s original theory of gra-
vitation and the generalized theory of gravitation is in the interpretation of the 
mechanism of gravitational interactions. Whereas in Newton’s original theory of 
gravitation gravitational interaction between two bodies involves one single 
force of gravitational attraction, in the generalized theory of gravitation gravita-
tional interaction between two bodies involves an intricate juxtaposition of sev-
eral different forces. Mathematically, these forces result from Equations (3), (4) 
and (7). When Equations. (3) and (4) are written as five separate integrals, they 
become, using J  for v , 

[ ]
3 2 2

1 1d d dGG V G V V
t r tr r c c

∂ ∂   ′ ′ ′= − − +   ∂ ∂   ∫ ∫ ∫
Jg r r

            (14) 

and 

[ ] [ ]
2 3 2 2

1d d .G GV V
tc r c r c

 ∂
′ ′= − × − × ∂ 

∫ ∫
J J

K r r              (15) 

Each of these integrals represents a force field. Therefore, according to the 
generalized theory of gravitation, gravitational interaction between two bodies 
involve at least five different forces. Let us consider the physical sources of these 
forces. 

First let us consider Equation (14). The field represented by the first integral 
of this equation is the ordinary Newtonian gravitational field created by the mass 
distribution   corrected for the finite speed of the propagation of the field, as 
indicated by the square brackets (the retardation symbol) in the numerator. The 
field represented by the second integral is created by a mass whose density varies 
with time. Like the ordinary Newtonian gravitational field, these two fields are 
directed toward the masses, which create them. The field represented by the last 
integral in Equation (14) is created by a mass current whose magnitude and/or 
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direction varies with time. The direction of this field is parallel to the direction 
along which the mass current increases. All three fields in Equation (14) act on 
stationary as well as on moving masses. 

Consider now Equation (15). The first integral in this equation represents the 
cogravitational field created by the mass current. The direction of this field is 
normal to the mass current vector. The second integral represents the field 
created by a time variable mass current. The direction of this field is normal to 
the direction along which the mass current increases. By Equation (7), both 
fields in Equation (15) act on moving masses only. 

If the mass under consideration does not move and does not change with time, 
then there is no retardation and no mass current. In this case, both integrals in 
Equation (15) vanish and only the first integral remains in Equation (14). As a 
result, one simply obtains the integral representing the ordinary Newtonian gra-
vitational field. Thus, the ordinary Newtonian gravitational theory is a special 
case of the generalized theory, as it should be. 

As far as the gravitational interaction between two masses is concerned, the 
meaning of the five integrals discussed above can be explained with the help of 
Figure 1. The upper part of Figure 1 shows the force, which the mass m1 expe-
riences under the action of the mass m2 according to the ordinary Newtonian 
theory. The lower part of Figure 1 shows five forces which the same mass m1 
experiences under the action of the mass m2 according to the generalized theory. 
The time for which the positions of the two masses and the force experienced by 
m1 are observed is indicated by the letter t. Let us not first of all that, according 
to the ordinary Newtonian theory, the mass m1 is subjected to one single force 
directed to the mass m2 at its present location, that is, to its location at the time t. 
However, according to the generalized theory, all forces acting on the mass m1 
are associated not with the position of the mass m2 at the time of observation, 
but with the position of m2 at an earlier time t t′ < . Therefore, the magnitude of 
the mass m2, its position and its state of motion at the present time t have no ef-
fect at all on the mass m1. 

The subscripts identifying the five forces shown in the lower part of Figure 1 
correspond to the five integrals in the Equations (14) and (15). The force 1F  is 
associated simply with the mass m2 and differs from the ordinary Newtonian 
gravitational force only insofar as it is it is directed not to the mass m2 at its 
present position, but to the place where m2 was located at the past time t′ . The 
force 2F  is associated with the variation of the density of the mass m2 with time; 
the direction of thus force is the same as that of 1F . The force 3F  is associated 
with the time variation of the mass current produced by m2; tis force is directed 
along the acceleration vector a  (or along the velocity vector 2v ) which the 
mass m2 had at the time t′ . The three forces are produced by the gravitational 
field g  (if m2 is a point mass moving at constant velocity, g  and the resultant 
of the three forces are directed toward the present position of m2; see Chapter 5 
in [3]). 
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Figure 1. The upper part of this figure shows the force that the mass m1 
experiences under the action of the mass m2 according to the ordinary 
Newtonian theory. Lower part shows five forces, which the same mass m1 
experiences under the action of the mass m2 according to the generalized 
Newtonian theory. 

 
The forces 4F  and 5F  are due to the cogravitational field K . The force 

4F  is associated with the mass current created by the mass m2 and with the ve-
locity of the mass m1. Its direction is normal to the velocity vector 2v  which 
the mass m2 had at the time t′  and normal to the velocity vector 1v  which the 
mass m1 has at the present time t. The force 5F  is associated with the velocity 
of the mass m1 and with the variation of the mass current of the mass m2 with 
time; the direction of this force is normal to the acceleration vector (or to the 
velocity vector) that the mass m2 had at the time t′  and normal to the velocity 
vector that the mass m1 has at present time t. Although not shown in Figure 1, 
additional forces associated with the rotation of m1 and m2 (angular velocities 

1ω  and 2ω ) are generally involved in the interaction between t5he two masses 
(see Chapters 14 and 15 in [3]). 

The forces 2F , 3F , 4F  and 5F  are usually much weaker than the force 

1F  because of the presence of the speed of gravitation c (usually assumed to be 
the same as the speed of light) in the denominators of the integrals representing 
the fields responsible for these four forces. This means that only when the trans-
lational or rotational velocity of m1 or m2 is close to c, are the forces 2F , 3F , 

4F  and 5F  dominant. Of course, the cumulative effect of these forces in 
long-lasting gravitational systems (such as Solar system, for example) may be 
significant regardless of the velocities of the interacting masses. 

4. The Relationship between the Generalized Theory of  
Gravitation and the Special Relativity Theory 

Until recently it was believed that the analogy between electromagnetic and gra-
vitational equations could not apply to fast moving systems, because the electric 
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charge is not affected by velocity, but the mass of a moving body was though to 
vary with velocity. It is now generally accepted that mass, just like the electric 
charge, does not depend on velocity. For a discussion of the history and use of 
the concept of relativistic mass, see C. Adler, “Does mass really depend on veloc-
ity, dad?” [8], also L. Okun, “The concept of mass” [9] and the letter in response 
to these articles by T. Sandin, “In defense of relativistic mass” [10]. This also 
means that transformation equations of the special relativity theory developed 
for electromagnetic systems (see [11] pp. 148-206) have their gravitational and 
cogravitational counterparts. 

Thus there is no need to derive relativistic gravitational-cogravitational trans-
formation equations, because we can easily obtain them by replacing symbols 
and constants appearing in relativistic electromagnetic equations by the corres-
ponding gravitational-cogravitational symbols and constants with the help of the 
following table [3]. 

The basic relativistic gravitational-cogravitational transformation equations 
obtained in this way are listed below. It is important to note that these equations 
can be derived directly, without using the analogy between electromagnetic and 
gravitational-cogravitational systems (see O. Jefimenko, “Derivation of Relativis-
tic Transformation for Gravitational Fields from Retarded Field Integrals” [12]). 
In these equations, the unprimed quantities are those measured in the stationary 
reference frame Σ  (“laboratory”), and the primed quantities are those meas-
ured in the moving reference frame ′Σ . 

Transformation equations correlating quantities measured in Σ with 
quantities measured in Σ': 

a) Equations for space and time coordinates 

( ) ,x x vtγ ′ ′= +                        (4.1) 

,y y′=                           (4.2) 

,z z′=                           (4.3) 

( )2 .t t vx cγ ′ ′= +                      (4.4) 

b) Equations for the gravitational field 

,xxg g′=                          (4.5) 

( ) ,y y zg g vKγ ′ ′= +                     (4.6) 

( ) ,z yzg g vKγ ′ ′= +                     (4.7) 

c) Equations for the cogravitational field 

,xxK K ′=                        (4.8) 

( )2 ,yy zK K vg cγ ′ ′= −                  (4.9) 

( )2 ,zz yK K vg cγ ′ ′= −                 (4.10) 

d) Equations for the mass and mass-current densities 
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( )2 ,xv c Jγ  ′ ′= +                      (4.11) 

( ) ,xxJ J vγ ′ ′= +                      (4.12) 

,yyJ J ′=                        (4.13) 

.zzJ J ′=                        (4.14) 

e) Equations for gravitational and cogravitational potentials 

( ) ,xvAϕ γ ϕ′ ′= +                    (4.15) 

( )2 ,xxA A v cγ ϕ ′ ′= +                  (4.16) 

,yyA A′=                      (4.17) 

.zzA A′=                      (4.18) 

Transformation equations correlating quantities measured in Σ' with 
quantities measured in Σ: 

a) Equations for space and time coordinates 

( ) ,x x vtγ′ = −                      (4.19) 

,y y′ =                         (4.20) 

,z z′ =                         (4.21) 

( )2 .t t vx cγ′ = −                      (4.22) 

b) Equations for the gravitational field 

,xxg g′ =                         (4.23) 

( ) ,yy zg g vKγ′ = −                     (4.24) 

( ).zz yg g vKγ′ = −                     (4.25) 

c) Equations for the cogravitational field 
,xxK K′ =                        (4.26) 

( )2 ,y zyK K vg cγ′ = +                   (4.27) 

( )2 .z yzK K vg cγ′ = +                   (4.28) 

d) Equations for the mass and mass-current densities 

( )2 ,xv c Jγ  ′ = −                     (4.29) 

( ) ,xxJ J vγ′ = −                      (4.30) 

,yyJ J′ =                        (4.31) 

.zzJ J′ =                        (4.32) 

e) Equations for gravitational and cogravitational potentials 

( ) ,xvAϕ γ ϕ′ = −                    (4.33) 

( )2 ,x xA A v cγ ϕ ′ = −                  (4.34) 

,y yA A′ =                        (4.35) 
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.z zA A′ =                       (4.36) 

Quite clearly, transformation equations for physical quantities not involving 
electric and magnetic fields (such as velocity, acceleration, force, etc.) remain va-
lid for gravitational-cogravitational systems as well. However, the constant c ap-
pearing in the conventional relativistic transformation equations represents the 
velocity of propagation of electromagnetic fields in a vacuum, which is the same 
as the velocity of light. The velocity of propagation of gravitational and cogravi-
tational fields is not known, although it is generally believed to be equal to the 
velocity of light. If the velocity of propagation of gravitational fields is not the 
same as the velocity of light, our relativistic transformation equations for gravi-
tation would still remain correct, but the constant c appearing in them would be 
different from c appearing in the corresponding electromagnetic equations. 
Therefore, the behavior of rapidly moving bodies involved in gravitational inte-
ractions would be different from the behavior of rapidly moving bodies involved 
in electromagnetic interactions. In effect there would be two different mechanics: 
the “gravitational-cogravitational mechanics,” and the “electromagnetic me-
chanics” involving different effective masses, different effective momenta, and 
different rest energies. 

A possibility exists that our gravitational relativistic transformation equations 
are not entirely correct. According to Einstein’s mass-energy equation, any 
energy has a certain mass. But a mass is a source of gravitation. Therefore the 
gravitational field of a mass distribution may be caused not only by the mass of 
the distribution as such, dut also by the gravitational energy of this distribution 
(for a detail discussion of this effect, including the possibility of antigravitational 
mass distributions arising from it, see Chapter 19 in [3]). If this effect is taken 
into account, the equation for the divergence of the gravitational field (see Eq. 
(7-1.1) in [3]) 

4πG⋅ = −g ∇                        (16) 

becomes only approximately correct, and all equations derived with the help of 
Equation. (16) also become only approximately correct. It is important to note, 
however, that this energy effect, if it exists, is extremely small2. In connection 
with the foregoing, we recommend that the reader become familiar with the 
work “Binormal Motion of Curves of Constant Curvature and Torsion. Genera-
tion of Soliton Surfaces.” [13]. 

5. Covariant Formulation of the Generalized Theory of  
Gravitation 

Covariant formulation of physical formulas and equations is considered by some 
authors to be the most appropriate formulation for expressing the laws of phys-

 

 

2Contrary to the prevailing belief, equations relativistic electrodynamics and the entire theory of 
special relativity is also only approximately correct, since it is valid only for inertial systems (“inertial 
frames of reference”). In reality such systems do not exist, because everywhere in the Universe there 
is a gravitational force field, making all systems and locations in the Universe non-inertial. 
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ics in a frame-independent form. It is also believed by some authors to be more 
concise and occasionally more informative than the conventional formulation. 
Since any equation invariant under relativistic transformations should be ex-
pressible ib a covariant form, and since the principle of relativity is considered to 
be a fundamental law of nature, the laws of physics that cannot be expressed in a 
covariant form are considered by some authors to be incomplete or incorrect. 
This view is unquestionably wrong, since according to it, even Maxwell’s equa-
tions in their vector form should be classified as “incomplete” or “incorrect.” 
Note also that covariant formulation changes the form of equations but does not 
create new physical laws and thus is of very limited utility. 

Newton’s gravitational law is an example of a physical law that cannot be ex-
pressed in a covariant form. The problem of finding an invariant form of the law 
of gravitation was first considered be Poincaré, but without success (see his ar-
ticle “Sur la dynamique de L’Électron” [14]). It is interesting to note that Poin-
caré attempted to solve the problem on the basis of just one gravitational field 
(the gravitational analog of the electrostatic field). But even if the theory of gra-
vitation is built upon two fields, a covariant theory of gravitation is not possible 
unless the gravitational mass, just like the electric charge, does not depend on 
the velocity with which the mass moves. 

However, it is now generally accepted that mass does not depend on the ve-
locity with which a body moves (see C. Adler, “Does mass really depend on ve-
locity, dad?” [8], also L. Okun, “The concept of mass” [9] and the letter in re-
sponse to these articles by T. Sandin, “In defense of relativistic mass” [10]). 
Therefore a covariant formulation of the theory of gravitation based on gravita-
tional-cogravitational fields is not only possible but can be constucted straighta-
way from the covariant theory of electromagnetism by a mere substitution of 
symbols and constants in accordance with the list above. 

In particular, from electromagnetic equations (see [11] pp. 284-292). We can 
directly obtain for the covariant “position 4-vector” 

( ) ( )1 2 3 4, , , , , , .x x x x x y z ict= =r                   (17) 

From the 4-vector electric current [11] we obtain by substitutions the the co-
variant expressions for the 4-vector mass current 

( ) ( )1 2 3 4, , , , , , ,x y zJ J J J J J J ic= =J                  (18) 

where ,x yJ J  and zJ  are x, y and z components of mass current density. 
From the electromagnetic field tensor [11] we obtain the gravitational-cogravita- 
tional field tensor by replacing the x, y and z components of E  by the corres-
ponding components of g  and the x, y and z components of B  by the cor-
responding components of K  

0
0

,
0

0

z y x

z x y

y x z

x y z

K K ig c
K K ig c

F
K K ig c

ig c ig c ig c

µν

− − 
 − − =
 − −
 
  

              (19) 
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or 

0
0

,
0

0

z y x

z x y

y x z

x y z

K K ig c
K K ig c

F
K ig c

ig c ig c ig
K

c

µν

− 
 − =
 −
 
− − −  

             (20) 

where the subscript µ  indicates the row (1, 2, 3, 4 top to bottom) and the sub-
script ν  indicates the column (1, 2, 3, 4 left to right). Finally, in the same 
manner, we obtain covariant expressions of the present-time differential equa-
tions for gravitational-cogravitational fields: 

4

2
1

4πF G J
x c
µν

µ
ν ν=

∂
= −

∂∑                        (21) 

and 

0.
F FF
x x x
µν λµνλ

λ µ ν

∂ ∂∂
+ + =

∂ ∂ ∂
                     (22) 

It should be note, however, that c in the gravitational-cogravitational equa-
tions stands for the speed of propagation of gravitational-cogravitational fields, 
which is generally assumed to be the same as the speed of light, but has never 
been actually measured. In 2002 Fomalont Kopeikin tried indirectly to measure 
the speed of gravitation and reported in the paper “The measurement of the light 
deflection from Jupiter: Experimental results” [15] that the velocity of gravita-
tion was found to be equal to the velocity of light. 

6. The Gravikinetic Field 

As we have already shown, one of the main differences between the generalized 
theory of gravitation and Newton’s gravitational theory is that in the generalized 
theory of gravitation there is especial force field – the cogravitational, or Heavi-
side’s field. The cogravitational field is produced by all moving masses, and it 
acts ob all moving masses. In this Section we shall learn that in the generalized 
theory of gravitation there is yet another force field prodiced by moving masses. 
However, in contrast with the cogravitational field, thid field is produced only by 
masses whose velocity changes in time and, again in contrast with the cogravita-
tional field, it acts on all masses, moving as well as stationary. 

As we already know, the principal gravitatonal field equation of the genera-
lized theory of gravitation is 

[ ]
3 2 2

1 1d d ,GG V V
t r tr r c c

 ∂ ∂    ′ ′= − + +    ∂ ∂     
∫ ∫

Jg r
           (23) 

where =J v  is the mass current density produced by a moving mass distribu-
tion  . The first term on the right in Equation (23) represents the retarded 
Newtonian gravitational field. Just like the ordinary Newtonian field, this field 
originates at any mass distribution   and is responsible for the gravitational 
attraction. However, the last term on the right of Equation (23) represents a gra-
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vitational field very different from the Newtonian field. As can be seen from Eq-
uation (23), this new field is produced by a time-variable mass current t∂ ∂J  
and it differs in two in two importabt respects from the Newtonian gravitational 
field: it is directed along the mass-current (more accurately, along its partial time 
derivative) rather than along a radius vector, and it exists only as long as the 
current is changing in time. Therefore the gravitational force caused by this field 
is also different from the ordinary Newtonian force. This force (designated as 

3F  in Figure 1) is directed along t∂ ∂J  and it lasts only as long as the mass 
current is changing. Unlike the Newtonian gravitational force, which is always 
an interaction between graviting masses, the force due to the time-variable J  is 
basically a dragging force. If only the magnitude but not the direction J  
changes, this force is directed parallel or antiparallel (if t∂ ∂J  is negative) to 
J , causing a mass subjected to this force to move parallel or antiparallel to (ra-
ther than toward) the mass distribution forming the mass current. However, like 
the Newtonian force, the force due to the time-variable J  acts upon all masses. 
It is important to note that unlike that unlike the cogravitational field, the field 
produced by t∂ ∂J  usually is not created by masses moving with constant ve-
locity v , 

Since the cogravitational field created by time-variable mass currents is very 
different from the Newtonian field and from the cogravitatational field, a special 
name should be given to it. Taking into account that the cause of this field is a 
motion of masses, we can call it the gravikinetic field, and we may call the force 
which this field exerts on other masses the gravikinetic force. We shall designate 
the gravikinetic field by the vector kg . From Equation (23) we tus have 

2

1 d .k
G V

r tc
∂  ′=  ∂ ∫
Jg                       (24) 

Because of the 2c  in the denominator in Equation (24) the gravikinetic field 
cannot be particularly strong except when the mass-current responsible for it 
changes very fast. On the othr hand, taking into account that the time scale in 
gravitational interractions taking place in the Univerce may be very long,  ulti-
mate effect of the gravikinetic field in such interactions may be very considerable 
regardless of the rate at which the mass current changes. 

Let us now show the correlation between the gravikinetic field and the cogra-
vitational field. If we compare Equation (24) with the expression for the retarded 
cogravitational vector potential retA  produced by a mass current J  (seee, 
Section 3-3 Equation (3-3.2) in [4]), 

[ ]
2 d ,ret

G V
rc

′= − ∫
J

A                       (25) 

we recognize that the gravikinetic field is equal to the time derivative of retarded 

retA : 

.ret
k t

∂
= −

∂
Ag                           (26) 
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Observe that Equation (26) points out the possibility of a new defibition and 
interpretation of the cogravitational vector potential. Let us integrate Equation 
(26). We otain 

d const.ret k t= − +∫A g                       (27) 

Let us call the time integral of kg  the gravikinetic impulse. We then can say 
that the cogravitational vector potential created by a mass current at a point in 
space is equal to the negative of the gravikinetic impulse produced by this cur-
rent at that point during the action of the mass current. Since the gravikinetic 
impulse is, in principle, a measurable quantity, we thus have an operational defi-
nition and a physical interpretation of the cogravitational vector potential (for a 
related interpretation of the magnetic vector potential see [2] pp. 30, 31). 

A more direct relation between the gravikinetic field and the cogravitational 
field one can obtain as follows. Let as assume that an initially stationary mass 
current ( ), ,x y z′ ′ ′J  (an initially stationary rotating spherical mass, for example) 
moves as a whole with a constant velocity v toward a stationary observer located 
at the origin of coordinates. The mass current is then a function of ( )xx v t′ − , 
( )yy v t′ −  and ( )zz v t′ − , or 

( ), , .x y zx v t y v t z v t′ ′ ′= − − −J J                 (28) 

The time derivative of the current is 

( ) .x y zv v v
t x y z

∂ ∂ ∂ ∂ ′= − − − = − ⋅
′ ′ ′∂ ∂ ∂ ∂

J J J J v J∇             (29) 

The gravikinetic field caused by the moving mass current is then, by Equa-
tions. (24) and (29), 

( )
2 d .k

G V
rc

′⋅   ′= − ∫
v J

g
∇

                   (30) 

The spatial derivative appearing in Equation (30) can be eliminated as follows. 
Using vector identity (V-6) from [3], which can be written as 

( ) ( ) ( ) ( ) ( ) ,′ ′ ′ ′ ′⋅ = ⋅ + × × + ⋅ + × ×v J v J v J J v J v∇ ∇ ∇ ∇ ∇       (31) 

and taking into account that v  is a constant vector, we obtain 

( ) ( )
2 2d d .k

G GV V
r rc c

′ ′⋅ ⋅ × ×      ′ ′= − +∫ ∫
v J v J

g
∇ ∇

         (32) 

If we compare Equation, (32) with Equation (3-1.2) from [3] for the cogravi-
tational field, 

[ ]
2 d ,G V

rc
′×

′= − ∫
J

K
∇

                    (33) 

we find that Equation, (32) can be written as 

( )
2 d ,k

G V
rc

′ ⋅   ′= − − ×∫
v J

g v K
∇

                (34) 

where K  is the cogravitational field created by the moving mass current J . 
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7. Dynamic Effects of Gravikinetic Fields; Gravitational  
Induction 

We shall now present one example (fore more examples see the Section 2-2 in 
[3]) demonstrating force effects of the gravikinetic field. For simplicity we shall 
use gravikinetic fields calculated in the Section 12-2 of [3]. 

The force effects that we shall show constitute the gravitational analogue of 
electromagnetic induction and of electromagnetic Lenz’s law. As we now know, 
electromagnetic induction is caused by the electrokinetic field (see [3]). The gra-
vikinetic field is the gravitational counterpart of the electrokinetic field, and their 
dynamic effects are similar, except that the gravikinetic force exerted on a mass 
by an increasing/decreasing gravikinetic field is parallel/antiparallel to the field, 
whereas the electrokinetic force exerted on a positive charge by an increas-
ing/decreasing electrokinetic field is antiparallel/parallel to the field. 

An example: A thin-walled cylinder of radius 0R , length 2L and wall thick-
ness t has a uniformly distributed mass of density   is initially at rest. A ring of 
mass rm  and radius R us placed around the cylinder coaxially with it. The cy-
linder is then suddenly set in motion along its axis and attains a velocity cv  
(mass current cJ ). The gravikinetic force causes the ring to move along (follow) 
the cilinder (Figure 2). Assuming that no other forces act on the ring, and as-
suming that the ring stays near the middle of the cylinder during the time that 
the velocity of the cylinder changes, find the final velocity fv  of the ring. 

According to our assumptions, the gravikinetic field through which the ring 
moves is a function of time only. Therefore we can use Equation (12-1.5) from 
[3] for finding the final momentum and velocity of the ring. When the graviki-
netic force acts on a mass distribtion  , it changes the mechanical momentum 

MG  of the mass distribution (see [3]), and if kg  is a function of time only, the 
momentum change is 

d ,M km t m∆ = = − ∆∫G g A                       (35) 

where m is the total mass of the distribution, and ∆A  is the change in the vec-
tor potential during the time interval under consideration. From Equation (35) 
and Equation (12-2.3) (in [3]) 

2

2 2ln ,k
I G L
t Rc
∂

=
∂

g k                        (36) 

where k  is a unit vector in the direction of the mass current I, we have 

2

2 2ln ,M r f r c
G Lm m I

Rc
∆ = =G v k                    (37) 

so that the final velocity of the ring is 

2

2 2ln .f c
G LI

Rc
=v k                         (38) 

Substituting 02πcv R t  for cI , where   is the density of the cylinder, 0R  
is its radius, and t is its thickness, we obtain 
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Figure 2. Accelerating cylinder drags the ring with itself. 

 
0

2

4 π 2ln .c
f

G v R t L
Rc

=v k                        (39) 

The cylinder drags the ring so that the ring moves in the direction of the 
moving cylinder. It is ineresting to not that the final velocity of the ring does not 
depend on its mass. 

This example (along with other examples in the Section 2-2 in [3]) illustrates 
the phenomenon of gravitational induction, whereby a changing mass current 
induces a secondary mass current in neighboring bodies. The effect is similar to 
electromagnetic induction (for a detail analyses and novel interpretation of the 
phenomenon of electromagnetic induction see Oleg D. Jefimenko, “Presenting 
electromagnetic theory in accordance with the principle of causality”, [16]), ex-
cept that, in contrast to the latter, the direction of the induced current is the 
same as that of the original current if the original cerrent increases, and is op-
posite to the original current if the original current decreases. Thus the sign of 
the “gravitational Lenz’s law” is opposite to that of the electromagnetic Lenz’s 
law. 

8. Instead of Conclusion: On the Truth of the Generalized 
Theory of Gravitation 

The comparison of the generalized theory of gravitation with the general theory 
of relativity of Einstein (GR) involuntarily suggests. 

As is known, the experimental confirmation of GR generally relies only on the 
fact that it allegedly explained the previously unexplained discrepancy between 
the theoretical (calculated) and observed displacement (precession) of the peri-
helion of the planet Mercury; all other predictions and conclusions of the gener-
al theory of relativity can either not be verified with sufficient accuracy, or can 
be explained without this theory. 

Speaking about the problem of Mercury, it should be pointed out that the 
so-called discrepancy in the displacement of its perihelion is the difference be-
tween the observed and calculated, on the basis of the usual Newton theory, pe-
rihelion. 

This difference, which is approximately 575’’ per century attracted the atten-
tion of Urben Leverrier, who predicted the existence of the planet Neptune and 
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accurately calculated its coordinates. Leverrier explained the difference in the 
precession of Mercury by the influence of near planets and, having calculated 
their effect on Mercury, found that these planets cause a precession of 532’’ per 
century. The remaining 43’’ he could not explain. These remaining 43’’ for cen-
turies were, as it is now believed, explained by Einstein’s general theory of rela-
tivity. But then a certain discrepancy is immediately evident. After all, the main 
divergence in 532’’ was calculated according to Newton’s theory, and the re-
mainder in 43’’ was calculated according to the general theory of relativity. It 
would be much more convincing if the entire discrepancy of 575’’ per century 
was calculated on the basis of the same theory. On this occasion J. Synge re-
marked [17]: “Such a mixture of Newtonian and Einstein’s theories is psycho-
logically unpleasant, since these theories are based on too different initial con-
cepts.” Until the complete discrepancy is calculated using the general theory of 
relativity, without invoking Newton’s theory, the experimental verification of 
general relativity can not be considered valid. 

But let us go back to the generalized theory of gravitation. We note that, as 
shown in [3], within the framework of the generalized theory of gravitation, one 
can obtain formulas according to which the perihelion precession for all planets 
is a necessary consequence of this theory. However, these formulas hardly can 
prove anything. The fact is that according to the generalized theory of gravita-
tion, all celestial mechanics and its results should be revised. As it was shown 
above (see Figure 1), the action of the Sun on planets is expressed not by one 
force, but by five forces, and the action of each planet on each other planet is ex-
pressed not by one force, but by five forces. Therefore, as a matter of fact, all the 
information about our solar system, obtained on the basis of Newton’s conven-
tional theory, should be considered only approximately correct. So, from the 
point of view of the generalized theory, there is no point in trying to explain the 
43’’rd residue in the displacement of the perihelion of Mercury. After all, if we 
take into account all the forces that act on Mercury, including the forces asso-
ciated with the movement of the Sun in relation to the Galaxy, the rotation of 
the Sun around its axis, the dependence of the forces acting on Mercury on the 
speed and acceleration of the planets, on the speed of Mercury itself, and , finally, 
the retardation in the action of gravitational and cogravitational forces, will we 
get this discrepancy at all in the displacement of the perihelion of Mercury, es-
pecially the discrepancy exactly in 43 seconds? It is clear that until all these cal-
culations are performed, until the necessary corrections in celestial mechanics 
are amended, it is pointless to speak of testing the generalized theory of gravita-
tion by analyzing the motion of Mercury. 

So neither the generalized theory of gravitation of Jefimenko nor the general 
theory of relativity of Einstein can be verified in this way. 

However, one very strong testimony to the truth of the generalized theory of 
gravitation can still be cited (although it is not as sensational as the explanation 
of the discrepancy in the displacement of Mercury’s perihelion). Speech will go 
about one “white spot” associated with the phenomenon of gravitation. As is 
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known, the motion of stellar bodies and the fall of bodies under the action of the 
gravitational field p associated with conversion of potential energy unto kinetic 
energy and vice versa. In particular, when a body is falling under the action of 
the gravitational of the Earth, its potential energy diminishes and its kinetic 
energy increases. But how, exactly, does this come about? How is this energy 
exchange actually accomplished? In the past this phenomenon was simply inter-
preted as a result of the energy conservation, but the process, or mechanisms, of 
the energy exchange remained unknown. As we shall now see, the generalized 
theory of gravitation explains this heretofore hidden process with perfect clarity. 

Let a body of mass m fall under the action of Earth’s gravitational field g  
(Figure 3). Note that the magnitude of g  is equal to the acceleration of gravity 
g. Let the velocity of the body at the moment of observation be v . Like all 
moving masses, the falling creates around itself a cogravitational field K  lef-
thanded relative to the velocity vector of the body. Therefore, according to Equ-
ation (10) (gravotational Poynting vector equation) 

2

.
4π
c

G
= ×P K g                       (40) 

there is a flow of gravitational energy grU  at the surface of the falling body di-
rected into the body. The rate at which the ghravitational energy enters the body is 

( ) ( )
2 2d

d d ,
d 4π 4π

gr
in

U c c
t G G

= × ⋅ = × ⋅∫ ∫K g S g K S
 

          (41) 

where d inS  is a surface element vector of the falling body directed into the 
body, and dS  is a surface element vector directed, as usually accepted in vector 
analysis, from the body into the surrounding space; the integration is over the 
entire surface of the falling body. Transposing in the integrand the cross and the 
dot and factoring out the constant vector g  together with the dot from under 
the integral sign, we have 

( )
2 2d

d d .
d 4π 4π

grU c c
t G G

= ⋅ × = ⋅ ×∫ ∫g K S g K S
 

           (42) 

Converting now the last surface integtal into the volume integral, we obtain 
2d

d .
d 4π

grU c V
t G

= − ⋅ ×∫g K∇                    (43) 

By Equation (7-1.4) in [3] 

2 2

4π 1 ,G
tc c

∂
× = − +

∂
gK J∇                    (44) 

since g  is not a function of time, 

2

4π .G
c

× = −K v∇                       (45) 

Therefore Equation (43) reduces to 

d
d .

d
grU

V
t

= ⋅ ∫g v                       (46) 
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Figure 3. The generalized theory of gravitation provides a clear ex-
planation of the mechanism of energy exchange involved in gravita-
tional interactions: the increase of the kinetic energy of a body mov-
ing under the action of a gravitational field occurs as a consequence 
of the influx of gravitational field energy into the body via the gravi-
tational Poynting vector. 

 
Factoring out constant vector v  from under the integral sign, we obtain 

d
d .

d
grU

V
t

= ⋅ ∫g v                       (47) 

Thus, since g  and v  are parallel, and since the last integral in Equation 
(47) represents the mass of the falling body, we find that when the body is falling, 
there is an influx of the gravitational field energy (potential energy) into the 
body at the rate 

d
.

d
grU

m mvg
t

= ⋅ =g v                     (48) 

Let us now consider the kinetic energy. The kinetic energy of a falling body 
increases at the rate 

2d d d ,
d d 2 d

grU mv vmv mvg
t t t

 
= = = 

 
             (49) 

where g is the acceleration of the falling body. However, as was mentioned above, 
g in Equation (48) is the same acceleration, and therefore the rate at which the 
kinetic energy of the falling body increases is equal to the rate of influx of the 
gravitational field energy into the body. Note that a less general case of the gra-
vitational and kinetic energy exchange was previously considered by D. Bedford 
and P. Krumm in “The gravitational Poynting vector and energy transfer” [18]. 

Thus the generalized theory of gravitation provides a clear explanation of the 
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mechanism of the energy exchange involved in gravitational interactions: the 
increase of the kinetic energy of the body moving under the action of a gravita-
tional field occurs as a consequence of the gravitational field energy influx into 
the body via the gravitational Poynting vector. Essentially the same considera-
tions apply to the case when a body moves against the gravitational field, in 
which case its kinetic energy diminishes due to outflow of energy from the body 
into surrounding space again via the gravitational Poynting vector. 

The simplicity of the above calculation tends to hide the utmost significance 
of the obtained results. The fact is that no gravitational theory can be considered 
definitive if it cannot provide a clear explanation of the mechanism of conver-
sion of “gravitational potential energy” into the kinetic energy of falling bodies. 
Therefore, in spite of their simplicity, the above calculations constitute an excep-
tionally important proof of the validity of the generalized theory of gravitation 
and, at the same time, reveal the true nature of the “gravitational potential ener-
gy.” 

Finally, we will talk about the existence of gravitational and cogravitational 
waves. From the theoretical point of view, it is especially important that the Eq-
uations (3) and (4) can be transformed into the following differential equations 
in the present time: 

4π ,G⋅ = −g ∇                            (50) 

0,⋅ =K∇                              (51) 

t
∂

× = −
∂
Kg∇                            (52) 

and 

2 2

4π 1 .G
tc c

∂
× = − +

∂
gK J∇                      (53) 

We shall now show by direct calculation how Equations. (50)-(53) predict the 
existence of gravitational and cogravitational waves. 

We start with Equation (52). Taking the curl of this equation, we obtain 

.
t
∂

× × = − ×
∂

g K∇ ∇ ∇                       (54) 

Substituting Equation (53) into Equation (54), we obtain 
2

2 2 2

4π 1 ,G
tc c t

∂ ∂
× × = −

∂ ∂
J gg∇ ∇                    (55) 

Or 
2

2 2 2

1 4π .G
tc t c

∂ ∂
× × + =

∂∂
g Jg∇ ∇                    (56) 

Similarly, taking the curl of Equation (53), we have 

2 2

4π 1 ,G
tc c

∂ ×
× × = − × +

∂
gK J ∇

∇ ∇ ∇                (57) 

and, substituting Equation (52) into Equation (57), we obtain 
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2

2 2 2

4π 1 ,G
c c t

∂
× × = − × −

∂
KK J∇ ∇ ∇                 (58) 

or 
2

2 2 2

1 4π .G
c t c

∂
× × + = − ×

∂
KK J∇ ∇ ∇                  (59) 

Equations (56) and (59) are mathematical expressions for waves propagating 
in space with velocity c. In the present case they represent waves carrying with 
themselves the gravitational field g  and the cogravitational field K , respec-
tively. 

Furthemover, by Equations. (50) and (51), in a region of space where there are 
no masses and no mass currents, Equations. (56) and (59) become the more fa-
miliar “wave equations” 

2
2

2 2

1 0
c t

∂
− =

∂
gg∇                        (60) 

and 
2

2
2 2

1 0.
c t

∂
− =

∂
KK∇                      (61) 

Studing in [3] (pp. 303-304) energy relations in gravitational and cogravita-
tional waves O. Jefimenko found that the energy density in these waves is nega-
tive. 

2 2 21 1 .
8π 8πvU c

G G
= − −g K                 (63) 

An important consequence of the negative energy density in gravitation-
al-cogravitational waves is that in contrast to the electromagnetic waves, a gravi-
tational-cogravitational wave striking a body pulls toward the wave, that is, ex-
erts a negative rather than a positive pressure on the body. The calculations of 
the negative pressure by gravitational-cogravitational waves are similar to the 
corresponding calculations of the positive pressure by electromagnetic waves 
(see [2] pp. 132-133). 
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Abstract 
Systematically, it is written in the literature that only the general relativity 
(GR) allows finding the just value of the deflection of the light by the sun. Yet, 
we noted, by reading over the original text of SOLDNER of 1801: “Ueber die 
Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung, durch die At-
traktion eines Weltkörpers, the welchem er nahe vorbei geht” (that we think it 
is important to put in English in full in Appendix) that, contrary to what we 
read since about 100 years, he found the right value. Soldner had started from 
a Newtonian gravitational calculation and, with the value of 1801, find 1.64”. 
This calculation, with the actual values, allows finding the right value of 
1.752”. There are reasons to explain the wrong calculations which we usually 
make. However, there is no epistemological reason for questioning the general 
relativity. Some observations are only explained by the GR. But the Newto-
nian calculations are much simpler. We can continue to say that the theory of 
Newton is incomplete but we cannot say it is false. 
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1. Commentary on the Article of Soldner [1]:  
(The Article of Soldner Is to Be Read in Appendix) 

The purpose of the article of Soldner is to determine, when we observe a star, 
what is the correction we have to make to compensate the angle of deflection of 
the light which is caused by the attraction of the Earth. And if this quantity is 
significant and must be added to this of the refraction: “However, since also the 
ray-refraction is a function of height, then these two quantities must be mutually 
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combined...” In its article, Soldner calculates, by leaving of an inverse route 
Earth stars, what is the angle of deflection (“tangω = AB/AD”) and particularly 
what is the maximal angle of the light then horizontally arriving on the Earth. 
This, to correct “he aberration”, exists when we observe a star. He explains that 
“for convenience of the study”, “the light ray does not arrive at the place of ob-
servation, but emanates from it.” So, it was a clever way, at that time, to elimi-
nate the problem of the speed variation of the corpuscle. The light being consi-
dered as a corpuscle, the attraction acts and so, the speed is varied. The authors, 
at this time (e.g. Laplace which Soldner refers), eliminated the problem with a 
light ray coming from the infinite, so the variation of the speed was insignificant 
in the zone of observation. 

Other authors had made a calculation about the deflection of the light with 
the Newtonian method. 

Michell in 1784 [2] starts from the study of the double stars and makes an 
analysis with the geometrical method of Newton. He suggests that corpuscles of 
light are attracted by gravitational forces. He specifies for which conditions the 
light cannot go out of the star and so, introduces the concept of the black hole. 

Laplace after replacing the geometrical method of Newton by our modern 
mathematical analysis, in 1796 [3], from the escape velocity, calculated the exact 
radius (the future radius of Schwarzschild) where the light cannot go out from 
“un corps obscur” (a dark body). 

Will in 1988 [4] wrote that: The gravitational deflection of light based on 
Newtonian theory and the corpuscular model of light was calculated, but never 
published, around 1784 by Henry Cavendish, almost 20 years earlier than the 
first published calculation by Johann Georg von Soldner. The two results are 
slightly different because, while Cavendish treated a light ray emitted from infin-
ity, von Soldner treated a light ray emitted from the surface of the gravitating 
body. 

Another difficulty is because of the units used in 1800 with, e.g., the velocities 
measured in units of length. This induce a definition of the acceleration g = s/t2 
and v = 2gt (for us, two misprints of a factor of two since v = gt and g = s/2t2), 
but, in the calculation, these apparent mistakes cancel at the end. So, his calcula-
tion is right. 

His plan (Figure 3 in his text, Figure 1 in this letter) is particularly clear: 
Soldner does his calculation on a light arriving on the celestial body and not on a 
ray of light which only pass and continue its course. The angle ω he calculates is 
the one of the light coming from an infinite distance and finishing its course “in 
the eye of the observer” (“ins Auge des Beobachters”) situated on Earth. 

The light arriving on earth and deflected by the earth has a maximal deflection 
of ω = 0’’.001. 

After he specifies if we take the light passing near the moon and arriving on 
earth, it would be necessary to double the value to take into account the 2 arms 
of the hyperbola... (der an dem Monde vorbey und auf die Erde geht, zwey Arme  
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Figure 1. Original figure of Soldner where the light come 
from Q and finishes in A “in the eye of the observer”. 

 
der Hyperbel beschreibt). Also, we can note he calculates the conditions where 
the trajectory would be a parabola, an ellipse, a circle... 

Then, he says that if the earth was replaced by the sun, the maximal deflection 
of the light arriving on the celestial body, the angle ω would be 0.84 (The light 
follows only an arm of the hyperbola). 

It is the light arriving on sun and deflected by the sun and Soldner said (or 
jokes: “If it were possible to observe the fixed stars very nearly at the sun,... 
However, as it is well known that this doesn’t happen...”) 

In this case, if we double the value of 0’’84, (to take into account the 2 arms of 
the hyperbola), Soldner finds the right value of the deflection of the light passing 
near the sun, which is 1”64 (with the known values of the masses, of the radius 
and of the speeds in 1801). 

2. The Wrong Answer We Often Find in the Literature 

In the text of Soldner, I think it is possible to make an error for two conditions: 
1) If we forget the definition of the angle ω by Soldner (angle of deflection of 

the light arriving on a celestial body and deflected by this celestial body) 
2) And if only we read in the conclusion: “….then we find ω = 0”.84. If it were 

possible to observe the fixed stars very nearly at the sun, then we would have to 
take this into consideration...”) 

2.1. The Pseudo Error of Newton? 

The reasoning, said of Newton Soldner, sometimes, is presented in the literature 
or on the net. A common mistake comes from the fact that the trajectory has 
been decomposed with three parts (Figure 2). It is considered the first and the  
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Figure 2. A common error in the representation of the trajectory of the light. 
 
third parts are rectilineal. In the first part, the trajectory is rectilineal between in-
finite and the tangential point to the solar surface. So, it is considered the attrac-
tion is not exercised when the photon comes near to the Sun; the attraction is 
only exercised when the photon goes away! So, it is logical to find only the exact 
half of the correct value. Recently, in 2017, Huang [5], had also found the mis-
take and had made a correct calculation with a Newtonian method and clear 
figures. He says that there are only “minor errors” but without saying which 
ones, in the calculation of Soldner. 

A second common error is more difficult to see (Figure 3) and, sometimes, 
students are provided with this figure. The deviation is also after the point of the 
trajectory which is tangential to the sun, but the tangential point is in A. Yet, the 
deviation is the same before and after a tangential point to the surface of the sun. 
In the figure, there is no tangential point in the zone of deviation. To have a 
tangential point we have to move the sun in A or turn the sun to have a radius 
perpendicular to the trajectory, i.e. we move the point A to this new point. We 
find again the problem of the Figure 2. 

2.2. We Redid in Appendix 2 the Calculation of Soldner by a More 
Modern Method 

The calculation was made or from the speeds or from the work of the forces with 
simplifications and so, perhaps the same objections identified by Soldner in his 
conclusion. If we take a figure with the correct path (Figure 4), the integral is 
made over the entire trajectory and not just half of it. The calculation allows 
finding the true value of the deflection of the light, so 1.75”. 

2.3. Hypotheses and Conclusion 

It would be possible to say that the gravitational theory of Newton and the gen-
eral relativity must not be so much put in contradiction. The general relativity is 
a more “beautiful” theory, an explanatorier theory for the curvatures, for the ab-
sence of center… 

The advance of perihelion of mercury, with the pre-1920 astronomy, is only 
explicable with the relativity. Perhaps, the theory of Newton is incomplete but 
we cannot say it is false. 
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Figure 3. A second common error more difficult to see. 

 

 
Figure 4. A representation of the path of the light with a deflection over the entire trajec-
tory. 

 
From a philosophic point of view, the general relativity, because coming from 

principles (Maupertuis, Mach) is a principle of which we can verify it is always 
true, and not a law in opposition with the gravitation of Newton. So, general re-
lativity and theory of Newton perhaps are two sides or two principles of a same 
phenomenon. 
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Appendix 1 

Source: 
http://en.wikisource.org/wiki/Page:Ueber_die_Ablenkung_eines_Lichtstrals_vo
n_seiner_geradlinigen_Bewegung.djvu/1 

On the deflection of a light ray from its rectilinear motion, by the attraction of 
a celestial body at which it nearly passes by. 

By Joh. Soldner. 
Berlin, March 1801. 

At the current, so much perfected state of practical astronomy, it becomes 
more necessary to develop from the theory (that is from the general properties 
and interactions of matter) all circumstances that can have an influence on a ce-
lestial body: to take advantage from a good observation, as much as it can give. 

Although it is true that we can become aware of considerable deviations from 
a taken rule by observation and by chance: as it was the case with the aberration 
of light. Yet deviations can exist which are so small, so that it is hard to decide 
whether they are true deviations or observational errors. Also deviations can ex-
ist, which are indeed considerable—but if they are combined with quantities 
whose determination is not completely finished, they can escape the notice of an 
experienced observer. 

Of the latter kind may also be the deflection of a light ray from the straight 
line, when it comes near to a celestial body, and therefore considerably expe-
riences its attraction. Since we can easily see that this deflection is greatest when 
(as seen at the surface of the attracted body) the light ray arrives in horizontal 
direction, and becomes zero in perpendicular direction, then the magnitude of 
deflection will be a function of height. However, since also the ray-refraction is a 
function of height, then these two quantities must be mutually combined: there-
fore it might be possible, that the deflection would amount several seconds in its 
maximum, although it couldn't be determined by observations so far. 

These are nearly the considerations, which drove me to still think about the 
perturbation of light rays, which as far as I know was not studied by anyone. 

Before I start the investigation, I still want to give some general remarks, by 
which the calculation will be simplified. Since at the beginning I only want to 
specify the maximum of such a deflection, I horizontally let pass the light at the 
location of observation (at the surface of the attracting body), or I assume that 
the star from which it comes, is apparently rising. For convenience of the study 
we assume: the light ray doesn’t arrive at the place of observation, but emanates 
from it. We can easily see, that this is completely irrelevant for the determination 
of the figure of the trajectory. Furthermore if a light ray arrives at a point at the 
surface of the attracting body in horizontal direction, and then again continues 
its way (at the beginning horizontally again): then we can easily see, that with 
this continuation it describes the same curved line, which it has followed until 
here. If we draw through the place of observation and the center of the attracting 
body a straight line, then this line will be the major axis of the curved one for the 
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trajectory of light; by describing over and under this line two fully congruent 
sides of the curved line. 

C (Figure 1) shall now be the center of the attracting body, A is the location at 
its surface. From A, a light ray goes into the direction AD or in the horizontal di-
rection, by a velocity with which it traverses the way v in a second. Yet the light 
ray, instead of traveling at the straight line AD, will forced by the celestial body to 
describe a curved line AMQ, whose nature we will investigate. Upon this curved 
line after the time (calculated from the instant of emanation from A), the light ray 
is located in M, at the distance CM = r from the center of the attracting body. g be 
the gravitational acceleration at the surface of the body. Furthermore CP = x, MP 
= y and the angle MCP = h. The force, by which the light in M will be attracted by 
the body into the direction MC, will be 2gr−2. This force can be decomposed into 
two other forces, 

22 cosg r h  and 22 sing r h , 

into the directions x and y; and for that we obtain the following two equations (s. 
Traité de mécanique céleste par Laplace, Tome I, pag. 21) 

( )2 2dd d 2 cosx t g h r= −                     (I) 

( )2 2dd d 2 siny t g h r= −                    (II) 

If we multiply the first of these equations by −sinh, the second one by cosh, and 
sum them up, then we obtain: 

( ) 2dd cos dd sin d 0y h x h t− =                (III) 

Now we multiply the first one by cosh, the second one by sinh and sum them 
together, then we obtain: 

( ) 2 2dd cos dd sin d 2y h x h t g r+ = −            (IV) 

To reduce in these equations the number of variable quantities, we want to ex-
press x and y by r and h. We easily see that 

cos ; sinx r h y r h= =  

If we differentiate, then we will obtain: 

d cos d sin d ; d sin d cos dx h r r h h y h r r h h= − = +  

And if we differentiate again, 
2dd cos dd 2sin d d sin dd cos dx h r h h r r h h r h h= − − −  

and 
2dd sin dd 2cos d d cos dd sin dy h r h h r r h h r h h= + + −  

If we substitute these values for ddx and ddy in the previous equations, the we 
obtain from (III): ( ) ( )2 2dd cos dd sin d 2d d dd dy h x h t h r r h t− = +  
Thus we have: 

( ) 22d d dd d 0h r r h t+ =                   (V) 

And furthermore by (IV), 
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( )2 2 2dd d d 2r r h t g r− = −                  (VI) 

To make Equation (V) a true differential quantity, we multiply it by rdt, thus: 

( )22 d d dd d 0r h r r h t+ =  

and if we again integrate, we will obtain: 
2d d ,r h C t=  

where C is an arbitrary constant magnitude. To specify C, we note that 
( )2d dr h rr h=  is equal to: the double area of the small triangle which described 

the radius vector r in the time dt. The double area of the triangle that is described 
in the first second of time, is however: = AC v; thus we have C = AC v. And if we 
assume the radius AC of the attracting body as unity, what we will always do in 
the following, then C = v. If we substitute this value for C into the previous equa-
tions, then: 2d d ,r h v t=  

Thus we have 
2d dh v t r=                         (VII) 

If this value for dh is substituted into Equations (VI), we obtain: 

( )2 2 3 2dd d 2r t v r g r− = −  

If we multiply this equations by 2dr, then: 

( ) 2 2 3 22d dd d 2 d 4 dr r t v r r g r r− =  

and if we integrate again, 
2 2 2 3d d 4r t v r g r D+ = +  

where D is a constant magnitude, that depends on the constant magnitudes 
which are contained in the equation. From this equation that is found now, the 
time can be eliminated, hence: 

( )1 22 2d d 4t r D g r v r= + −  

If we substitute this value for dt into Equation (VII), then we obtain: 

( )1 22 2 2d d 4h v r r D g r v r= + −  

To integrate this equations, we bring it into the form: 

( )
1 222 2 2d d 4 2h v r r D g v v r g v = + − −   

Now we put 

2v r g v z− =  

then we have 2d dv r r z= −  
If this and z is substituted into the equation for dh, the we will have: 

( )1 22 2 2d d 4h z D g v z= − + −  

From that the integral is now: ( )1 22 2arccos 4h z D g v α= + +  
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where α is a constant magnitude. By well-known properties it is furthermore: 

( ) ( )1 22 2cos 4h z D g vα− = +  

and if we also substitute instead of z its value: 

( ) ( ) ( )1 22 2 2cos 2 4h v gr r v D gα− = − +  

h α−  would be the angle that r forms with the major axis of the curved line 
that has to be specified. Since furthermore h is the angle which r forms with the 
line AF (the axis of the coordinates x and y), then α must be the angle that forms 
the major axis with the line AF. However, since AF goes through the observation 
place and the center of the attracting body, then by the preceding, AF must be the 
major axis; also α 0, and thus: 

( ) ( )1 22 2 2cos 2 4h v gr r v D g= − +  

For h = 0 it must be r = AC = 1, and we obtain from this equation: 

( )1 22 2 24 2v D g v g+ = −  

If we substitute this in the previous equation, then the still unknown D and 
also the square-root sign vanish; and we obtain: 

( ) ( )2 2cos 2 2h v gr r v g= − −  

furthermore by that 

( )2 22 2 cos 2r v g g r h v g + − =              (VIII) 

From this finite equation between r and h, the curved line can be specified. To 
achieve this more conveniently, we again want to reduce the equation to coordi-
nates. Let (Figure 1) AP = x and MP = y, then we have: 

1 cos ; sinx r h y r h= − =  

and 

( )
1 22 21r x y = − +   

If we substitute this into equation (VIII), then we find: 

( ) ( ) ( ) ( )22 2 2 2 2 2 2 2 24 4 1 2 2 1 4y v v g g x v v g g x v g   = − − − − − +     

and if we properly develop everything, 

( )2 2 2 2 2 2 24 4 4y v x g v v g g x g = + −                (IX) 

Since this equation is of second degree, then the curved line is a conic section, 
that can be studied more closely now. 

If p is the parameter and a the semi-major axis, then (if we calculate the abscis-
sa with its start at the vertex) the general equation for all conic sections is: 

2 2 2y px px a= +  

This equation contains the properties of the parabola, when the coefficient of x2 
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is zero; that of the ellipse when it is negative; and that of the hyperbola when it is 
positive. The latter is evidently the case in our equation (IX). Since for all our 
known celestial bodies 4g is smaller than v2, then the coefficient of x2 must be 
positive. 

If thus a light ray passes a celestial body, then it will be forced by the attraction 
of the body to describe a hyperbola whose concave side is directed against the 
attracting body, instead of progressing in a straight direction. 

The conditions, under which the light ray would describe another conic section, 
can now easily be specified. It would describe a parabola when 4g = v2, an ellipse 
when 4g were greater than v2, and a circle when 2g = v2. Since we don’t know any 
celestial body whose mass is so great that it can generate such an acceleration at 
its surface, then the light ray always describes a hyperbola in our known world. 

Now, it only remains to investigate, to what extend the light ray will be def-
lected from its straight line; or how great is the perturbation angle (which is the 
way I want to call it). 

Since the figure of the trajectory is now specified, we can consider the light ray 
again as arriving. And because I at first want to specify only the maximum of the 
perturbation angle, I assume that the light ray comes from an infinitely great dis-
tance. The maximum must take place in this case, because the attracting body 
longer acts on the light ray when it comes from a greater than from a smaller dis-
tance. If the light ray comes from an infinite distance, then its initial direction is 
that of the asymptote BR (Figure 1) of the hyperbola, because in an infinitely 
great distant the asymptote falls into the tangent. Yet the light ray comes into the 
eye of the observer in the direction DA, thus ADB will be the perturbation angle. 
If we call this angle ω, then we have, since the triangle ABD at A is right-angled: 

tang AB ADϖ =  

However, it is known from the nature of the hyperbola, that AB is the 
semi-major axis, and AD the semi-lateral axis. Thus this magnitudes must also 
be specified. When a is the semi-major axis, and b the semi-lateral axis, then the 
parameter is: 

22p b a=  

If we substitute this value into the general equation of hyperbola 
2 2 2y px px a= +  

then it transforms into: 
2 2 2 2 22y b x a b x a= +  

If we compare this coefficients of x and x2 with those in (IX), then we obtain 
the semi-major axis 

( )22 4 ABa g v g= − =  

the semi-lateral axis 

( )1 22 4 ADb v v g= − =  
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If we substitute this values for AB and AD into the expression for tangω, then 
we have: 

( )1 22tang 2 4g v v gω = −  

We now want to give an application of this formula on earth, and investigate, 
to what extend a light ray is deflected from its straight line, when it passes by at 
the surface of earth. 

Under the presupposition, that light requires 564.8 seconds of time to come 
from the sun to earth, we find that it traverses 15.562085 earth radii in a second. 
Thus v = 15.562085. If we take under the geographical latitude its square of the 
sine 1/3 (that corresponds to a latitude of 35˚16'), the earth radius by 6,369,514 
meters, and the acceleration of gravity by 3.66394 meters (s. Traité de mécanique 
céleste par Laplace, Tome I, pag. 118): then, expressed in earth radii, g = 
0.000000575231. I use this arrangement, to take the most recent and most reliable 
specifications of the size of earth’s radius and the acceleration of gravity, without 
specific reduction from the Traité de mécanique céleste. By that, nothing will be 
changed in the final result, because it is only about the relation of the velocity of 
light to the velocity of a falling body on earth. The earth radius and the accelera-
tion of gravity must therefore taken under the mentioned degree of latitude, since 
the earth spheroid (regarding its physical content) is equal to a sphere which has 
earth’s radius (or 6,369,514 meters) as its radius. 

If we substitute these values for v and g into the equation of tang ω, then we 
obtain (in sexagesimal seconds) ω = 0".0009798, or in even number, ω = 0".001. 
Since this maximum is totally insignificant, it would be superfluous to go further; 
or to specify how this value decreases with the height above the horizon; and by 
what value it decreases, when the distance of the star from which the light ray 
comes, is assumed as finite and equal to a certain size. A specification that would 
bear no difficulty. 

If we want to investigate by the given formula, to what extend a light ray is def-
lected by the moon when it passes the moon and travels to earth, then we must 
(after the relevant magnitudes are substituted and the radius of the moon is taken 
as unity) double the value that was found by the formula; because the light ray 
that passes the moon and falls upon earth, describes two arms of the hyperbola. 
But nevertheless the maximum must still be much smaller than that of earth; be-
cause the mass of the moon, and thus g, is much smaller. The inflexion must 
therefore only stem from cohesion, scattering of light, and the atmosphere of the 
moon; the general attraction doesn’t contribute anything significant. 

If we substitute into the formula for tang ω the acceleration of gravity on the 
surface of the sun, and assume the radius of this body as unity, then we find ω = 
0".84. If it were possible to observe the fixed stars very nearly at the sun, then we 
would have to take this into consideration. However, as it is well known that this 
doesn’t happen, then also the perturbation of the sun shall be neglected. For light 
rays that come from Venus (which was observed by Vidal only two minutes from 
the border of the sun, s. Hr. O. L. v. Zachs monatliche Correspondenz etc. II. 
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Band pag 87.) it amounts much less; because we cannot assume the distances of 
Venus and Earth from the sun as infinitely great. 

By combination of several bodies, that might be encountered by the light ray 
on its way, the results would be somewhat greater; but certainly always imper-
ceptible for our observations. 

Thus it is proven: that it is not necessary, at least at the current state of prac-
tical astronomy, to consider the perturbation of light rays by attracting celestial 
bodies. 

Now I must anticipate two objections, that possibly could raised against me. 
One will notice, that I departed from the ordinary method, because I specified 

several general properties of curved lines before the calculation; which is what 
usually happens only after, and which might also could have happened at this 
place. Yet the calculation was very shortened by that, and why should we calcu-
late, when that what has to be proven, can be shown much more evident by a lit-
tle reasoning? 

Hopefully no one finds it problematic, that I treat a light ray almost as a pon-
derable body. That light rays possess all absolute properties of matter, can be 
seen at the phenomenon of aberration, which is only possible when light rays are 
really material. And furthermore, we cannot think of things that exist and act on 
our senses, without having the properties of matter. 

nihil est quod possis dicere ab omni 
corpore seiunctum secretumque esse ab inani, 
quod quasi tertia sit numero natura reperta. 
Lucretius de nat. rer. I, 431 
Furthermore I don’t think that it is necessary for me to apologize, that I pub-

lished this investigation; since the result leads to the imperceptibility of all per-
turbations. Because it also must be even nearly as important for us to know what 
exists according to the theory, but which has no perceptible influence in practice; 
as it concerns us, what has a real influence in respect to practice. Our knowledge 
will be equally extended by both. For example, we prove that the diurnal aberra-
tion, the disturbance of the rotation of earth and other such things in addition 
are imperceptibly small. 

Appendix 2 

Example of a calculation of the deflection of the light passing near the sun 
with the universal gravitation of Newton: 

A photon passing near the Sun is submitted to an attractive force (Figure A1). 
First, we calculate the deviation from the ratio of the speeds in a point such that 
tgα = Δvp/c, with Δvp = perpendicular speed to the initial direction and c = 
speed of the light. 

m v F t⋅ ∆ = ⋅∆                          (a) 
or 

F mg=                            (1), 
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Figure A1. Bending of the light caused by the attractive force. 

 

( )2g GM d u= ⋅                           (2) 

with G, the gravitational constant, M mass of the sun 1.99 × 1030 kg and d the 
distance between the point where is the photon and the sun, with (1) (2), (a) be-
comes 

( )2v GM d t∆ = ⋅∆                         (a') 

Δt is the time of the travel of the photon, so 2t d c∆ =  since d is the distance 
from the point being in −infinity and the tangential point to the sun and so the 
distance between the tangential point to the sun and +infinity. Replacing Δt by 
2d/c, so (a') becomes 

( )2v GM dc u∆ = ⋅                        (a'') 

The angle between Δv and Δvp is extremely weak (or between the distance d 
and the perpendicular motion dd), so we can use the astronomic simplification 
where the tangent tang a in radians is equal to 1/d. So, we have ( )~ 1vp d v∆ ∆  
and with (a''), we obtain ( )22vp GM d c u∆ = ⋅  

(with a more rigorous way, when the photon comes, we have to consider the 
angle a and multiply by 1/d; when the photon goes away, so the angle is Π-a and 
we have to multiply by −1/d) 

2 2tang 2vp c GM d cα = ∆ =                   (a''') 

when a point is between −infinity and the tangential point to the sun; 
2 2tang 2vp c GM d cα = ∆ = −  when a point is between the tangential point 

to the sun and +infinity) 
The total angle of deviation A is calculated by integrating d between −infinity 

and R and between R and +infinity, R is the radius of the sun 

( )2 2tang 2A A GM d c dd≈ ≈ ∫  so between −infinity and R: 22A GM Rc′ = , 
thus between −infinity and + infinity, 24A GM Rc= . It is this value of A that 
we find by calculating from the general relativity. 

Also, the deviation can be calculated from the forces and from the work of 
these forces if we consider the work Wp of the perpendicular force Fp to the ini-
tial direction and the work Wt of the la tangential force Ft to the initial direction, 
so ;Wp Fpdd Wt Ftdd= = . So the deviation α in a point is  
tang Fp Ft Wp Wtα = = . Like the tangential speed cannot exceed c, the work 
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Wt always equals the kinetic energy Ec corresponding to a speed c. The work 
Wp can be calculated from the “potential” energy E. Ep is the perpendicular 
component. 

E mgd=  with m mass of the photon, g gravitational acceleration, d distance 
from the center of the sun to the photon 2g GM d=  thus E mGM d= . Like 
previously, we can write ( )1Ep E d=  so 2Ep mGM d=  ( )21 2Ec mc=  
with c, the speed of the photon at 3 × 108 m∙s−1 (difficult to read for a photon 
without mass! But, fortunately this mass disappears during the calculation). 

The angle of deviation α of the photon in a point of the trajectory is: 

( ) ( )2 2tang 2 1Wp Wt Ep Ec GM c dα = = = ⋅                (3) 

The total deviation for all the trajectory is given by the integral of the Equation (3) 
as above. 

Numerical application: 
With a solar radius R of 6958 × 105 m, 
The deviation between −infinity and R is equal to 0.876'', Similarly the devia-

tion between R and + infinity is equal to 0.876'' 
Thus, the total deviation from −infinity to +infinity is 1.752"; this result is in 

perfect conformity with the observation and so precise this from the general re-
lativity. 
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Abstract 
The purpose of this paper is to show how the dark matter predictions of FSC 
differ with respect to the standard cosmology assertion of a universal dark 
matter-to-visible matter ratio of approximately 5.3-to-1. FSC predicts the 
correct ratio to be approximately 9-to-1, based primarily on the universal ob-
servations of global spatial flatness in the context of general relativity. The 
FSC Friedmann equations incorporating a Lambda Λ  cosmological term 
clearly indicate that a spatially flat universe must have equality of the positive 
curvature (matter mass-energy) and negative curvature (dark energy) density 
components. Thus, FSC predicts that observations of the Milky Way and the 
nearly co-moving galaxies within 100 million light years will prove the 5.3- 
to-1 ratio to be incorrect. The most recent galactic and perigalactic observa-
tions indicate a range of dark matter-to-visible matter ratios varying from es-
sentially zero (NGC 1052-DF2) to approximately 23-to-1 (Milky Way). The 
latter ratio is simply astonishing and promises an exciting next few years for 
astrophysicists and cosmologists. Within the next few years, the mining of 
huge data bases (especially the Gaia catalogue and Hubble data) will resolve 
whether standard cosmology will need to change its current claims for the 
cosmic energy density partition to be more in line with FSC, or whether 
FSC is falsified. A prediction is that standard cosmology must eventually 
realize the necessity of resolving the tension between their flatness observa-
tions and their assertion of dark energy dominance. The author makes the 
further prediction that FSC will soon become the new paradigm in cos-
mology. 
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1. Introduction and Background 

In sharp contrast to standard cosmology, Flat Space Cosmology (FSC) makes 
quite a number of predictions which would invalidate the theory if proven false. 
Many of these predictions can be derived from the FSC Friedmann equation 
which must always hold true in FSC [1]: 

2 2 43
8 8
H c c

G Gπ π
Λ

≅                             (1) 

Wherein the left-hand term is the total matter energy density and the 
right-hand term is the dark energy density. The 2H  symbol is the squared 
Hubble parameter value in metric units (s−2) and the Λ  symbol is the cosmo-
logical parameter in metric units (m−2). In a globally spatially flat expanding un-
iverse, which we observe, general relativity stipulates that the global positive 
curvature of total matter mass-energy density must equate with the global nega-
tive curvature of dark energy density. If the case were otherwise, the universe 
would have a global spatial curvature of sign and magnitude corresponding to 
the dominating energy density, which we do not observe. Thus, when the un-
iverse is at Friedmann’s critical density, as appears to be the case by astronomi-
cal observations [2], FSC stipulates that 50% of the critical density must be at-
tributable to total matter (visible matter plus dark matter) and 50% of the critical 
density must be attributable to dark energy. 

One of the longstanding observational facts is that the visible matter of our 
universe comprises only about 5% of the critical density. Thus, FSC predicts a 
dark matter-to-visible matter ratio of approximately 45/5 or 9-to-1. As detailed 
in the Planck Collaboration consensus report, the ratio of dark matter-to-visible 
matter is claimed to be approximately 5.3-to-1. However, so little is currently 
known about precisely detecting and quantifying dark matter that this ratio is 
subject to higher revision in the likely event that more dark matter is discovered 
in the future. For this reason, the Planck Collaboration ratio must be considered 
as a constraint only on the low end. 

Galactic and perigalactic distributions of dark matter can be surprisingly va-
riable, as evidenced by the 29 March 2018 report in Nature [3] of an exceedingly 
diffuse distant galaxy (NGC 1052-DF2) apparently completely lacking in dark 
matter! Hence, the global (i.e., CMB) Planck Collaboration ratio of 5.3-to-1 
cannot dogmatically be considered even an approximation of all galactic and pe-
rigalactic ratios, particularly if these ratios are scalar over cosmic time. 

What is now required is a best estimate of the co-moving dark matter-to-  
visible matter ratio within approximately 50 - 100 nearby galaxies. The only ob-
servable truly co-moving galaxy for us is the Milky Way galaxy itself. All other 
galaxies are observationally displaced in distance and time to some degree. 
However, all galaxies within 100 million light years of the Milky Way should be 
sufficiently close to us to be considered approximate co-movers for the required 
observations. These are the galaxies of the Virgo Supercluster. There are 160 ga-
laxy groups within 100 million light years of the Milky Way galaxy. The number 
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of large galaxies is approximately 2500 and the number of dwarf galaxies is ap-
proximately 25,000 [4]. Data mining of the Gaia catalogue will not only allow 
researchers to determine the range of dark matter-to-visible matter ratios within 
the most accessible nearby co-moving galaxies, but to determine the average 
dark matter-to-visible matter ratio. The average ratio may be calculated by di-
viding the sum of the dark matter numerators by the total number of nearby 
co-moving galaxies reliably measured. As mentioned, FSC predicts this average 
ratio to be very close to 9-to-1. A radically different average co-moving ratio 
would falsify FSC. Standard cosmology, on the other hand, has no capacity to 
predict this ratio. Therefore, whatever this average co-mover ratio turns out to 
be, it will be inserted into the standard inflationary model after its determina-
tion. 

Given the recent report of the galaxy apparently devoid of dark matter, astro-
nomers around the world are scrambling to mine the Gaia catalogue data for 
further clues with respect to dark matter. The most logical place to start, of 
course, is with the Milky Way galaxy. Remarkably, this data has just become 
available! This author predicts that Posti and Helmi’s May 2018 arXiv.org publi-
cation of “Mass and Shape of the Milky Way’s Dark Matter Halo with Globular 
Clusters from Gaia and Hubble” [5] will be considered a landmark publication 
concerning galactic and perigalactic dark matter. This study reveals that the viri-
al volume comprising our Milky Way Galaxy and its dark matter halo has a dark 
matter-to-visible matter ratio of approximately 23.074-to-1. Thus, the matter 
confined within the halo radius (“virial radius”) of our Milky Way galaxy ap-
pears to be approximately 95.85% dark matter and 4.15% visible matter! 

So that the reader can make the same calculations, the relevant measurements 
made by Posti and Helmi are repeated here: the virial mass is reported to be 1.3 
+/− 0.3 × 1012 solar masses; the mass of the Milky Way galaxy within a generous 
20 kpc. (a radius of approximately 65,200 light years) is reported to be 1.91 × 
1011 solar masses, of which Posti and Helmi attribute 1.37 × 1011 solar masses to 
intragalactic dark matter. One can, therefore, assume the remaining 0.54 × 1011 
solar masses to be the galactic visible matter within approximately 65,200 light 
years of the Milky Way center, which can be safely assumed to be greater than 
99% of the Milky Way visible matter. This is because numerous reliable sources 
indicate the visible matter of the Milky Way to be within a radius of 50,000 light 
years of the galactic center. Posti and Helmi measure a virial radius of 287 kpc. 
This is greater than 14 times their defined radius of the galactic disc, and surely 
must encapsulate the vast majority of the Milky Way dark matter. Hence, one 
can assume that the ratio of 1.3 × 1012 solar masses to 0.54 × 1011 solar masses is 
an excellent approximation of the Milky Way dark matter-to-visible matter ra-
tio. This is how the author calculated the ratio and percentage numbers in the 
prior paragraph. 

These very recent observations ranging from 0% galactic and perigalactic dark 
matter (NGC 1052-DF2) to 95.85% dark matter within the virial volume of the 
Milky Way galaxy must be somewhat jarring to standard model proponents. The 
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current dogmatic acceptance of approximately 30% universal total matter 
mass-energy and approximately 70% dark energy appears to be on a shaky 
foundation [6]-[11]. Within the next few years, the mining of huge data bases 
(especially the Gaia catalogue and Hubble data) will resolve whether standard 
cosmology will need to change its current claims for the cosmic energy density 
partition to be more in line with FSC, or whether FSC is falsified. Regardless, 
standard cosmology must eventually realize the necessity of resolving the tension 
between their flatness observations and their current assertion of dark energy 
dominance. 

2. Summary and Conclusions 

The purpose of this paper has been to show how the dark matter predictions of 
FSC differ with respect to the standard cosmology assertion of a universal dark 
matter-to-visible matter ratio of approximately 5.3-to-1. FSC predicts the correct 
ratio to be approximately 9-to-1, based primarily on the universal observations 
of global spatial flatness in the context of general relativity. The FSC Friedmann 
equations incorporating a Lambda Λ  cosmological term clearly indicate that a 
spatially flat universe must have equality of the global positive curvature (matter 
mass-energy) and global negative curvature (dark energy) density components. 
Thus, FSC predicts that observations of the Milky Way and the nearly 
co-moving galaxies within 100 million light years will prove the 5.3-to-1 ratio to 
be incorrect. The most recentgalactic and perigalactic observations indicate a 
range of dark matter-to-visible matter ratios varying from essentially zero (NGC 
1052-DF2) to approximately 23-to-1 (Milky Way). The latter ratio is simply as-
tonishing and promises an exciting next few years for astrophysicists and cos-
mologists. Within the next few years, the mining of huge data bases (especially 
the Gaia catalogue and Hubble data) will resolve whether standard cosmology 
will need to change its current claims for the cosmic energy density partition to 
be more in line with FSC, or whether FSC is falsified. A prediction is that stan-
dard cosmology must eventually realize the necessity of resolving the tension 
between their flatness observations and their assertion of dark energy domin-
ance. The author makes the further prediction that FSC will soon become the 
new paradigm in cosmology. 
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Abstract 
There have been a number of observational surprises with respect to galactic 
dark matter-to-visible matter ratios. These surprises confirm our continued 
lack of understanding of the fundamental nature of dark matter. Because of 
their apparent close ties with galactic gravitational entropy, at least four recent 
observations appear to provide the first evidence in support of Verlinde’s 
theory of gravity, dark energy and dark matter as emergent properties. They 
also appear to correlate with Roger Penrose’s gravitational entropy concept, as 
well as entropy defined in the Flat Space Cosmology (FSC) model. Given the 
observational support, two different testable versions of a “Dark Matter In-
dex” (DMI) are introduced in this paper, and its utility is discussed in terms of 
potentially achieving a better understanding of the fundamental nature of 
dark matter. 
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1. Introduction and Background 

Recent observations have shown a distant exceedingly diffuse galaxy (NGC 
1052-DF2) with no discernable dark matter whatsoever [1]. A second report in-
dicates the virial volume of the Milky Way galaxy to have a dark mat-
ter-to-visible matter ratio of 23.074-to-1 [2] [3]. 

Roger Penrose, in his new book [4], introduces the concept of gravitational 
entropy on pages 256-258. In sharp contrast to entropy of an ideal gas, gravita-
tional and cosmological entropy increases with the ongoing clustering of stars 
and galaxies. Thus, as Penrose pointed out, black holes (especially supermassive 
black holes) become huge repositories of total cosmic entropy over the great 
span of cosmic time. Furthermore, as detailed in “Clues to the Fundamental 
Nature of Gravity, Dark Energy and Dark Matter” [5], there appears to be a deep 
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connection within the Flat Space Cosmology (FSC) model between gravity and 
cosmic entropy. Thus, FSC appears to be the cosmological model correlate to 
Verlinde’s theory that gravity is an emergent property [6] [7]. The obvious im-
plication, as discussed in the FSC “Clues” paper, is that if gravity is indeed an 
emergent property, dark energy and dark matter would also likely be emergent 
properties. If such were the case, dark energy could well be an emergent proper-
ty of the cosmic system as a whole, and “dark matter” could well be an emergent 
property of the galactic visible matter. Recently, Verlinde’s theory as it may per-
tain to dark matter, was tested by Brouwer, et al. [8]. Their apparent lensing 
excess surface density (ESD) analysis of 33,613 galaxies provided the first obser-
vational support that Verlinde’s theory appears to be correct with respect to ga-
lactic dark matter. 

Given this observational support for Verlinde’s theory, and the apparent deep 
connections between cosmic entropy and gravity, dark energy and dark matter 
in FSC, the two additional dark matter observations mentioned in the first para-
graph of this paper take on a new significance. This is because they may provide 
evidence that dark matter observations are closely linked with galactic gravita-
tional entropy. Could it be that the absence of apparent dark matter in the dis-
tant and exceedingly diffuse (i.e., gravitationally young) NCG 1052-DF2 galaxy 
is because it has an exceedingly low gravitational entropy? And could it be that 
the relative abundance of dark matter in the relatively compact, dense and gra-
vitationally mature Milky Way galaxy (including of course its supermassive 
black hole), is because it has a high gravitational entropy? If indeed Penrose’s 
concept of gravitational entropy is correct, the answer would seem to be an em-
phatic “yes!” These additional observations of dark matter in the form of dark 
matter-to-visible matter ratios of zero and approximately 23-to-1, respectively, 
would appear to provide the second and third observations in support of Ver-
linde’s theory, and of FSC as an emergent gravity cosmological model. Further-
more, the recent report [9] that dark matter appears to be relatively scarce in the 
massive star-forming galaxies at high redshifts would appear to be the fourth 
observation in support of Verlinde’s theory and the FSC model presented in the 
“Clues” paper. 

2. Recommended Dark Matter Index with Discussion 

It is not always easy to quantify the amount of dark matter within a particular 
galaxy and its dark matter halo. Gravitational lensing, for instance, can be a 
hit-or-miss proposition, depending upon the alignment of more distant galaxies. 
However, the above recent observational results apparently in support of Ver-
linde’s theory suggest a possible means of indexing the dark matter of any galaxy 
for which the following characteristics can be measured: the galactic center in-
trinsic brightness IBGC; and the galactic redshift S. This author suggests that these 
measured characteristics could be expressed in the form of a “Dark Matter In-
dex” (DMI) ratio according to: 
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BGCDMI I S=  

If Verlinde, Penrose and the FSC model are indeed correct, one would expect 
high DMI values to be indicative of high galactic gravitational entropy, high ga-
lactic dark matter-to-visible matter ratios, and high excess gravitational lensing 
powers currently attributed to dark matter. The potential usefulness of such an 
index could be studied by comparing galaxies in the dark matter data base for 
which the dark matter-to-visible matter ratio has already been measured, either 
by gravitational lensing or other means. Even with the more labor-intensive and 
alignment-dependent gravitational lensing studies of the sort reported by 
Brouwer, et al, a lensing DMI value (represented as DMIL below) could ulti-
mately prove to have better correlative power than the excess surface density 
value alone. The proposed relation is 

L DMDMI ESD S=  

wherein ESDDM is Brouwer’s excess surface density proposed to be attributable to 
dark matter and S is the galactic redshift. If correlation studies of these DMI and 
DMIL indices prove them to be accurate quantitative measures of galactic dark 
matter, this may speed up the process of truly identifying the fundamental na-
ture of dark matter. 

3. Summary and Conclusions 

There have been a number of observational surprises with respect to galactic 
dark matter-to-visible matter ratios. These surprises confirm our continued lack 
of understanding of the fundamental nature of dark matter. Because of their ap-
parent close ties with galactic gravitational entropy, at least four recent observa-
tions appear to provide the first evidence in support of Verlinde’s theory of 
gravity, dark energy and dark matter as emergent properties. They also appear to 
correlate with Roger Penrose’s gravitational entropy concept, as well as entropy 
defined in the Flat Space Cosmology (FSC) model. Given the observational sup-
port, two different testable versions of a “Dark Matter Index” (DMI) are intro-
duced in this paper, and its utility is discussed in terms of potentially achieving a 
better understanding of the fundamental nature of dark matter. 
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Abstract 
Einstein’s equivalence principle allows one to compare the magnitudes of a 
gravitational acceleration field with the magnitudes of a field of Unruh acce-
leration temperatures. The validity of such a comparison is demonstrated by 
using it to derive the effective Hawking black body radiation at a Schwarz-
schild black hole horizon. One can then extend the black hole thought expe-
riment to a Hawking-Unruh temperature equation expressed in terms of the 
Schwarzschild radius. This follows an inverse radius law rather than an in-
verse radius-squared law. Following a brief discussion of current theoretical 
failures to explain galactic rotation curves, the Unruh acceleration tempera-
ture equations are brought together to show how a rotating supermassive 
black hole galactic system should follow an inverse radius rule of centripetal 
gravitational force and centripetal acceleration. This result appears to indicate 
that galactic observations currently attributed to dark matter may in part be 
attributed to classical Newtonian dynamics superimposed on a relativistic ro-
tating system powered by a supermassive black hole. 
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1. Introduction and Background 

It is well-known that an inertial reference frame within a gravity field can be 
treated as equivalent to an accelerating reference frame (Einstein’s equivalence 
principle). This is why a gravity field can be represented entirely by gamma ac-
celeration vectors. It is also well-known that an accelerating observer or detector 
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in a vacuum field will observe a black body radiation spectrum appearing to ori-
ginate in-line with the direction of acceleration. This is most commonly known 
as the Unruh effect, and the black body temperature is known as the Unruh ac-
celeration temperature. The Unruh acceleration temperature is given by the fol-
lowing formula [1]: 

2 B

T a
ckπ

 
≅  
 

                           (1) 

wherein symbol “a” represents the acceleration, and all symbols in the brackets 
are known constants. 

Of particular interest for this discussion is that one could imagine a field of 
Unruh acceleration temperatures around an isolated gravitating body, with its 
relative magnitudes corresponding in direct proportion to the gamma field 
magnitudes. For instance, if one were to place two identical Schwarzschild black 
holes of mass M at a separation distance of their Schwarzschild radii, they would 
experience a net attractive force per unit mass (i.e., a forward acceleration “a”) of  

4

4
c
GM

 
 
 

.Thus, they would each experience an Unruh acceleration temperature 

of 
3

8 B

c
k GMπ

 
 
 

 at the horizon of the opposing black hole. This particular result 

represented by 
3

8 B

cT
k GMπ

≅
                       (2) 

is identical to the Hawking temperature derivation now known as Hawking rad-
iation [2]. Hawking radiation can be considered the black hole black body radia-
tion taking place at or very near every black hole horizon. Thus, temperature T 
in Equation (2) is also sometimes referred to as the Hawking-Unruh tempera-
ture [3]. 

It is also valid to use the Schwarzschild formula and substitute 
2

2
Rc

G
 
 
 

 for M, 

giving the equivalent Hawking-Unruh temperature in the form of 

4 B

cT
k Rπ

≅
                         (3) 

wherein R represents the Schwarzschild radius and the other symbols in the 
right-hand term are known constants. 

By Equation (1) we can imagine a proportional equivalency between the mag-
nitudes of an Unruh acceleration temperature field and the gamma magnitudes 
of a gravitational field. In Equation (3) we see indirect proportionality between 
the magnitude of the Unruh acceleration temperature field at a black hole’s ho-
rizon and the magnitude of its Schwarzschild radius R. Of particular note is that 
these relationships can only be true if the gravitational field around a black hole 
of any size does not follow an inverse R-squared law but rather an inverse R law! 
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2. Discussion 

It has only recently become evident that all, or nearly all, galaxies have a central 
supermassive black hole. However, for a number of decades, the rotation curves 
of galaxies have been quite puzzling [4] [5] [6]. Their plate-like stellar rotation 
was a clear indication that the classical inverse R-squared gravitational law of 
our solar system could not easily be extended to galaxies. These aberrant galactic 
rotations have long been known to act more as if stellar centripetal forces (and 
their associated accelerations) vary inversely with radius distance from the ga-
lactic center, rather than the expected radius distance squared. 

Over the last few decades, two basic theoretical approaches have been at-
tempted to address this paradox [7] [8]. By far the most popular approach has 
been to suggest a halo-like distribution of non-visible (i.e., “dark”), non-baryonic, 
cold matter which only interacts with ordinary visible matter by gravitational at-
traction. However, numerous varied and highly creative observational studies to 
detect and determine the exact nature of dark matter, including how it revises 
the Standard Particle Model, have failed in this regard. The second theoretical 
approach has been to find a reasonable modification of Newton’s law of gravity 
in order to explain the aberrant galactic rotation. This search for a theory of 
Modified Newtonian Dynamics (MOND) has met with limited success [9], 
mostly by an ad hoc search for new gravitational equations, effects of which are 
designed to become noticeable only at the extremely small stellar centripetal ac-
celerations within the outer two-thirds of the galactic disc. 

Now recent theoretical approaches [10] [11] [12], as well as computer-generated 
Gaia star map analysis [13], strongly suggest that a new type of matter outside of 
the Standard Particle Model, or an ad hoc modification of Newtonian dynamics, 
may be completely unnecessary. The report on the Gaia billion-star map study 
by Enbang Li concluded that the flat galactic rotation curve of the Milky Way 
galaxy can be entirely explained without the need for a dark matter halo! Erik 
Verlinde’s “emergent gravity” theory and Flat Space Cosmology [Tatum, et al. 
(2018)] provide support for inertial effects of galactic visible matter entropy as 
being largely responsible for “dark matter” observations. The July 2018 Journal 
of Modern Physics paper entitled “A Potentially Useful Dark Matter Index” [14] 
references four very recent observational studies which appear to support this 
concept of a possible link between “dark matter” and inertial effects of galactic 
gravitational entropy. 

Furthermore, it occurs to this author that we have been thinking about a ro-
tating galaxy in the wrong way. Rather than trying to impose classical Keplerian 
and Newtonian solar system model kinematics and dynamics, we should think 
of galaxies as a rotating supermassive black hole (SMBH) system. If we think of 
galactic evolution as beginning with fast-spinning quasars and blazars, we are 
probably better-equipped to think of modern co-moving galaxies as being rela-
tively quiescent former dynamos which began with extremely powerful organiz-
ing magnetic fields. For this reason, perhaps, modern galaxies appear to behave 
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more like a spinning flywheel than a solar system. 
Furthermore, and perhaps most importantly, it should not surprise us if dy-

namic SMBH systems have long-since locked in their plate-like stellar rotations 
with an inverse radius rule along the lines of Equation (3). By combining Equa-
tions (1) and (3), which can both be applied, as shown, to black holes (specifi-
cally SMBHs in this case), we get 

2 4B B

ca
ck k Rπ π

 
≅ 

 

                        (4) 

which simplifies to 
2

2
ca
R

≅                           (5) 

One can see that this is a centripetal acceleration formula of the type 
2

c
va
R

≅ , 

wherein rotational velocity
2

cv ≅  is a constant at horizon radius R. 

Thus, we have what appears to be classical Newtonian dynamics superim-
posed on a relativistic rotating galactic system powered by a SMBH. 

3. Summary and Conclusions 

Einstein’s equivalence principle allows one to compare the magnitudes of a gra-
vitational acceleration field with the magnitudes of a field of Unruh acceleration 
temperatures. The validity of such a comparison is demonstrated by using it to 
derive the effective Hawking black body radiation at a Schwarzschild black hole 
horizon. One can then extend the black hole thought experiment to a Hawk-
ing-Unruh temperature equation expressed in terms of the Schwarzschild radius. 
This follows an inverse radius law rather than an inverse radius-squared law. 
Following a brief discussion of current theoretical failures to explain galactic ro-
tation curves, the Unruh acceleration temperature equations are brought to-
gether to show how a rotating supermassive black hole galactic system should 
follow an inverse radius rule of centripetal gravitational force and centripetal 
acceleration. This result appears to indicate that galactic observations currently 
attributed to dark matter may in part be attributed to classical Newtonian dy-
namics superimposed on a relativistic rotating system powered by a supermas-
sive black hole. 
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Abstract 
An explicit model-example is presented to simulate Einstein-Podolsky-Rosen 
(EPR) experiments without invoking instantaneous influences at a distance. 
The model-example, together with the interpretation of past experiments by 
Kwiat and coworkers, uncovers logical inconsistencies in the application of 
Bell’s theorem to actual EPR experiments. The inconsistencies originate from 
topological-combinatorial assumptions that are both necessary and sufficient 
to derive all Bell-type inequalities including those of Wigner-d’Espagnat and 
Clauser-Horne-Shimony-Holt. The model-example circumvents these incon-
sistencies. 
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1. Introduction 

Einstein and Bohr debated the completeness of quantum theory and Einstein 
proposed a Gedanken-experiment involving two space-like separated mea- 
surement stations that demonstrated, in his opinion, that either quantum theory 
was incomplete or implied the involvement of instantaneous influences at a 
distance. This Gedanken-experiment was discussed in great detail in the 
literature; first by Einstein with his coworkers Podosky and Rosen (EPR) [1], 
later by Bohm and most importantly for the following considerations by Bell 
[2]. The Gedanken-experiment was subsequently performed in a variety of 
ways which are usually referred to as EPRB experiments. Three of these 
actually performed experiments are of particular importance: experiments of 
Aspect and coworkers [3], because they were the first to exclude the possibility 
of communications between the two separated stations with the speed of light 
in vacuo or slower, of Weihs, Zeilinger and coworkers [4], because their 
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experiments were performed over the greatest distances and of Kwiat and 
coworkers [5], because their experiments were performed with highest statistical 
reliability and greatest precision. 

The measurement-machinery detects a signal from a source S that is assumed 
to be located roughly at equal distance from both measurement stations and 
emanates correlated pairs of quantum entities; one part to each station. In the 
experiments of Zeilinger and coworkers, the space-like separation of the 
measurements has been as far as the separation of the islands of Tenerife and La 
Palma and has recently involved even satellites. The actual measurements have 
mostly been performed using correlated photons and the measurement 
equipment has involved polarizers with different measurement arrangements or 
“settings” which are denoted usually by unit vectors such as a at one location 
and b at the other. The following discussion, however, is not specialized to 
photons but admits any correlated particle-pairs and spin measurements that 
may also be performed by using Stern-Gerlach magnets. The same notation is 
used then for the orientation of these magnets. 

As mentioned, EPR [1] intended to demonstrate that quantum mechanics is 
either incomplete or involves instantaneous influences at a distance. However, 
Bell’s theorem and the violation of Bell’s inequality [2] by the actual experiments 
appeared to deny incompleteness (the existence of so called hidden variables) 
and bring a decision in favor of instantaneous influences. I shall show in this 
paper that Bell’s theorem contains two distinct claims that are based on different 
propositions. One of the claims is proven to contain a logical inconsistency, 
which becomes particularly evident from the experimental results of Kwiat and 
coworkers (presented in Figure 2 of [5]). As a consequence, the theorem is 
generally invalid and cannot decide between Einstein’s alternatives. These facts 
are demonstrated by using an explicit model-example. 

2. The Theorem of Bell 

“But if [a hidden variable theory] is local it will not agree with quantum 
mechanics, and if it agrees with quantum mechanics it will not be local. This is 
what the theorem says.”—JOHN STEWART BELL [6] 

The word “local” has received numerous interpretations in relation to Bell’s 
work and his theorem may be proven in a variety of ways for different meanings 
of the word. It is the conviction of the author that the only acceptable meaning 
of “local” clearly excludes any influences faster than the speed of light in vacuo 
and thus any instantaneous influences at a distance. 

A significant number of famous physicist has spoken against the possibility of 
instantaneous influences at a distance including Murray Gell-Mann [7] and (in a 
much more detailed discussion) Marlan O. Scully, Yakir Aharonov and B. G. 
Englert [8]. 

There have been numerous publications related to problems with Bell’s 
inequality by notables including L. Accardy, J. Christian, H.A. De Raedt, A. 
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Khrennikov, M. Kupczinsky, K. Michielsen, T. Nieuwenhuizen, W. Philipp, L. 
Sica and others including myself. Some of the essence of their work is presented 
and referenced in a special issue of Open Physics [9]. Of course, many papers 
have been published to praise Bell’s work and to present variations on his theme, 
with the work of E. Wigner being of particular importance. 

It is the purpose of this paper to show that the mathematical-physical 
formulation and proof of the theorem of Bell consist of two distinct parts, I and 
II, that are based on distinctly different premises. I shall show by example that 
part I of the theorem may contradict part II, because Bell’s premises for the 
second part are much more restrictive than those of the first and include 
logically inconsistent topological-combinatorial assumptions. As a consequence, 
a way around the strictures of Bell’s theorem may be found. In particular, I 
present an explicit model for part I that works without instantaneous influences 
at a distance and may be executed on two distant computer stations. 

2.1. Expectation Value for Pair Measurements 

Bell’s original paper [2] Introduces functions ( ), 1A λ = ±a  and ( ), 1B λ = ±b , 
with the important requirement that the possible outcomes B, symbolizing the 
measurements with magnet setting b  in station 2, do not depend on the 
magnet setting a  in station 1 and vice versa. Bell’s λ characterizes a pair with 
singlet correlations emanating from the source S. Bell regards λ as an element of 
reality as defined by Mach and Einstein and also states that “λ stands for any 
number of variables and the dependences thereon of A and B are unrestricted.” 
Furthermore, Bell requires that the average product of these functions over 
many measurements must equal the quantum mechanical expectation value for 
singlet spin correlations, which is: 

( ), .E = − ⋅a b a b                           (1) 

Bell then states “But it will be shown that this is not possible”, a statement that 
forms the first part of the Bell theorem. 

These facts show that Bell committed, from the start, an inaccuracy by 
defining λ as both an element of physical reality and also as a mathematical 
variable, in particular a variable of probability theory. The probability theory of 
Kolmogorov, however, is very careful to distinguish between variables and 
outcomes or actualizations (such as a given actλ ) of these variables. The 
actualizations are “chosen” by Tyche, the goddess of fortune out of an “urn” (see 
also [10]). We distinguish in the following carefully between variables and 
possible or actual outcomes and shall use in all the derivations actual or possible 
outcomes corresponding to elements of reality. 

As shown below, there exists no difficulty in deriving the quantum expectation 
value of Equation [1]. An additional requirement of quantum theory, however, 
demands that the marginal expectation values are given by ( ) ( ) 0E E= =a b . 
We show that this additional requirement can also be met in a variety of local 
ways. 
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Bell stated that it was impossible to construct a model that achieves all of these 
requirements of quantum theory by using functions A in one wing of the 
experiment and B in the other, which both depend solely on variables related to 
the local measurement stations and the emission from a common source. We 
refer to this statement as proposition I. 

Bell did not prove proposition I directly. He only presented illustrations of 
difficulties [2] that were followed by his well known inequality, which he derived 
by using additional assumptions (now for the expectation values of 3 EPRB 
experiments). We demonstrate in a later section, by an explicit model, that these 
additional assumptions are generally invalid and have no bearing on the 
outcomes of any single-pair EPRB experiment. 

2.2. Three Different Measurement-Pairs and Bell’s Inequality 

The second part of Bell’s theorem and his proof relate to three different pairs of 
magnet (polarizer) settings ( );a b , ( );a c  and ( );b c . The semicolon “;” in 
between the pairs indicates that the pairs are correlated. These pairs may, in 
principle, be linked to the same source S or to three different sources. 
Kolmogorov’s probability framework requires, in general, three different sample 
spaces and correspondingly three probability spaces; one for each magnet- 
setting pair. Bell, however, assumes that λ is defined on one common probability 
space for all three experiments. This assumption together with Bell’s particular 
choice of setting pairs has topological-combinatorial consequences that are 
necessary and sufficient ([11] [12]) to prove Bell’s inequality: 

( ) ( ) ( ), , 1 , .E E E− ≤ +a b a c b c                   (2) 

We refer to this inequality together with its specific assumptions for the 3 
experiments with different magnet setting pairs (explained in detail below) as 
Bell’s proposition II. 

Proposition II is in conflict with the quantum expectation values presented in 
proposition I and also with the results of actual EPRB experiments. Use, for  

example, the unit vectors [ ] 1 31,0 , ,
2 2
 

= =  
  

a b  and 
1 3,

2 2
 −

=  
  

c  in Equation 

[1] and the inequality is violated. Variations of Bell’s proof have been presented 
by many researchers, with the work of Wigner and d’Espagnat being of particular 
importance. 

“Loopholes” in Bell’s argument have been discussed previously by this author 
and coworkers. These loopholes are based on possible dependencies of Bell’s 
functions on space-time [11] and on other globally defined variables, such as 
thresholds for the particle detectors [13]. 

In the present paper it is shown that proposition I is incorrect; the quantum 
result can be simulated by local functions as Bell required. This fact is shown by 
an explicit example. Furthermore, it is proven that proposition II and Bell’s 
inequality are marred by inconsistent topological-combinatorial assumptions 
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and cannot be used to support proposition I, which denies the possibility to 
obtain the quantum theoretical result. 

3. Bell’s Theorem and the Alice-Bob-Tutorials 

This section is to prepare the reader for the following model of EPRB experiments 
and to safeguard against some common prejudices that obstruct a clear logical 
approach to understand such models. 

3.1. Alice, Bob and Relativity 

One of the greatest obstacles for progress related to the conundrum posed by 
Bell’s theorem is the indiscriminate use of the so called Bell game (discussed in 
more detail in the last section) to justify Bell’s theorem, a theorem of 
mathematical physics. Any such theorem must start from a given physical 
situation corresponding to actual experiments, which is in the present case the 
measurement of a correlated pair of quantum particles by two separated magnets 
(polarizers) with directions a and b respectively. The scientist working on the 
theorem, be it its proof or refutation, may then use the tools of mathematics 
such as functions and prove from the form of the tools, e.g. the domain and the 
range of the functions, certain propositions. In the present case, Bell postulated 
that the domain of the used functions contain only variables that depend on the 
local physical situation in the measurement stations as well as on “information” 
that is sent from a source to the stations. It is of no concern whether or not the 
scientists have some global knowledge while they prove or disprove a given 
model of mathematical physics. The “local” quality and validity of the functions 
must be purely based on their mathematical form and not on what the scientists 
“knew” when they developed the model. It would be totally preposterous to call 
Newtons laws for the motion of the planets non-local in space and time, with the 
only reason that Newton knew where Mars was to be found six month later. 

The well known tutorials related to Bell’s theorem involve two “players”: Alice, 
who has only knowledge of one wing of the EPRB experiment, and by Bob, who 
has only knowledge of the other wing. Reasoning involving Alice and Bob 
requires appropriate care. Bell himself certainly did not use any Alice-Bob 
arguments in his original paper which enunciated the core of his theorem. Of 
course, it is correct that Alice and Bob will not be able to describe the quantum 
correlations when they know absolutely nothing of each other. If they just 
measure the whole run and then combine the results by taking the count of 
signals on each side, a single quantum fluctuation will destroy the correlation. 
The true form of the correlated functions must certainly depend on the fact that 
they both describe the same correlated pair, but Alice and Bob can never know 
about the correlation without information additional to their local knowledge. 
Bell was not concerned about this fact when presenting his proof. He just went 
ahead by assuming that he was dealing with correlated pairs only and the given 
magnet settings in the moment of measurement. However, this assumption leads 
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to a mathematical ambiguity in his formalism. His variable λ and its possible 
outcome values are not distinctly marked as to which correlated pair they belong. 
In the case of at least two possible magnet settings on each side, this ambiguity 
leads, as we will see in a later section, to the logical mistake of indiscriminately 
pairing Bell-type functions who’s λ may actually belong to two different 
correlated pairs. The requirement that Alice and Bob know nothing about each 
other leads thus directly to the lack of the necessary mathematical distinction of 
variables and their possible outcomes. 

In addition we need to admit the relativity of the two measurements of the 
EPRB correlated pairs. Consider the well known relativity-example of two elastic 
balls bouncing between two parallel plates each in a different inertial system; one 
attended by Alice, the other by Bob. Bob and Alice know nothing of each other 
and have the task of determining the temporal correlations between the two 
bouncing balls. Of course that cannot be done. If they are taking off their 
blindfold and are allowed to observe both balls, they may come up with a theory 
for the correlations that depends on the relative velocity of their moving system. 
Let both systems move along the x1-axis of a coordinate system, one with 
velocity a and the other with velocity b. The law of the correlations that Alice 
and Bob observe depends then on the velocity-difference a b− . In order to 
describe the law of the correlations by local functions, Alice may put a = 0 and 
describe the movement of Bob’s bouncing ball as function of any velocity b of 
his system. Bob may do the same with a and b exchanged. 

We deduce from this example that also the relativity of spin-correlation 
measurements in EPRB experiments does not have anything to do with distant 
influences but must rather be seen as a consequence of natural law. The 
important point is that we may indeed describe the physical events by functions 
of local variables from both the view of Alice and the view of Bob. The laws of 
physics are the same for each of them, but the physical circumstances of their 
respective measurements are different. In our model below, we put the magnet 
setting in the left wing to [ ]1,0=a  and express the results in the right wing as 
function of arbitrary local magnet setting b  only. Any such model must be 
commensurate with the relativity of all motion. In a general situation, it may 
thus depend even on the relative angle between the magnets (polarizers), 
without indicating deviations from locality. Muchowski has advanced ideas 
along these lines in his considerations of Bell’s work as related to EPRB 
experiments with photon pairs [14]. 

3.2. Completely “Random” Measurements 

A particularly difficult situation for the discussions of Bell’s work is created 
when both Alice and Bob supposedly switch their magnet settings absolutely 
randomly and, in addition, do not know what happens in the other wing. 
However, this imagined situation only obfuscates the problem and does not 
address the way how EPRB experiments are actually performed. The random 

https://doi.org/10.4236/jmp.2018.98099


K. Hess 
 

 

DOI: 10.4236/jmp.2018.98099 1579 Journal of Modern Physics 
 

switching done by the Aspect and Zeilinger groups does not mean that the 
magnet settings for the actual measurements are random. Quite the contrary, 
only 3 or 4 pairs of settings are chosen in random sequence. In addition each of 
these sequential pairs must have at least one magnet setting in common with the 
other pairs. The only important randomness of the settings occurs in between 
the measurements, which is only relevant for reasoning about the locality of the 
actual experiments but not for any simulation with local functions. 

The so called “random pairs” may thus be sorted into 3 or 4 sets, which is 
exactly what Wigner did in his set theoretical approach that will be discussed in 
a later section. It is important to realize that each of these sets concatenated by 
Wigner form a given sample space in the sense of Kolmogorov’s set theoretic 
probability theory and can be, under a certain condition, regarded as a run of 
measurements equivalent to a completely separate EPRB experiment with a 
different source. The condition for the equivalence is the absence of memory 
effects in source and measurement equipment. Such effects are usually 
considered to be “far out” and have exclusively been used to argue against Bell’s 
inequality. 

3.3. Counterfactuals and Other Issues 

Numerous attempts have been made to prove Bell’s theorem by counterfactual 
reasoning (that would not be permitted in the courts of law). We have shown 
that counterfactual reasoning does not apply when Bell’s functions depend 
explicitly on the measurement time, as explained in detail in [15]. Our model 
presented below does exhibit such time-dependence. In addition we show under 
which circumstance and how counterfactual arguments may and may not be 
applied (see discussion of the proof of d’Espagnat). 

We are not able to cover all of the issues that have been discussed in the vast 
literature surrounding the work of Bell and like to offer only the following 
observation. There are many ways to violate Bell’s inequality by admitting some 
global knowledge as, for example, the knowledge of the relativity of all motion. 
The moment, however, we exclude all global knowledge, we are only left with 
some magic instantaneous influences from a distantly occurring measurement. 

4. Explicit Model for the Quantum Result 

The following explicit model may be implemented on two independent 
computers as well as checked by hand and represents a counterexample to Bell’s 
claims. I refer to this model as the EQRC-model. The acronym refers to the 
Expectation value of the Quantum Result, with the C indicating that the model 
may be executed on conventional computers. 

In the derivation of this EQRC-model, the space-time coordinates  
( )1 2 3 4, , ,x x x x  of special relativity may be used. We use, however, for the sake of 
transparency exclusively coordinates of the laboratory reference frame, with 4x  
being time-like and 1 2 3, ,x x x  being space-like. In addition we use a global gauge 
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field which we shall specify below. This gauge field may also be viewed as a 
global “crypto key” and the whole model may be regarded as model of a computer 
experiment involving two (or more) computers, which have a common crypto-key 
that is available as a local computer-application. 

We assume as usual that a pair with singlet spin correlations emanates from a 
source in opposite directions along the x1-axis. The element of reality 
characterizing the singlet pair is denoted by ( )

1
st nλ , where the subscript indicates 

space-time coordinates ( )st n  related to the emission from the source and n is a 
number indicating that we deal with a correlated pair. 

The magnet (or polarizer) directions are denoted by two dimensional unit 
vectors ,a b  perpendicular to the x1-axis and parallel to the ( )2 3,x x  plane. 
Each Stern-Gerlach magnet transmits to two detectors that are arranged 
perpendicular to the x1-axis in the direction of a  in the left wing (detectors 

1
LD  and 2

LD ) and b  in the right wing (detectors 1
RD  and 2

RD ), respectively. 
We need to decide consistently under which circumstance we regard outcomes 

in the two wings as equal or different (anti-correlated) in order to derive Bell-type 
inequalities, which can be achieved by first fixing the magnet direction (and 
detector alignment) of the left wing to [ ]1,0=a  through suitable choice of the 
coordinate system. Then we turn the magnet direction (and detector alignment) 
of the right wing such that anti-correlated outcomes are maximized (ideally 
occur with probability 1). 

Anti-correlated means that the detections in the left wing are registered by 
detector 1, while the detections in the right wing are registered by detector 2 or 
vice versa. We define the position ′b  that maximizes anti-correlated outcomes 
as the position of equal settings [ ]1,0′ = =b a  in the right wing. (This procedure 
is particularly necessary when photons, polarizers and optical fibers are 
involved.) We then turn the direction of the detectors in the right wing to any 
≠b a  again perpendicular to the x1-axis. Outcomes are defined as different, if 

they are registered in detectors with a different number (1, 2) or (2, 1) in the two 
wings. If the outcomes are with equal detector-numbers (1, 1) or (2, 2), we 
define the outcomes as equal. If polarizers are involved instead of magnets we 
need to proceed somewhat differently, but the differences matter little for the 
following discussions. 

All Bell-type inequalities, including that of Wigner [16] and d’Espagnat [17], 
are inequalities related to the number of equal outcomes as opposed to 
non-equal outcomes for Bell’s three different setting pairs (four or more pairs in 
the case of other inequalities). Having in mind these details about detection, we 
may simplify the notation by just denoting all outcomes at detectors 1 (one in 
each wing) by +1 and those at detectors 2 by −1 and assign the value of +1 or −1 
as the (possible) outcome for Bell’s functions A and B respectively. If the product 
of the correlated outcomes in the two wings is positive, the outcomes are equal 
and if negative they are different. In this way both Bell’s and Wigner’s inequality 
(and all other forms of Bell-type inequalities) may be covered by the model that 
follows. 
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Note that there is a certain arbitrariness in the definition of equal and 
different outcomes, because the detection of two tilt detector pairs, one in each 
wing, is regarded as equal if only the detections occur for the detectors with the 
equal number, independent of their actual setting-directions. In case one deals 
with more than one detector pair in each wing (as is the case for the Aspect- and 
Zeilinger-types of experiment), appropriate care should be taken to guarantee 
consistent definition of equal and different outcomes (see below). 

In addition to these conventions, we introduce a global gauge function, that is 
identical for all 1 2 3, ,x x x  and varies only with the global time like coordinate 

4x . This function may be regarded in analogy to the concept of gauge fields in 
physics or, as mentioned, one may regard this function as a global crypto-key for 
computers, if the model is implemented as a computer experiment. The global 
gauge or crypto-key, both functions of space-time, or just of 4x  in our example, 
are assumed to have either no effect at all, or alternatively, to result in a signal 
transfer to the alternate detector. We denote this global function by 

( )4 1rm x = +  if it has no effect and by ( )4 1rm x = −  if it changes detectors. 
We furthermore choose for our model a very simple ( )

1
st nλ  and let it 

randomly assume a value that corresponds to a real number of the unit interval, 
which results in ( )

10 1st nλ≤ ≤  for each pair of measurements. 
To derive the quantum result we need to consider only the outcomes for an 

arbitrary setting b  perpendicular to the x1-axis in the right wing. As mentioned, 
we choose the coordinate system of the laboratory such that [ ]1,0=a . The 
introduction of rm accomplishes vanishing marginal expectation values. 

It is not claimed that these very simplified assumptions satisfactorily simulate 
all aspects of natures actual mechanisms. More complicated time dependencies 
[12] are certainly possible. We will see, however, that the model suffices to 
simulate the results of quantum theory for EPRB experiments. (To calculate the 
correlation with the other side quickly and explicitly from the equations given 
below, you may just use at first 1rm = + .) 

We assign the following possible outcomes for the functions A in the left 
wing: 

( )( ) ( ) ( )
1 1

4 4, , for all ,n n
st n st nA x rm xλ λ= +a               (3) 

where n numbers the n’s pair of the experimental run and 4
nx  is the time like 

coordinate for the measurement of the n’s pair. 
We use the unit vector b  indicating arbitrary right-wing magnet setting: 

[ ] [ ]2 3 2 32 2
2 3

1 , , .b b b b
b b

′ ′= =
′ ′+

b                  (4) 

For the values of the functions B we assign: 

( )( ) ( )1
4 4, , n n

st nB x rm xλ = −b                    (5) 

if we have: 

( ) ( )1
2

1 1 ,
2st n bλ ≤ +                         (6) 

https://doi.org/10.4236/jmp.2018.98099


K. Hess 
 

 

DOI: 10.4236/jmp.2018.98099 1582 Journal of Modern Physics 
 

and 

( )( ) ( )1
4 4, , n n

st nB x rm xλ = +b                     (7) 

otherwise. 
The expectation value ( ),E a b  of the product AB may be calculated with 

mathematical rigor (using Kolmogorov-type random variables and Lebesque 
integration) or in a more pedestrian way as follows. We note that ( )2

4 1nrm x = +  
and thus obtain for the average of the product AB over N measurements: 

1 1

1 1 ,
N N

n n
AB B

N N= =

′=∑ ∑                        (8) 

with 1B′ = −  for ( ) ( )1
2

1 1
2st n bλ ≤ +  and 1B′ = +  otherwise. We denote the 

probability measure for the events of 1B′ = −  by ( )2
1 1
2

P b= +b  and therefore 

obtain for the limit of N →∞ : 

( ) 2
1

1 1 .
N

n
B P P b

N =

′ = − + − = − = − ⋅∑ b b a b                (9) 

The additional requirement of quantum mechanics that the marginal 
expectation values ( ) 0E =a  and ( ) 0E =b  may easily be achieved by suitable 
choice of the function ( )4

nrm x . As an explicit example, one may use for rm the 
j’s Rademacher function ( )1sin 2 πj

j nr sign t+ =   , where 1,2,3,j =   may be 
chosen appropriately and nt  is a dimensionless parameter corresponding to the 
time-like 4

nx . 
It is important to note the following: The above formalism contains no 

influences from the other wing and the functions A, B corresponding to Bell’s 
functions contain only dependencies on the respective local magnet settings. The 
model may be generalized by replacing ( )4

nrm x  by the product  

( ) ( )4 4
n nrm x rarb x , where ( )4 1nrarb x = ±  is an arbitrary function of the time-like 

variable. Other generalizations may be used to remove asymmetries between the 
left and right wing. One may alternatively use, of course, a given setting in the 
right wing and let the left wing vary. In general, one may even choose an infinite 
variety of conditioning in both wings in order to obtain the quantum result. 
Such conditioning, however, needs to be on the angle between the two magnet 
settings which, as we have discussed in the previous section from the viewpoint 
of relativity, does not necessarily imply any inadmissible non-locality. 

The law of our model for the expectation values, as given by Equation [8], is 
both gauge invariant and in its form invariant to rotations of the magnet settings 
b  around the 1x  axis. This model, which we call the the EQRC-model refutes 
proposition I of Bell. (Note that the quantum expectation values and corresponding 
quantum probability obey, of course, also a number of symmetries [18]. It is the 
symmetry of the quantum probability that signals one definite distinction from 
general Kolmogorov probabilities.) 

The question arises then why Bell’s inequality and his proposition II appear to 
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contradict the possibility of such a model and why proposition II is invalid. This 
is discussed next. 

5. Inapplicability of Bell’s Inequality to the EQRC-Model 

In his proof of proposition II, Bell introduced three different setting pairs for 
magnets or polarizers. Three different equipment pairs require in general three 
different Kolmogorov-type sample spaces and, therefore, three different 
probability spaces [19]. Bell [2] and Wigner [16] (particularly in the formulation 
of d’Espagnat [17]) created by their choice of particular setting pairs and one 
common probability space, unknowingly, a very restrictive and logically 
inconsistent topological-combinatorial situation containing a cyclicity [20] as 
explained below. 

5.1. The Cyclicity 

In the notation of our EQRC-model Bell’s 3 different setting pairs and possible 
outcomes correspond to the functions: 

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

1 1
4 4

2 2
4 4

3 3
4 4

, , ; , ,

, , ; , ,

, , ; , ,

n n
st n st n

m m
st m st m

k k
st k st k

A x A x

A x A x

A x A x

λ λ

λ λ

λ λ

−

−

−

a b

a c

b c

                 (10) 

where we have used the fact that B A= − , which was also used by Bell. If N 
measurements are performed for each pair, we have 1,2,3, ,n N=  , 

1, 2, 3, , 2m N N N N= + + +   and 2 1,2 2,2 3, ,3k N N N N= + + +  . We have 
thus labeled the space and time related variables of the different experiments by 
a different number. Note that the space and time coordinates of the different 
experiments (symbolized by st and 4x ) are, in general, all different. 

Bell introduced now a logically and physically inconsistent assumption based 
on his conviction stated in his first and other papers: “λ stands for any number 
of variables and the dependences thereon of A and B are unrestricted.” He, 
therefore, believed incorrectly that he needed to introduce only one symbol λ 
that could stand for a whole set of variables (including space and time-like 
variables). Using Equation [12] of his original paper [2], Bell put λ on one single 
probability space and thus assumed the functions A to be functions on that 
single probability space (see also [12]). As a consequence and because Bell 
assumed that λ could represent a set of variables, he used for each of the 3 pairs 
in the lines [10] the same actualization actλ  of his random variable λ and did 
not include any explicit time dependence. Therefore, the 3 lines [10] are reduced 
to: 

( ) ( )
( ) ( )
( ) ( )

, ; ,

, ; ,

, ; ,

h h
act act

h h
act act

h h
act act

A A

A A

A A

λ λ

λ λ

λ λ

−

−

−

a b

a c

b c

                    (11) 
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where 1,2,3, ,h N=  . 
This procedure concatenates each 6 possible outcomes into 3, which is 

equivalent to assuming the existence of a joint triple probability for the possible 
outcomes with settings , ,a b c . The procedure fails logically, because it creates a 
closed loop [12]: Two of the functions in the first two lines completely determine 
the functions in the third line. This is logically and physically inconsistent, 
because the functions of the first two lines relate to both correlated pairs in two 
wings and uncorrelated pairs in one wing. The third line, however, is for 
correlated pairs only. Bell and all of his followers have disregarded this 
important distinction by introducing only one common probability space. The 
following discussion of the experiments of Kwiat and coworkers in terms of the 
EQRC-model illustrates this situation clearly. 

Some may still believe that Wigner’s variation of Bell’s inequality must hold, 
because it is thought to be based on set theory only. We show in the following 
section that it is not. 

5.2. Wigner-d’Espagnat 

Bell’s derivations were investigated in great detail by Wigner and d’Espagnat, 
who presented a confirmation and extension of Bell’s work. The derivations of 
Wigner and d’Espagnat seem to be based only on the rules of set theory and it is 
claimed in numerous publications that indeed they are.This claim, however, is 
false because Wigner and d’Espagnat used an assumption that lacks generality 
precisely as Bell’s assumption does [21] and is also based on a mathematical 
mistake that I explain now using the EQRC-model. 

D’Espagnat uses the 6 possible outcomes for the 3 setting pairs of Bell and 
transforms them into 3 triples with 9 possible outcomes. He accomplishes this 
transformation by adding an arbitrary third possible outcome for the 
magnet-setting that is not included in any of Bell’s pairs. We denote these 
additions of possible outcomes by functions A′ . In order to simplify the 
notation, we hide all variables except for the equipment settings , ,a b c . Thus we 
obtain lists (columns) for the Bell-pair possible outcomes together with the 
added added third listings of A′ ): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,A A A A A A A A A′ ′ ′a b c a c b b c a         (12) 

D’Espagnat [17] and Wigner [16] incorrectly deduce from the existence of 
these sets of triples the existence of a common joint triple probability measure 
for all three triples of line [12]. The existence of a common joint triple 
probability measure and use of Bell’s cyclical arrangement of settings lead 
immediately to the Wigner-d’Espagnat inequality, which corresponds roughly to 
Bell’s inequality (The Wigner-d’Espagnat inequality is an inequality involving 
the frequency of equal and different pair outcomes for Bell’s three setting pairs). 

D’Espagnat’s procedure, published in Scientific American [17], shows clearly 
how the existence of a common joint triple probability was incorrectly deduced. 
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It is actually indeed guaranteed that a joint triple probability measure may be 
deduced for each separate triple of [12]. The mere fact that the triples of 
Equation. [12] can be listed by using the possible pair-measurement outcomes 
with arbitrary additions A′  gives us that guarantee. The mistake of d’Espagnat 
and Wigner was, however, that they assumed the existence of one common 
triple probability measure for all three triples, while in fact each of the three 
triples may have its own different triple probability measure. 

One can prove this latter fact and demonstrate the mistake by using the 
possible outcomes of our EQRC-model given by Equations [5] and [7] (with  

B A= − ) and the settings [ ]1,0=a , 
1 3,
2 2
 

=  
  

b , 
1 3,

2 2
 −

=  
  

c . Consider  

only the first two triples, use for the moment 1rm = +  and generate the possible 
pair outcomes by using the EQRC-model. Second add third columns 

( ) 1A′ = +c  and ( ) 1A′ = +b , respectively. 
This way we obtain all +1 possible-outcome-columns for both settings a  and 

c  in the first triple ( ) ( ) ( )A A A′a b c .  For the column with setting  

1 3,
2 2
 

=  
  

b  we encounter +1 with probability ( )2
1 31
2 4

P b= + =b  (see 

explanation after Equation (8) and remember that A B= − ). Denoting the joint 
triple probability for all positive outcomes of this first triple by ( )1, 1, 1P ′ + + +abc , 

we obtain ( ) 31, 1, 1
4

P ′ + + + =abc  and, after reinstallation of the function ( )4rm x  

we have ( ) 31, 1, 1
8

P ′ + + + =abc . 

For the second triple ( ) ( ) ( )A A A′a b c  we obtain the same way all +1 for the  

settings a  and b , while for setting 
1 3,

2 2
 −

=  
  

c  we encounter +1 with 

probability ( )2
1 11
2 4

P c= + =c . Denoting the joint triple probability for all 

positive outcomes of this second triple by ( )1, 1, 1P ′ + + +ab c  we thus obtain 

( ) 11, 1, 1
4

P ′ + + + =ab c  and then after reinstallation of the function ( )4rm x  we 

obtain ( ) 11, 1, 1
8

P ′ + + + =ab c . 

Therefore, d’Espagnats and Wigners assumption of one common joint triple 
probability for the line [12] is incorrect. Infinitely many other examples may be 
given. 

The derivations of the Bell- as well as other inequalities in all textbooks are 
based on errors similar to that of d’Espagnat and Wigner (see for example [22] 
or Norsen’s table [23]). 

The same arguments as outlined above apply also to all other Bell-type 
inequalities, because they are based on joint probabilities that do not exist and 
are thus not applicable to actual EPRB experiments, nor to the EQRC-model. 
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6. Comparison with Experiments 
6.1. Single Setting in One Wing 

The EQRC-model may directly be applied to simulate the very precise 
experiments presented in Fig. 2 of Kwiat and coworkers [5], because they chose 
for these results a single given setting in one wing and performed many 
measurements with many different settings in the other. The precision of the 
EQRC-model depends only on the number N of simulations and agreement with 
the quantum result can be made as perfect as desired. Kwiat and coworkers did 
not include random changes of the polarizers before the registration of the 
actual measurement. However, there is little doubt that they would have 
obtained the same results if they had changed the polarizer setting just before 
turning to the measurement-setting. 

We may obtain from the EQRC simulations, as well as from the actual 
experiments, the quantum result for the setting-pairs ( );a b  and ( );a c . The 
averages over the outcomes with both settings ,b c  in the right wing, on the 
other hand, do not result in the quantum expectation value, because they do not 
correspond to simulations involving correlated pairs. This way Bell’s inequality 
is naturally fulfilled, by both the EQRC-model and the actual experiments, for 
the “triangles” of outcomes that exhibit equal sign for the setting a  in the left 
wing and arbitrary sign for ,b c  in the right wing. There exists no contradiction 
here, because measurements with both the b  and c  settings in the right wing 
do not correspond to a correlated pair but to elements of reality originating from 
different pairs. Both the actual experiments (of Figure 2 in [5]) and the 
EQRC-model clearly distinguish the actual or possible outcomes corresponding 
to correlated and uncorrelated pairs. 

However, Bell’s mathematical model does not and cannot make that 
distinction. Bell’s use of one single probability space enforces the use of identical 
functions for the settings b  and c  independent of the question of the origins 
of the given h

actλ . Bell’s identical notation for h
actλ  independent of its origins 

from one or two different pairs represents, as far as the experiments of Kwiat 
and coworkers in their Figure 2 are concerned, only a mathematical sloppiness. 
The application of Bell’s functions to other experiments of Kwiat and coworkers 
[5] (not presented in Figure 2) and the experiments of the Aspect and Zeilinger 
groups, however, represents a serious mathematical inconsistency, because now 
the same mathematical abstractions h

actλ  and the same functions are used for 
both correlated and uncorrelated elements of reality. 

6.2. Multiple Settings in Both Wings 

Thus, experiments involving multiple magnet settings in both wings (see below) 
must not be modeled using Bell’s original cyclic functions, because this 
procedure mixes indiscriminately correlated and uncorrelated pairs. It is, of 
course, possible to use additional indexing and time dependencies of the 
functions (as done in lines [10]) to avoid the inappropriate use of a single 
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probability space, but then it may become cumbersome to directly show the 
locality of the functions. The easiest way around the problems and the way that 
shows the locality of the procedure most directly, is probably the following: We 
use a symmetry law that applies to the actual experiments, the symmetry with 
respect to rotations around the 1x -axis. We, therefore consider idealized-actual 
experiments by rotating the actual original magnet setting such that all the 
left-wing magnet settings of the idealized experiments point in the [ ]1,0  
direction of a chosen coordinate system. This idealized experiment must exhibit 
the same correlations as the original experiment because of the existing 
symmetry. The technical problem with the single probability space, however, has 
been avoided for the idealized experiment, because we have now all different 
sample spaces and just have Wigner sets with a consistent notation. 

It is important to realize that the magnet settings of both the actual and 
idealized experiments may, of course, be arbitrarily switched just before the 
measurement and then brought into measurement position just as the correlated 
pair is being registered. This whole random switching is only necessary to 
exclude information exchange between the two wings of the actual experiment. 
The functions we use in the simulations do not depend on the other wing 
anyway. 

Assume then that three actual EPRB experiments have the respective magnet  

setting pairs [ ] 1 31,0 ; ,
2 2

  
      

, [ ] 1 31,0 ; ,
2 2

  −
      

 and 
1 3 1 3, ; ,
2 2 2 2

    −
            

.  

Each pair represents one of the well known Bell-angles. We rotate then the third  
pair of magnets to the position of our idealized experiment 

( ) [ ] 1 3; 1,0 ; ,
2 2

  
′ =       

a c  and are now able to simulate the experimental 

outcomes with the EQRC-model and to obtain the quantum results with 
arbitrary accuracy for all three setting pairs. 

The Aspect [3] and Zeilinger [4] experiments do not use Bell’s 3 setting pairs 
but 4 settings pairs corresponding to 4 experiments with ( );a b  in experiment 1, 
( );a c  in experiment 2, ( );d b  in experiment 3 and ( );d c  in experiment 4. 
These 4 pairs of magnet- (polarizer-)settings are used to investigate the Clauser- 
Horne-Shimony-Holt (CHSH) [24] inequality for the expectation values: 

( ) ( ) ( ) ( ), , , , 2.E E E E+ + − ≤a b a c d b d c              (13) 

As above, we transform the actual CHSH type of experiments and their actual 
magnet (polarizer) settings into our idealized experiment by magnet rotation,  

now obtaining the 4 setting pairs: [ ] 1 11,0 ; ,
2 2

  
    

, [ ] 1 11,0 ; ,
2 2

 − 
  

  
, 

[ ] 1 11,0 ; ,
2 2

 − 
    

 and [ ] 1 11,0 ; ,
2 2

 − − 
    

. Again the EQRC-model may be  

applied to these setting pairs and gives the correlations of quantum theory, 
which violate the CHSH inequality. 
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Thus, according to Bell and CHSH, it is impossible to model actual EPRB 
experiments with local functions A for certain magnet setting-pair combinations, 
while it is indeed possible to perform such modeling for the idealized experiments 
which involve the same magnet (polarizer) angles and must have the same 
correlations for reasons of symmetry. In fact, all of the experiments of Aspect’s, 
Zeilinger’s and Kwiat’s groups show only dependencies on the angles between 
the two polarizers of any given experiment. The use of optical fibers in some of 
their experiments makes any designation of an “absolute” angle or direction in 
either wing illusory. 

It is instructive to imagine that Bell would have first found the EQRC-model 
and accepted the possibility of being able to use all local functions (particularly 
when accepting the relativity of all motion). He may then also have used 
multiple magnet-settings to produce the quantum result of the idealized 
experiments. Had he then rotated the magnets to turn ′c  into c  and 
performed his proof for the inequality, he would have found the logical 
contradiction and would have been been forced to dismiss his inconsistent use of 
functions. 

7. The Bell Game again and Conclusion 

Many researchers have been aware of the publications that have pointed to 
serious problems with Bell-type inequalities. Several of them have admitted to 
this author that there may be formal problems with the one or other Bell-type 
proof. Their deepest convictions, however, arose from the fact that no one could 
play the so called Bell-game with Alice and Bob [19]. 

The Bell game and its demands highlight the crux of the epistemological 
questions that are going hand in hand with EPRB experiments. Some of the 
features of the Bell game have been described above and I add here only a few 
comments related to the EQRC-model. 

Alice and Bob have no knowledge of each other, particularly none of the 
measurement settings of the other wing and they are required to develop a 
theory about the possible outcomes of their local measurements. That theory 
needs to cover the correlations of at least the 3 different experiments with Bell’s 
3 setting pairs. All Alice is permitted to know are the functions ( )( )1

4, , n
st nA xλa  

and her randomly chosen settings ,a b  as well as the actualizations ( )
1
st nλ  and 

4
nx  etc., but she may not know of ( )( )1

4, , n
st nB xλb  and Bob’s randomly chosen 

settings b  or c . The same is true for Bob, with ,a b  and ,b c  exchanged. 
Nor do Alice and Bob know how the pairing is actually accomplished and how 
the same index n of a pair is actually obtained. In simple words, neither do Alice 
or Bob know the macroscopic machinery that deciphers the signals on the other 
side, nor do they know the global gauge (or global crypto-key on the computers). 
Of course that game cannot be played, that theory cannot be conceived. 

Some followers of Bell, however, reason that mother nature can play the game. 
Just let the actual measurements happen and “put the correlated pairs together” 
and you will obtain the correct correlations. But how can mother nature “know” 
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which pairs are correlated? As mentioned, a single quantum fluctuation could 
falsify the pair sequence. The pairs of measurement that belong together need to 
be identified by some globally used space-time system and by additional 
measurements or assumptions that let us determine the connection between the 
measurement-outcomes in the space-like separated systems. How else can Alice 
correlate her measurements to the measurements of Bob? They both need to 
agree on a space-time (or space and time) coordinate system of physics that lets 
them determine the occurrence of the measurements and their belonging 
together in the different wings. This determination requires some process to 
identify the pairs of quantum particles and the corresponding macroscopic 
measurement outcomes. We have discussed this problem in a recent publication 
[13] and have given examples how the Bell game can indeed be played by 
making use of additional knowledge obtained from the particle identification 
method. We have conjectured that sufficient knowledge of particle and pair 
identification will always open a window to play the game. 

The EQRC-model uses only local functions but also does imply some global 
knowledge, for example the relativity of all motion. It is also compared only to 
idealized experiments that are constructed from the actual by applying a global 
symmetry law. This procedure is necessary to avoid the logical mistake inherent 
in applications of Bell-Wigner-CHSH-type functions, sets and inequalities. 

The game in its originally presented form just cannot be played and mother 
nature does not and cannot play it either. We have in this “shaky game” [25] the 
choice to admit some acceptable global information, some relative “positioning” 
in a global space-time system, or to be left only with instantaneous influences at 
a distance as an explanation for how nature works. Such explanations are, in this 
authors opinion, the very last resort, because they abandon scientific method as 
Einstein so clearly stated by using the word “spooky”. 
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Abstract 
The purpose of the present study is to develop a counterpart of the special re-
lativity theory that is consistent with the existence of a preferred frame but, 
like the standard relativity theory, is based on the relativity principle and the 
universality of the (two-way) speed of light. The synthesis of such seemingly 
incompatible concepts as the existence of preferred frame and the relativity 
principle is possible at the expense of the freedom in assigning the one-way 
speeds of light that exists in special relativity. In the framework developed, a 
degree of anisotropy of the one-way speed acquires meaning of a characteris-
tic of the really existing anisotropy caused by motion of an inertial frame rela-
tive to the preferred frame. The anisotropic special relativity kinematics is 
developed based on the symmetry principles: 1) Space-time transformations 
between inertial frames leave the equation of anisotropic light propagation 
invariant and 2) a set of the transformations possesses a group structure. The 
Lie group theory apparatus is applied to define groups of transformations 
between inertial frames. Applying the transformations to the problem of cal-
culating the CMB temperature distribution yields a relation in which the an-
gular dependence coincides with that obtained on the basis of the standard 
relativity theory but the mean temperature is corrected by the terms second 
order in the observer velocity. 
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1. Introduction 

Special relativity underpins nearly all of present day physics. Lorentz invariance 
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is one of the cornerstones of general relativity and other theories of fundamental 
physics. It is thus very crucial to investigate its fundamentals and its potential 
violation. It seems evident that, if one wishes to contemplate the possibility of 
Lorentz symmetry violation within the context of a physical theory, then one will 
have to abandon the relativity principle which leads to the view that there exists 
a preferred universal rest frame. Also, the discovery of the cosmic microwave 
background (CMB) radiation has shown that (at least) cosmologically a preferred 
frame of reference does exist—it is the frame in which the CMB is isotropic. 
Acceptance of the view that there exists a preferred frame of reference seems to 
unambiguously abolish (besides the principle of relativity) another basic 
principle of the special relativity theory, namely, the principle of universality of 
the speed of light. 

Correspondingly, the modern versions of experimental tests of special 
relativity and the “test theories” of special relativity (theoretical frameworks for 
analyzing results of experiments to verify special relativity [1] [2]) presume that 
a preferred inertial reference frame, identified with the CMB frame, is the only 
frame in which the two-way speed of light (the average speed from source to 
observer and back) is isotropic while it is anisotropic in relatively moving frames. 
Furthermore, it seems that accepting the existence of a preferred frame forces 
one to abandon the group structure for the set of space-time transformations 
between inertial frames. In the test theories, transformations between “moving” 
frames are not considered, only the transformation between a preferred “rest” 
frame and a particular moving frame is postulated. 

The purpose of the present study is to develop a counterpart of the special 
relativity kinematics, that is consistent with the existence of a preferred frame 
but, like the standard relativity theory, is based on the relativity principle and 
universality of the (two-way) speed of light, and also preserves the group 
structure of the set of transformations between inertial frames. The analysis 
shows that the reconciliation and synthesis of those principles with the existence 
of a preferred frame is possible, and, what is more, such a possibility is naturally 
present in the framework of the relativity theory. Because of the freedom in 
assigning the one-way speeds of light (any one-way speeds, consistent with the 
two-way speed equal to c, are acceptable), a preferred frame can be defined as 
the frame in which the one-way speed of light is isotropic while, in any inertial 
frame moving with respect to the preferred frame, the one-way speed of light is 
anisotropic. It is similar to a definition accepted in a number of analyses, in 
which the existence of a preferred frame is assumed, but an important difference 
of the present analysis from others is that a degree of anisotropy of the one-way 
speed of light acquires meaning of a characteristic of the really existing 
anisotropy caused by motion of an inertial frame relative to the preferred frame. 
It seems to be contradictory to the common view that, because of the inescapable 
entanglement between remote clock synchronization and one-way speed of light 
(see, e.g., [3] [4] [5] [6]), the one-way speed of light is irreducibly conventional. 
Nevertheless, in the framework developed, the one-way speed of light in a 
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specific inertial farme is a physical quantity determined by a physical law in 
which the anisotropy parameter depends on the frame velocity with respect to a 
preferred frame. The entanglement between remote clock synchronization and 
one-way speed of light, in the case if the remote clocks are set using light signals, 
only implies that the synchronization procedure is implemented using the 
one-way speed of light determined by that law. If another method of synchroni- 
zation, as for example, “external synchronization” [2], is used it changes the 
form of transformations for the space-time variables but the one-way speed of 
light is not altered by changing the synchronization method. 

The analysis is based on the requirements of invariance of the equation of 
(anisotropic) light propagation and the group structure of a set of transformations 
between inertial frames which follow from the principles of special relativity. In 
those transformations, the anisotropy parameter k for the one-way speed of light 
is a variable that takes part in the transformations. Therefore the fact, that the 
one-way speed of light is a physical quantity determined by the frame velocity 
relative to a preferred frame, does not violate the relativity principle. Nothing 
distinguishes the frame in which k = 0 from others and the transformations 
from/to that frame are members of a group of transformations that are 
equivalent to others. 

The space-time transformations between inertial frames derived as a result of 
the analysis differ from the Lorentz transformations. Since the theory is based on 
the special relativity principles, it means that the Lorentz invariance is violated 
without violation of the relativistic invariance. The theory equations contain one 
undefined universal constant q such that the case of q = 0 corresponds to the 
standard special relativity with isotropic one-way speed of light in all inertial 
frames. The measurable effects following from the theory equations can provide 
estimates for q and define deviations from the standard relativity that way. 

Applying the theory to the problem of calculating the CMB temperature 
distribution eliminates the inconsistency of the usual approach when formulas of 
the standard special relativity, which does not allow a preferred frame, are used 
to define effects caused by motion with respect to the preferred frame. The CMB 
temperature angular dependence predicted by the present theory coincides with 
that obtained on the basis of the standard relativity equations while the mean 
temperature is corrected by the terms second order in the observer velocity. 

The paper is organized, as follows. In Section 2, following the Introduction, 
the issue of anisotropy of the light propagation in special relativity is discussed 
in more details. In Section 3, the conceptual framework of the analysis is 
presented. In Section 4, the method is outlined and the coordinate transformations 
between inertial frames incorporating anisotropy of the light propagation, with 
the anisotropy parameter varying from frame to frame, are derived. In Section 5, 
the transformations are specified using the argument that the anisotropy of the 
light propagation is due to the observer motion with respect to the preferred 
frame. Consequences of the transformations are considered in Section 6. In 
Section 7, the results are applied to the problem of calculating the CMB effective 
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temperature distribution as seen by a moving observer. The approach and results 
are discussed in Section 8. 

2. Anisotropy of the Light Propagation in Special Relativity 

Anisotropy of the one-way speed of light is traditionally placed into the context 
of conventionality of distant simultaneity and clock synchronization [3] [4] [5] 
[6]. Simultaneity at distant space points of an inertial system is defined by a 
clock synchronization that makes use of light signals. Let a pulse of light is 
emitted from the master clock and reflected off the remote clock. If 0t  and Rt  
are respectively the times of emission and reception of the light pulse at the 
master clock and t is the time of reflection of the pulse at the remote clock then 
the conventionality of simultaneity is a statement that one is free to choose the 
time t to be anywhere between 0t  and Rt . This freedom may be parameterized 
by a parameter k , as follows 

( )0 0
1 ; 1

2 R
kt t t t k+

= + − <
                   (1) 

Any choice of 0k ≠  corresponds to assigning different one-way speeds of 
light signals in each direction which must satisfy the condition that the average 
is equal to c. Speed of light in each direction is therefore 

1
cV
k± = ± 

                         (2) 

The “standard” (Einstein) synchronization entailing equal speeds in opposite 
directions corresponds to 0k = . If the described procedure is used for setting 
up throughout the frame of a set of clocks using signals from some master clock 
placed at the spatial origin, a difference in the standard and nonstandard clock 
synchronization may be reduced to a change of coordinates [3] [4] [5] [6] 

( ) ( ),s sk xt t x x
c

= + =                      (3) 

where ( ) ( )0 2s
Rt t t= +  is the time setting according to Einstein (standard) 

synchronization procedure. 
The analysis can be extended to the three dimensional case. If a beam of light 

propagates (along straight lines) from a starting point and through the reflection 
over suitable mirrors covers a closed part the experimental fact is that the speed 
of light as measured over closed part is always c (Round-Trip Light Principle). In 
accordance with that experimental fact, if the speed of light is allowed to be 
anisotropic it must depend on the direction of propagation as [4] [5] 

1 1 cos k

c cV
k θ

= =
+ +k n 

                    (4) 

where k  is a constant vector and kθ  is the angle between the direction of 
propagation n  and k . Similar to the one-dimensional case, the law (4) may 
be considered as a result of the transformation from “standard” coordinatization 
of the four-dimensional space-time manifold, with 0k = , to the “nonstandard” 
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one with 0k ≠ : 

( ) ( ),s st t
c

= + =
k r r r                       (5) 

The conventionality of simultaneity in the special theory of relativity, and the 
related issue of anisotropy of the one-way speed of light, have been much 
debated issues. A common view is that, due to freedom in the choice of the 
anisotropy parameter k , the one-way speed of light is irreducibly conventional. 
The purpose of the following discussion is to show that, if there is an anisotropy 
in a physical system, the arguments for conventionality of the one-way speed of 
light are not valid and, what is more, a specific value of the one-way speed of 
light, together with corresponding synchronization, is selected in some objective 
way. 

The arguments for conventionality of the one-way speed are based first on the 
possibility of introducing the transformations treated as replacing the Lorentz 
transformations of special relativity in the case of the anisotropic one-way speed 
of light (2) with 0k ≠ . Such transformations have been repeatedly derived in the 
literature using kinematic arguments, the works [7] [8] [9] should be mentioned 
first. In what follows, they will be called the “-Lorentz transformations”, the name 
is due to [8] [9]. Although the -Lorentz transformations can be obtained from 
the standard Lorentz transformations by a change of coordinates (3) and so they 
are in fact the Lorentz transformations of the standard special relativity 
represented using the “nonstandard” coordinatization of the four-dimensional 
space-time manifold, they are usually considered as describing the special 
relativity kinematics in an anisotropic system (for example, the most highly cited 
paper by Edwards [7] is entitled “Special relativity in anisotropic space”). Below, 
the arguments are presented showing that 1) the -Lorentz transformations, 
commonly considered as incorporating anisotropy, are in fact not applicable to 
an anisotropic system and 2) in the case of isotropic system, the particular case 
of the transformations corresponding to the isotropic one-way speed of light and 
Einstein synchronization (standard Lorentz transformations) is privileged. 

The first statement is related to the issue of invariance of the interval. 
Invariance of the interval is commonly considered as an integral part of the 
physics of special relativity which is used as a starting point for derivation of the 
space-time transformations between inertial frames. Nevertheless, invariance of 
the interval is not a straightforward consequence of the basic principles of the 
theory. The two principles constituting the conceptual basis of the special 
relativity, the principle of relativity which states the equivalence of all inertial 
frames as regards the formulation of the laws of physics and universality of the 
speed of light in inertial frames, taken together lead to the condition of 
invariance of the equation of light propagation with respect to the coordinate 
transformations between inertial frames. Thus, in general, not the invariance of 
the interval but invariance of the equation of light propagation should be a 
starting point for derivation of the transformations. Therefore the use of the 
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interval invariance is usually preceded by a proof of its validity (see, e.g., [10] 
[11]) based on invariance of the equation of light propagation. However, those 
proofs are not valid if an anisotropy is present and the same arguments lead to 
the conclusion that, in the presence of anisotropy, the interval is not invariant 
but modified by a conformal factor [12]. The “-Lorentz transformations”, like 
the standard Lorentz transformations, leave the interval invariant and therefore 
they are applicable only to the case of no anisotropy. 

The second statement, that, in the case of isotropy, the particular case of the 
isotropic one-way speed of light and Einstein synchronization is privileged, 
relies on the correspondence principle. The correspondence principle was taken 
by Niels Bohr as the guiding principle to discoveries in the old quantum theory. 
Since then it was considered as a guideline for the selection of new theories in 
physical science. In the context of special relativity, the correspondence principle 
is traditionally mentioned as a statement that Einstein’s theory of special 
relativity reduces to classical mechanics in the limit of small velocities in 
comparison to the speed of light. Being applied to the special relativity 
kinematics, the correspondence principle implies that the transformations 
between inertial frames should turn into the Galilean transformations in the 
limit of small velocities. The “-Lorentz transformations” do not satisfy the 
correspondence principle unless 0k =  [12] which means that the isotropic 
one-way speed of light and Einstein synchrony are selected if no anisotropy is 
present in a physical system. Similarly, in the case of an anisotropic system, there 
should also exist a privileged value of the one-way speed selected by the size of 
the anisotropy. 

The above comments are related to the case when synchronization is imple- 
mented using light signals. Nevertheless, if another method of synchronization, 
as, for example, the “external synchronization” [2], is used it cannot change the 
value of the one-way speed of light. It can change the form of transformations 
for the time and space variables but, again, changing the synchronization 
method is equivalent to a change of coordinates (see more details in Section 8). 

It is worth to mention, in connection with the issues of the correspondence 
principle and synchronization problem, a discussion in the literature (see, e.g., 
[13] [14] [15] [16]) initiated by the paper of Ohanian [13] “The role of dynamics 
in the synchronization problem”. Ohanian argued that dynamical considerations, 
applied to inertial systems, necessarily entail the standard synchronization rule. 
He shows that the nonstandard synchronization procedure, when discussing 
Newtons (classical) mechanics, would result in a change in the mathematical 
form of the equation of motion such that the Newtons second law involves what 
he calls “pseudo-forces”. He concludes that in an inertial reference frame any 
synchronization, other than the Einsteinian one, is forbidden. 

Ohanian’s approach has been criticized by several authors (for example, by 
Macdonald [14] and Martinez [15], see also a reply of Ohanian [16] to 
comments by Macdonald and Martinez) but their analyses are too concentrated 
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on such issues as a synchronization convention and the origin of the Einsteinian 
synchronization while more apparent inconsistencies of Ohanian’s analysis are 
not sufficiently emphasized. Below we briefly discuss some of them. First, the 
Newtons second law of classical mechanics is used as a relation for choosing a 
synchronization rule or, in other terms, for choosing the value of anisotropy 
parameter for the one-way speed of light. The issues of light speed and its 
anisotropy are alien to Newtonian mechanics with absolute time and so such an 
approach is an inconsistent mixture of relativistic and classical concepts. (It 
would be more consistent to use in that context the correspondence principle as 
applied to dynamical equations of relativistic physics but, in general, using 
dynamical equations in the problem of clock synchronization is doubtful, see 
comments below.) Next, there is no reason for choosing Newtons second law, 
even if it were in a relativistic form, as a basic relation and considering it as more 
fundamental than any kinematics in the context of such purely kinematic issues 
as clock synchronization and light speed. Note also that (as emphasized in [14] 
and [15]) it is in contradiction with a consensus on considering the law of inertia 
as independent and prior to the force law in the definition of inertial frames. 
Further, a change in the mathematical form of dynamical equations resulting 
from different synchrony conventions do not correspond to any differences 
whatsoever in the actual material behavior of physical systems and so using the 
requirement that a dynamical equation took a specific form (even if it is the 
simplest one) as a basis for distinguishing a specific synchronization is not 
justified. 

3. Conceptual Framework 

The special relativity kinematics applicable to an anisotropic system should be 
developed based on the first principles of special relativity but without refereeing 
to the relations of the standard relativity theory. The principles constituting the 
conceptual basis of special relativity, the relativity principle, according to which 
physical laws should have the same forms in all inertial frames, and the 
universality of the speed of light in inertial frames, lead to the requirement of 
invariance of the equation of light propagation with respect to the coordinate 
transformations between inertial frames. In the present context, it should be 
invariance of the equation of propagation of light which incorporates the 
anisotropy of the one-way speed of light, with the law of variation of the speed 
with direction consistent with the experimentally verified round-trip light 
principle, as follows 

1 1 cos k

c cV
k θ

= =
+ +kn

                       (6) 

where k  is a (constant) vector characteristic of the anisotropy. The change of 
notation, as compared with (4), from k  to k is intended to indicate that k  is 
a parameter value corresponding to the size of the really existing anisotropy 
while k  defines the anisotropy in the one-way speeds of light due to the 
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nonstandard synchrony equivalent to the coordinate change (5). The anisotropic 
equation of light propagation incorporating the law (6) has the form [12] 

( )2 2 2 2 2 2 2d d 2 d d 1 d d d 0s c t kc t x k x y z= − − − − − =          (7) 

where ( ), ,x y z  are coordinates and t is time. It is assumed that the x-axis is 
chosen to be along the anisotropy vector k . Note that although the form (7) is 
usually attributed to the one-dimensional formulation it can be shown that, in 
the three-dimensional case, the equation has the same form if the anisotropy 
vector k  is directed along the x-axis (see [12]). 

Further, in the development of the anisotropic relativistic kinematics, a 
number of other physical requirements, associativity, reciprocity and so on are 
to be satisfied which all are covered by the condition that the transformations 
between the frames form a group. Thus, the group property should be taken as 
another first principle. The formulation based on the invariance and group 
property suggests using the Lie group theory apparatus for defining groups of 
space-time transformations between inertial frames. 

At this point, it should be clarified that there can exist two different cases: 1) 
The size of anisotropy does not depend on the observer motion and so is the 
same in all inertial frames (groups of transformations for this case are studied in 
[12]); 2) The anisotropy is due to the observer motion with respect to a preferred 
frame and so the size of anisotropy varies from frame to frame (it is a subject of 
the present study). In the latter case, the anisotropy parameter becomes a 
variable which takes part in the transformations so that groups of transformations 
in five variables { }, , , ,x y z t k  are studied. The preferred frame, commonly 
defined by that the propagation of light in that frame is isotropic, is naturally 
present in that framework as the frame in which k = 0. However, it does not 
violate the relativity principle since the transformations from/to that frame are 
not distinguished from other members of the group. Nevertheless, the fact, that 
the anisotropy of the one-way speed of light in an arbitrary inertial frame is due 
to motion of that frame relative to the preferred frame, is a part of the paradigm 
which is used in the analysis. 

The procedure of obtaining the transformations consists of the following steps: 
1) The infinitesimal invariance condition is applied to the equation of light 
propagation which yields determining equations for the infinitesimal group 
generators; 2) The determining equations are solved to define the group 
generators and the correspondence principle is applied to specify the solutions; 3) 
Having the group generators defined the finite transformations are determined 
as solutions of the Lie equations; 4) The group parameter is related to physical 
parameters using some obvious conditions; 5) Finally, the conceptual argument, 
that the size of anisotropy of the one-way speed of light in an arbitrary inertial 
frame depends on its velocity relative to the preferred frame, is used to specify 
the results and place them into the context of special relativity with a preferred 
frame. Note that implementing the steps 1)-4) for the case of no isotropy yields 
the standard Lorentz transformations [12]. 
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The transformations between inertial frames derived in such a way contain a 
scale factor and thus do not leave the interval between two events invariant but 
modify it by a conformal factor (square of the scale factor). Applying the 
conformal invariance in physical theories originates from the papers by Bateman 
[17] and Cunningham [18] who discovered the form-invariance of Maxwells 
equations for electromagnetism with respect to conformal space-time transfor- 
mations. Since then conformal symmetries have been successfully exploited for 
many physical systems (see, e.g., reviews [19] [20]). Transformations which 
conformally modify Minkowski metric have been introduced in the context of 
the special relativity kinematics in the presence of space anisotropy in [21] (see 
also references therein) and [22] (see also [23]). As a matter of fact, those works 
are not directly related to the subject of the present study as they consider the 
case of a constant anisotropy degree, not dependent on the frame motion. 
Nevertheless, it is worthwhile to note that in the works [21] [22] the assumption 
that the form of the metric changes by a conformal factor is imposed while, in 
the framework of the present analysis, conformal invariance of the metric arises 
as an intrinsic feature of special relativity based on invariance of the anisotropic 
equation of light propagation and the group property (see [12] for a more 
detailed discussion of the works [21] [22]). 

4. Transformations between Inertial Frames with a Varying 
Anisotropy Parameter 

In this section, groups of transformations between inertial frames that leave the 
equation for light propagation, incorporating the anisotropic law (6), form- 
invariant are defined. The parameter of anisotropy k is allowed to vary from 
frame to frame which, in particular, implies that there exists a preferred frame in 
which the speed of light is isotropic. The transformations are required to form a 
one-parameter group with the group parameter ( )a a v=  (such that 1v  
corresponds to 1a ). Note that the group property is used not as in the 
traditional analysis which commonly proceeds along the lines initiated by [24] 
and [25] which are based on the linearity assumption and relativity arguments. 
The difference can be seen from the derivation of the standard Lorentz 
transformations using the above procedure [12]. 

Consider two arbitrary inertial reference frames S and S' in the standard 
configuration with the y- and z-axes of the two frames being parallel while the 
relative motion is along the common x-axis. The space and time coordinates in S 
and S' are denoted respectively as { }, , ,X Y Z T  and { }, , ,x y z t . The velocity of 
the S' frame along the positive x direction in S, is denoted by v. It is assumed that 
the frame S' moves relative to S along the direction determined by the vector k  
from (6). This assumption is justified by that one of the frames in a set of frames 
with different values of k is a preferred frame, in which k = 0, so that the 
transformations must include, as a particular case, the transformation to that 
preferred frame. Since the anisotropy is attributed to the fact of motion with 
respect to the preferred frame it is expected that the axis of anisotropy is along 
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the direction of motion (however, the direction of the anisotropy vector can be 
both coinciding and opposite to that of velocity). 

The equations for light propagation in the frames S and S' are 

( )2 2 2 2 2 2d 2 d d 1 d d d 0,c T Kc T X K X Y Z− − − − − =             (8) 

( )2 2 2 2 2 2d 2 d d 1 d d d 0c t kc t x k x y z− − − − − =               (9) 

where the anisotropy parameters K and k in the frames S and S' are different. 
The relativity principle implies that the transformations of variables from 
{ }, , , ,X Y Z T K  to { }, , , ,x y z t k  leave the form of the equation of light 
propagation invariant so that (8) is converted into (9) under the transformations. 
The transformations form a one-parameter group 

( ) ( )
( ) ( ) ( )

, , , , ; , , , , , ; ,

, , , , ; , , , , , ; ; ;

x f X Y Z T K a y g X Y Z T K a

z h X Y Z T K a t q X Y Z T K a k p K a

= =

= = =
      (10) 

where a is the group parameter. Remark that k is a transformed variable taking 
part in the group transformations. Based on the symmetry arguments it is 
assumed that the transformations of the variables x and t do not involve the 
variables y and z and vice versa: 

( ) ( )
( ) ( ) ( )

, , ; , , , ; ,

, , ; , , , ; ; ;

x f X T K a t q X T K a

y g Y Z K a z h Y Z K a k p K a

= =

= = =
          (11) 

The correspondence principle requires that, in the limit of small velocities v c  
(small values of the group parameter 1a ), the formula for transformation of 
the coordinate x turns into that of the Galilean transformation: 

x X vT= −                          (12) 

Remark that the small v limit is not influenced by the presence of anisotropy 
of the light propagation. It is evident that there should be no traces of light 
anisotropy in that limit, the issues of the light speed and its anisotropy are alien 
to the framework of Galilean kinematics. 

The group property and the invariance of the equation of light propagation 
suggest applying the infinitesimal Lie technique (see, e.g., [26] [27]). The 
infinitesimal transformations corresponding to (11) are introduced, as follows 

( ) ( )
( ) ( ) ( )

, , , , , ,

, , , , , ,

x X X T K a t T X T K a

y Y Y Z K a z Z Y Z K a k K a K

ξ τ

η ζ χ

≈ + ≈ +

≈ + ≈ + ≈ +
       (13) 

and Equations (8) and (9) are used to derive determining equations for the 
group generators ( ), ,X T Kτ , ( ), ,X T Kξ , ( ), ,Y Z Kη , ( ), ,Y Z Kζ  and 
( )Kχ . The infinitesimal group generators can be partially specified by applying 

the correspondence principle. Equation (12) is used to calculate the group 
generator ( ),X Tξ , as follows 

( )( ) ( )
0 0

; 0
a a

X v a Tx bT b v
a a

ξ
= =

 ∂ −∂  ′= = = − =    ∂ ∂   
       (14) 

It can be set b = 1 without loss of generality since this constant can be 
eliminated by redefining the group parameter. Thus, the generator ξ  is defined 
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by 

Tξ = −                            (15) 

Then substituting the infinitesimal transformations (13), with ξ  defined by 
(15), into Equation (9) with subsequent linearizing with respect to a and using 
Equation (8) to eliminate 2dT  yields 

( )( ) ( )( )
( )( ) ( )

( ) ( )

2 2 2

2 2 2

2

1 d

1 d d d

d d d 0

X T

X T T Y

T Z Z Y

Kc K K c K cK X

c c cK K K c X T K c c Y

K c c Z c Y Z

τ τ χ

τ τ χ τ η

τ ζ η ζ

− + − + +

+ + + + − + + −

+ + − − + =

    (16) 

where subscripts denote differentiation with respect to the corresponding 
variable. In view of arbitrariness of the differentials dX, dY, dZ and, dT, the 
equality (16) can be valid only if the coefficients of all the monomials in (16) 
vanish which results in an overdetermined system of determining equations for 
the group generators. 

The generators τ , η  and ζ  found from the determining equations yielded 
by (16) are 

( )2

22

3 4

1 2 ,

,

K K c KX T c
cc

K KY Z c Z Y c
c c

χ
τ

η ω ζ ω

− −
= − − +

= − + + = − − +

             (17) 

where 2c , 3c  and 4c  are arbitrary constants. The common kinematic 
restrictions that one event is the spacetime origin of both frames and that the x 
and X axes slide along another can be imposed to make the constants 2c , 3c  
and 4c  vanishing (space and time shifts are eliminated). In addition, it is 
required that the ( ),x z  and ( ),X Z  planes coincide at all times which results 
in 0ω =  and so excludes rotations in the plane ( ),y z . 

The finite transformations are determined by solving the Lie equations which, 
after rescaling the group parameter as â a c=  together with ˆ cχ χ=  and 
omitting hats afterwards, take the forms 

( ) ( )( ) ( )d
; 0 ,

d
k a

k a k K
a

χ= =                     (18) 

( ) ( )
( )( ) ( ) ( )( )( ) ( ) ( ) ( )2dd

, 1 2 ,
d d

ct ax a
ct a k a k a x a k a ct a

a a
χ= − = − − − −  (19) 

( ) ( ) ( ) ( ) ( ) ( )d d
, ;

d d
y a z a

k a y a k a z a
a a

= − = −              (20) 

( ) ( ) ( ) ( )0 , 0 , 0 , 0 .x X t T y Y z Z= = = =               (21) 

Because of the arbitrariness of ( )( )k aχ , the solution of the system of 
Equations (18), (19) and (20) contains an arbitrary function ( )k a . Using (18) 
to replace ( )( )k aχ  in the second equation of (19) we obtain solutions of 
Equations (19) subject to the initial conditions (21) in the form 
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( )( )cosh sinh sinh ,x R X a K a cT a= + −                 (22) 

( )( ) ( )( ) ( )( )( )( )cosh sinh 1 sinh coshct R cT a k a a X Kk a a K k a a= − − − + − (23) 

where R is defined by 

( )0 de
akR α α−∫=                           (24) 

To complete the derivation of the transformations the group parameter a is to 
be related to the velocity v using the condition 

0 forx X vT= =                        (25) 

which yields 

1 1ln ;
2 1

K va
K c

β β
β

β β
+ −

= =
− −

                    (26) 

Substituting (26) into (22) and (23) yields 

( )
( )

2 2
,

1

Rx X cT
K

β
β β

= −
− −

 

( )
( ) ( )( )( )2

2 2
1 1

1

Rct cT K k X K K k
K

β β β
β β

= − − − − + −
− −

    (27) 

where k is the value of ( )k a  calculated for a given by (26). 
Solving Equations (20) and using (26) in the result yields 

,y RY z RZ= =                        (28) 

Calculating the interval 

( )2 2 2 2 2 2 2d d 2 d d 1 d d ds c t kc t x k x y z= − − − − −            (29) 

with (27) and (28) yields 

( )2 2 2 2 2 2 2 2 2 2d d , d d 2 d d 1 d d ds R S S c T Kc T X K X Y Z= = − − − − −    (30) 

Thus, in the case when the anisotropy exists, the interval invariance is 
replaced by conformal invariance with the conformal factor dependent on the 
relative velocity of the frames and the anisotropy degree. 

Considering inverse transformations from the frame S' to S one has to take 
into account that, in the presence of the light speed anisotropy, the reciprocity 
principle is modified [3] [8]. The reasoning behind this is that all speeds are to 
be affected by the anisotropy of the light speed since the speeds are timed by 
their coincidences at master and remote clocks, and the latter are altered. 
Therefore the relative velocity v−  of S to S' is not equal to the relative velocity v 
of S' to S. The modified reciprocity relation is commonly obtained using kinematic 
arguments [28], but, in the framework of our analysis, it straightforwardly 
follows from the group property of the transformations a a− = − , where a is 
given by (26) and a−  is also defined by Equation (26) but with β  replaced by 
β−  and K replaced by k, as follows 
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11 ln ,
2 1

k va
k c

β β
β

β β
− − −

− −
− −

− +
= =

+ +
                   (31) 

Thus, the modified reciprocity relation is obtained in the form 

( )1 k K
β

β
β− = − +

                       (32) 

For deriving consequences of the transformations it is convenient to write the 
inverse transformations in terms of β  (not β− ), as follows 

( )
( )( )

1

2 2
1 ,

1

RX x K k ct
K

β β β
β β

−

= − − +
− −

 

( )
( )( )( )

1
2

2 2
1

1

RcT ct x K K k
K

β
β β

−

= + − + −
− −

         (33) 

1 1,Y R y Z R z− −= =                       (34) 

The formulas for the velocity transformation are readily obtained from (27) 
and (28), as follows 

( ) ( ) ( )2 22 21 1
, , ,Y ZX

x y z

cU K cU Kc U c
u u u

Q Q Q
β β β ββ − − − −−

= = =  

( ) ( ) ( )21 X XQ c K U K K k U cβ β β β= − + − − + −         (35) 

where ( ), ,X Y ZU U U  and ( ), ,x y zu u u  are the velocity components in the 
frames S and S' respectively. 

The transformations (24)-(28) contain an indefinite function ( )k a . The scale 
factor R also depends on that function. The transformations are specified in the 
next section. 

5. Specifying the Transformations 

In the derivation of the transformations in the previous section, the arguments, 
that there exists a preferred frame in which the light speed is isotropic and that 
the anisotropy of the one-way speed of light in a specific frame is due to its 
motion relative to the preferred frame, have not been used. In the framework of 
the derivation, nothing distinguishes the frame in which k = 0 from others and 
the transformations from/to that frame are members of a group of transformations 
that are equivalent to others. Thus, the theory developed above is a counterpart 
of the standard special relativity kinematics which incorporates an anisotropy of 
the light propagation, with the anisotropy parameter varying from frame to 
frame. Below the transformations between inertial frames derived in Section 2 
are specified based on that anisotropy of the one-way speed of light in an inertial 
frame is caused by its motion with respect to the preferred frame. 

First, this leads to the conclusion that the anisotropy parameter k in an 
arbitrary frame s moving with respect to the preferred frame with velocity 

v cβ =  should be given by some (universal) function of that velocity, as 
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follows 

( )k F β=                             (36) 

Indeed, Equations (18) and (26) imply that ( )( ), ,k k a K Kβ=  which being 
specified for the transformation from the preferred frame to the frame s by 
setting 0,K β β= =  yields (36). (It could be expected, in general, that a size of 
the anisotropy depends on the velocity relative to the preferred frame but, in the 
present analysis, it is not a presumption but a part of the framework.) 

Next, consider three inertial reference frames S , S and S'. As in the 
preceding analysis, the standard configuration, with the y- and z-axes of the 
three frames being parallel and the relative motion being along the common 
x-axis (and along the direction of the anisotropy vector), is assumed. The space 
and time coordinates and the anisotropy parameters in the frames S , S and S' 
are denoted respectively as { }, , , ,x y z t k , { }, , , ,X Y Z T K  and { }, , , ,x y z t k . 
The frame S' moves relative to S with velocity v and velocities of the frames S 
and S' relative to the frame S  are respectively 1v  and 2v . A relation between 

2v , v and 1v  can be obtained from the equation expressing a group property of 
the transformations, as follows 

2 1a a a= +                              (37) 

where 2a , 1a  and a are the values of the group parameter corresponding to the 
transformations from S  to S', from S  to S and from S to S' respectively. 
Those values are expressed through the velocities and the anisotropy parameter 
values by a properly specified Equation (26) which, upon substituting into 
Equation (37), yields 

2 2 1 1

2 2 1 1

1 11 1 1 1ln ln ln
2 2 2 11 1

k k K
Kk k

β β β β β β
β ββ β β β

+ − + − + −
= +

− −− − − −
       (38) 

where 

2 1
2 1, ,v v v

c c c
β β β= = =                   (39) 

Exponentiation of Equation (38) yields 

( )( )
( )( )

1 1
2 2

1

1

1 1

k K

k K k

β β β
β

β β

+ − +
=

+ − + −
               (40) 

Let us now choose the frame S  to be a preferred frame. Then, 0k =  and, 
according to (36), for the frames S and S' we have 

( ) ( )1 2,K F k Fβ β= =                   (41) 

With ( )f kβ =  being a function inverse to ( )k F β= , using in (40) the 
equalities inverse to those of (41) together with 0k =  yields 

( )
( ) ( )( )

( )( )
1

1
f K Kf K

f k
K f K
β

β
+ −

=
+ − +

               (42) 

If the function ( )f k  were known, the relation (42), that implicitly defines 
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the anisotropy parameter k in the frame S' as a function of the anisotropy 
parameter K in the frame S and the relative velocity v of the frames, would provide 
a formula for the transformation of the anisotropy parameter k. This would 
allow to specify the transformations (27) and (28) by substituting that formula 
for k into the equation of transformation for t and calculating the scale factor R 
using that formula with β  expressed as a function of a group parameter a from 
(26). 

Although the function ( )F β  is not known, a further specification can be 
made based on the argument that an expansion of the function ( )F β  in a series 
with respect to β  should not contain a quadratic term since it is expected that 
a direction of the anisotropy vector changes to the opposite if a direction of a 
motion with respect to a preferred frame is reversed: ( ) ( )F Fβ β= − − . Thus, 
with accuracy up to the third order in β , the dependence of the anisotropy 
parameter on the velocity with respect to a preferred frame can be approximated 
by 

( ) ( ),k F q f k k qβ β β= ≈ = ≈                  (43) 

Introducing the last equation of (43) into (42) yields 

( )( )
( )

2

1

q K q K
k

q K q

β

β

+ −
=

+ −
                     (44) 

which is the expression to be substituted for k into (27). To calculate the scale 
factor in (27) and (28), β  is expressed as a function of a group parameter a 
from (26), as follows 

sinh
sinh cosh

a
K a a

β =
+

                    (45) 

which, being substituted into (44), yields 

( ) ( )cosh sinh
sinh cosh

q K a q a
k a

K a q a
+

=
+

                (46) 

Then using (46) in (24), with (26) substituted for a in the result, yields  

( )( ) ( )( )
( )( )

22

2

1 1 1 1

1

q

q K K
R

q K q

β β

β

 + − − +
 =
 + − 

             (47) 

Thus, after the specification, the transformations between inertial frames 
incorporating anisotropy of light propagation are defined by Equations (27) and 
(28) with k given by (44) and the scale factor given by (47). It is readily checked 
that the specified transformations satisfy the correspondence principle. All the 
equations contain only one undefined parameter, a universal constant q. 

It should be clarified that, although the specification relies on the approximate 
relation (43), the transformations, with k and R defined by (44) and (47), are not 
approximate and they do possess the group property. The transformations (27) 
and (28) form a group, even with ( )k a  (or ( ),k K β ) undefined, provided that 
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the transformation of k obeys the group property. Since the relation (42), 
defining that transformation, is a particular case of the relation (40) obtained 
from Equation (37) expressing the group property, the transformation of k 
satisfies the group property with any form of the function ( )sF β , and, in 
particular, with that defined by (43). Nevertheless, a straightforward check can 
be made that the specified transformation (46) obeys the group properties. Using 
the notation 

( ) ( )cosh sinh
,

sinh cosh
q k a q a

a k
k a q a

κ
+

=
+

                  (48) 

and introducing, in addition to S and S', the frame 0S  with the anisotropy 
parameter 0k , one can check that 

( )( ) ( )0 0 0 0, , ,a a k a a kκ κ κ= +                    (49) 

Similarly it is readily verified that ( )( ), ,a a k kκ κ− =  and ( )0,k kκ = . 
Alternatively, one can calculate the group generator ( )kχ  as 

( ) ( ) 2

0

,

a

a k kk q
a q

κ
χ

=

∂
= = −

∂
                   (50) 

and solve the initial value problem 

( ) ( ) ( )
2d

, 0
d
k a k a

q k K
a q

= − =                   (51) 

to be assured that it, as expected, yields (46). Thus, as a matter of fact, what is 
specified using the approximate relation (43) is the form of the group generator 
( )kχ  in the group of transformations defined on the basis of the first 

principles. 
The relation (42) allows defining a form of the group generator ( )kκ  for 

arbitrary ( )F β , not restricted by the approximate relation (43). Representing 
(42) in the form 

( )( ) ( ) ( ) ( )( )
( ) ( )( )

1
;

1
f K a Kf K

f k K a
a K f K
β

β
+ −

=
+ − +

             (52) 

substituting (45) for ( )aβ  and differentiating the result with respect to a, with 
( );k K a a∂ ∂  separated, yields 

( ) ( )
( )( ) ( )( )

2

2

; 1

cosh sinh

k K a f K
a a f K a f k a

∂ −
=

∂ ′+
            (53) 

Then the relation (52), with β  substituted from (45), is used again to 
express ( )f K  through ( )f k  and a. Substituting that expression into (53) 
yields 

( ) ( )( )
( )( )

21d
d

f k ak a
a f k a

−
=

′
                    (54) 

Equation (54) is the Lie equation defining (with the initial condition ( )0k K= ) 
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the group transformation ( );k K a  which implies that the expression on the 
right-hand side is the group generator 

( ) ( )
( )

21 f k
k

f k
κ

−
=

′
                            (55) 

6. Time Dilation, Aberration Law and Doppler Effect 

Time dilation. Consider a clock C' placed at rest in S' at a point on the x-axis 
with the coordinate 1x x= . When the clock records the times 1t t=  and 2t t=  
the clock in S which the clock C' is passing by at those moments will record 
times 1T  and 2T  given by the transformations (33) where it should be 
evidently set 2 1x x= . Subtracting the two relations we obtain the time dilation 
relation 

( )

1

2 21

RT t
Kβ β

−

∆ = ∆
− −

                    (56) 

If clock were at rest in the frame S the time dilation relation would be 

( )
( ) ( )2 22 2

1

1 1

R K k Rt T T
K k

β β

β β β β− −

− −
∆ = ∆ = ∆

− − − −
            (57) 

with β−  defined by (32). 
Aberration law. The light aberration law can be derived using the formulas (35) 

for the velocity transformation. The relation between directions of a light ray in 
the two inertial frames S and S' is obtained by setting ( )cos 1 cosXU c K= Θ + Θ  
and ( )cos 1 cosxu c kθ θ= +  in the first equation of (35). Then solving for 
cosθ  yields 

( )
( )

cos 1 cos
cos

1 cos
K

K
β

θ
β

Θ − + Θ
=

− Θ+
                 (58) 

where θ  and Θ  are the angles between the direction of motion and that of 
the light propagation in the frames of a moving observer and of an immovable 
source respectively. (Equation (58) could be obtained in several other ways, for 
example, straight from the transformations (27) and (28) by rewriting them in 
spherical coordinates and then specifying to radial light rays.) Introducing 
θ θ π= −  and πΘ = Θ−  as the angles between the direction of motion and 
the line of sight one gets the aberration law 

( )
( )

cos 1 cos
cos

1 cos

K

K

β
θ

β

Θ + − Θ
=

+ Θ−

 





                 (59) 

Doppler effect. Consider a source of electromagnetic radiation (light) in a 
reference frame S very far from the observer in the frame S' moving with velocity 
v with respect to S along the X-axis with Θ  being the angle between the 
direction of the observer motion and that of the light propagation as measured 
in a frame of the source. Let two pulses of the radiation are emitted from the 
source with the time interval ( )eTδ  (period). Then the interval ( )rTδ  
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between the times of arrival of the two pulses to the observer, as measured by a 
clock in the frame of the source S, is 

( ) ( )r e

LT T
V
δ

δ δ= +                     (60) 

where Lδ  is a difference of the distances traveled by the two pulses, measured 
in the frame of the source S, and V is the speed of light in the frame S given by 

( ) cos ,
1 cosr

cL v T V
K

δ δ= Θ =
+ Θ

             (61) 

Substituting (61) into (60) yields 

( ) ( ) ( )( )1 cos 1 cose rT T Kδ δ β= − Θ + Θ            (62) 

The interval ( )rtδ  between the moments of receiving the two pulses by the 
observer in the frame S', as measured by a clock at rest in S', is related to ( )rTδ  
by the time dilation relation (56), as follows 

( )
( )

( )
1

2 21
r r

RT t
K

δ δ
β β

−

=
− −

               (63) 

Thus, the periods of the electromagnetic wave measured in the frames of the 
source and the receiver are related by 

( )
( )( )

( )
( )

1

2 2

1 cos 1 cos

1
e r

R K
T t

K

β
δ δ

β β

− − Θ + Θ
=

− −
          (64) 

so that the relation for the frequencies is 

( )( )
( )

1

2 2

1 cos 1 cos

1
r e

R K

K

β
ν ν

β β

− − Θ + Θ
=

− −
            (65) 

where eν  is the emitted wave frequency and rν  is the wave frequency 
measured by the observer moving with respect to the source. (This formula 
could be derived in several other ways, for example, using the condition of 
invariance of the wave phase.) 

To complete the derivation of the formula for the Doppler shift, the relation 
(65) is to be transformed such that the angle θ  between the wave vector and 
the direction of motion measured in the frame of the observer S' figured instead 
of Θ  which is the corresponding angle measured in the frame of the source. 
Using the aberration formula (58), solved for cosΘ , as follows 

( )
( )

cos 1 cos
cos

1 cos
K

K
θ β θ
β θ
+ −

Θ =
+ −

                (66) 

in the relation (65) yields 

( )( ) ( )
( )

21 2

2

1 cos 1 cos 1

1 cos
r e

R K K

K

β θ θ β β
ν ν

β β θ

− + − − −
=

− +
        (67) 

Finally, introducing the angle θ θ π= −  between the line of sight and the 
direction of the observer motion one obtains the relation for a shift of 
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frequencies due to the Doppler effect in the form 

( )( ) ( )

( )

21 2

2

1 cos 1 cos 1

1 cos
r e

R K K

K

β θ θ β β
ν ν

β β θ

− − + − −
=

− −

 



      (68) 

7. The CMB Effective Temperature 

Let us apply the equations of the anisotropic special relativity developed above to 
describe effects caused by an observer motion (our galaxy’s peculiar motion) 
with respect to the CMB frame. It is more consistent than using equations of the 
standard special relativity in that context—the standard relativity framework is 
in contradiction with existence of a preferred frame while the anisotropic special 
relativity naturally combines a preferred frame concept with the special relativity 
principles. Let choose the frame S to be a preferred frame and the frame S' to be 
a frame of an observer moving with respect to the preferred frame. Then the 
coordinate transformations from the preferred frame S to the frame S' of the 
moving observer are obtained by setting K = 0 in equations (27), (28), (47) and 
(44) which yields 

( )( ) ( ) ( )( )( )
1 1

2 2 22 21 , 1 1 1
q q

x X cT ct cT q X qβ β β β β
− −

= − − = − − − −  

( ) ( )2 22 21 , 1
q q

y Y z Zβ β= − = −                 (69) 

where q is a universal constant. Equation of aberration of light (59) with K = 0 
converts into the common aberration law of the standard theory 

coscos
1 cos

β
θ

β
Θ +

=
+ Θ







                     (70) 

while Equation (65), describing the Doppler frequency shift for the light emitted 
at the last scattering surface (LSS) and received by a moving observer, differs 
from its counterpart of the standard relativity by the factor 1R− , as follows 

( )1

2

1 cos

1
r e

R β
ν ν

β

− − Θ
=

−
                    (71) 

The inverse 1R−  of (47) for K = 0 takes the form 

( )1 2 21
q

R β
−− = −                        (72) 

Substituting (72) into (71) yields 

( ) ( )
1

2 2 21 1 cos
q

r eν ν β β
− −

= − − Θ                  (73) 

Thus, in terms of the angle Θ  between the direction of the observer motion 
and that of the light propagation as measured in a frame of the source, the 
Doppler frequency shift is a pure dipole pattern as it is in the standard relativity. 
However, the amplitude of the shift includes an additional factor which depends 
on the value of the universal constant q. 
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Equation (68) incorporating the effect of light aberration and thus relating the 
frequency eν  of the light emitted at the LSS to the frequency rν  measured by 
a moving observer, with the use of (72) becomes 

( )
1

2 2 21

1 cos

q

r e

β
ν ν

β θ

−
−

=
− 

                      (74) 

where θ  is the angle between the line of sight and the direction of the observer 
motion as measured in the frame of the observer. In the context of the CMB 
anisotropy, one should switch from the frequencies to effective thermodynamic 
temperatures of the CMB blackbody radiation using the relation [29] 

( ) 0

r e

T Tθ

ν ν
=



                          (75) 

where 0T  is the effective temperature measured by the observer which sees 
strictly isotropic blackbody radiation, and ( )T θ  is the effective temperature of 
the blackbody radiation for the moving observer looking in the fixed direction 
θ . Substituting (74) into (75) yields 

( ) ( )
1

2 2 2
0; 1

1 cos

qMT M Tθ β
β θ

−
= = −

−




              (76) 

Thus, the angular distribution of the CMB effective temperature seen by an 
observer moving with respect to the CMB frame is not altered by the light speed 
anisotropy. However, the anisotropy influences the mean temperature which 
differs from the value yielded by applying the standard relativity by the factor 

( )2 21
q

β
−

−  (it may be also considered as a correction to the temperature 0T ). 
Dependence of the amplitude factor M (normalized by 0T ) on β  for different 
values of the parameter q is shown in Figure 1. It is seen that, for negative values 
of q, the amplitude factor decreases with β , like as it does in the standard SR (q 
= 0), but the dependence becomes steeper. For positive values of q, the factor M 
may both decrease and increase with β  and it does not depend on β  for a 
specific value q = 1. Note, however, that q is expected to be negative both from 
intuitive considerations and on the basis of some arguments considering of 
which is beyond the scope of the current study. 

Developing Equation (76) up to the second order in β  yields 

( )
2 2

0 1 cos cos 2
2 2

T T q β β
θ β θ θ

 
= + + + 

 
               (77) 

which implies that, up to the order 2β , the amplitudes of the dipole and 
quadrupole patterns remain the same, only the constant term is modified. 

It is worth reminding that, even though the specified law (43) is linear in β , 
it does include the second order term which is identically zero. Thus, describing 
the anisotropy effects, which are of the order of 2β , by Equations (76) and (77) 
is legitimate. 
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Figure 1. Dependence of the amplitude factor M (normalized by T0) 
on the observer velocity β for different values of the parameter q. 

8. Discussion 

Analysis of the present paper, incorporating the existence of a preferred frame of 
reference into the special relativity framework, does not abolish the basic 
principles of special relativity but simply uses the freedom in applying those 
principles. A degree of anisotropy of the one-way velocity, which is commonly 
considered as irreducibly conventional, acquires meaning of a characteristic of 
the really existing anisotropy caused by motion of an inertial frame relative to 
the preferred frame. In that context, the fact, that there exists the inescapable 
entanglement between remote clock synchronization and one-way speed of 
light (if the synchronization is made using light signals), does not imply 
conventionality of the one-way velocity but means that, in the synchronization 
procedure, the one-way speed determined by the size of the anisotropy is used. 
The analysis yields equations differing from those of the standard relativity. The 
deviations depend on the value of an universal constant q where q = 0 
corresponds to the standard relativity theory with the isotropic one-way speed of 
light in all the frames. The measurable effects following from the theory equations 
can be used to provide estimates for q and validate the theory. 

Applying the theory to the problem of calculating the CMB temperature 
distribution is conceptually attractive since it removes the inconsistency of the 
usual approach when formulas of the standard special relativity, in which a 
preferred frame is not allowed, are applied to define effects caused by motion 
with respect to the preferred frame. It is worthwhile to note that even though it 
were found that the constant q is very small, which would mean that applying 
the present theory yields results practically identical to those of the standard 
relativity, this would not reduce the importance of the present framework which 
reconciles the principles of special relativity with the existence of the privileged 
CMB frame. As a matter of fact, it would justify the application of the standard 
relativity in that situation. 

It is worthwhile, at the end of the discussion, to return to the much debated 
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issues of conventionality of simultaneity and relativity of simultaneity in special 
relativity and discuss the approach and results of the present paper in the light of 
the debates. First of all, an important difference between motivations (and, 
correspondingly, conceptual frameworks) of the analyses devoted to those issues 
and the approach of the present study should be clarified and emphasized again. 

The concept of anisotropy of light propagation is always discussed in the 
literature in relation with the concept of remote clock synchronization. 
Considering different synchronization procedures, as the rule, is aimed at 
obtaining the transformations possessing some specific properties. For example, 
in the work by Tangherlini [30], a special method of synchronizing two clocks in 
an inertial frame is proposed in order to achieve a universal synchronization, 
such that spatially separated clocks remain synchronous between themselves 
thus establishing the common time of the moving system. In [30], it is achieved 
by using clocks synchronized with absolute signals, that is, signals travelling with 
infinite or arbitrarily large velocity. Using these signals, one arrives at the view of 
an absolute rest frame (or ether frame), in which the velocity of light is the same 
in all directions, but for observers in motion relative to this frame velocity of 
light is not the same in all directions. Another method of synchronization of 
spatially separated clocks, which leads to the same transformations that 
Tangherlini obtained in [30], is the so-called “external synchronization” (see, 
e.g., [2] [31] [32]). The external synchronization is based on the assumption that 
there is a preferred (“rest”) inertial frame in which the one-way speed of light in 
vacuum is c in all directions. The clocks from the rest system, S, are 
synchronized using Einsteins procedure with light signals. Then, in any moving 
inertial frame S', the common time can be established using these already 
synchronized clocks of the rest inertial frame. It can be done simply by adjusting 
clocks of moving inertial frame to zero during those moments of time when they 
meet in space a clock at rest that shows zero as well. Applying any of two 
synchronization methods described above, together with the postulate of 
constancy of the two-way speed of light, yields the transformations 

( )
2

1, ; ,
1

t vx x vt t
c

γ γ β
γ β

′ ′= − = = =
−

            (78) 

where ( ),x t  and ( ),x t′ ′  are space and time coordinates of a certain event in 
the rest frame S and in a moving frame S' respectively and v is a velocity of the 
frame S' relative to S. Thus, using the synchronization method, that is different 
from synchronization by light signals, yields the transformations (78) which 
exhibit absolute simultaneity. They also exhibit non-invariant one-way speed of 
light so that, in that approach, the anisotropy of the velocity of light in a moving 
inertial frame is a feature that emerges due to synchronization procedure 
designed to keep simultaneity unchanged between all inertial frames of 
reference. 

The principal difference of the present analysis from those in the literature on 
the synchronization problem is that, in the present analysis, the one-way speed 

https://doi.org/10.4236/jmp.2018.98100


G. I. Burde 
 

 

DOI: 10.4236/jmp.2018.98100 1613 Journal of Modern Physics 
 

of light in an inertial frame is a primary issue and its anisotropy is governed 
entirely by a physical lawc (36) (or its approximate version (43)). If a preferred 
frame is identified then the law (36) defines unequivocally the anisotropy size. 
Note that there is no ambiguity in determining the velocity β  since it is 
measured in a preferred frame where the one-way speed of light is c in all 
directions. At the same time, the relativity principle is not violated since 
transformations of the parameter of anisotropy k from one inertial frame to 
another possess a group property and, in this respect, transformations from/to 
the preferred frame with k = 0 are not distinguished from other members of the 
group of transformations. Specifying the function ( )F β  (or the inverse 
function ( )f k ) is equivalent to specifying the group generator for the variable 
k according to (55). In such a framework, synchronization is a concomitant issue 
if the remote clocks are set using light signals. In particular, since the 
transformations (27) are derived based on invariance of the equation of 
anisotropic light propagation, they correspond to the synchronization procedure 
using light signals with the one-way velocities defined by the relation (6) but, 
provided that the velocity of the frame relative to the preferred frame β  is 
known, in the relation (6), k is a definite value determined by the law (36). That 
value cannot be altered by changing the synchronization method. 

The same is valid if another method of synchronization, as, for example, the 
above discussed “external synchronization”, is used. Changing the synchronization 
method results in a change of the form of transformations for the time and 
space variables which is equivalent to a change of coordinates. The Lorentz 
transformations 

( ) 2,L L
vxx x vt t t
c

γ γ  ′ ′= − = − 
 

                (79) 

can be obtained from the Tangherlini transformations (78) by the change of 
coordinates [32] 

2L
vxt t
c
′

′ ′= −                        (80) 

where t′  and x′  are defined by (78). Substituting (78) in (80), one gets the 
Lorentz transformations. The same can be done for the transformations (27) 
obtained in the present paper. In the case of the transformations from a 
preferred frame with the anisotropy parameter K = 0 to an arbitrary frame with 
the anisotropy parameter k, the transformations (27) take the form 

( ) ( ) ( )( )
2

1, 1 ,
1

x R X cT ct R cT k X kγ β γ β β γ
β

= − = − − − =
−

   (81) 

where R is the scale factor defined by (24) (for the sake of clearness, we do not 
use the law (43) in these calculations). The transformations that exhibit absolute 
simultaneity, a counterpart of the Tangherlini transformations, are 

( ) ( ) ( ),T T cTx R X cT ct Rγ β
γ

= − =                  (82) 

https://doi.org/10.4236/jmp.2018.98100


G. I. Burde   
 

 

DOI: 10.4236/jmp.2018.98100 1614 Journal of Modern Physics 
 

and the change of variables converting (82) into (81) is 
( ) ( ) ( )T Tct ct k xβ= − −                       (83) 

It is readily verified that substituting (82) in (83) yields (81). Thus, any event 
that can be described by the transformations (81) can be described as well by the 
transformations with absolute simultaneity (82). Descriptions using clocks set as 
in (81) and clocks set as in (82) are equivalent in a sense that they are describing 
one and the same reality, which is independent of the coordinates chosen. 

It is also worth remarking that alterations, as compared with the standard 
relativity, in the formulas describing physical effects caused by motion with 
respect to a preferred frame depend only on the scale factor R as, for example, a 
correction to the distribution (76) of the CMB effective temperature seen by an 
observer moving with respect to the CMB frame. In (76), R is given by the 
expression 

( )2 21
q

R β= −                        (84) 

defining R as a function of the velocity of a moving frame measured in a 
preferred frame. The expression (84) has been obtained from (47) evaluated for 
K = 0 and so it corresponds to the approximate law (43) but it is possible to 
represent R defined by the general expression (24) as a function of β  for 
arbitrary ( )F β . It is evident that the form ( )R β  of the scale factor does not 
depend on the synchronization (or on the space-time coordinates) chosen. 

To conclude the discussion, the present analysis, which combines the basic 
principles of special relativity with the existence of a preferred frame, stands 
apart from the ample literature devoted to the conventionality of simultaneity, 
relativity of simultaneity and synchronization issues. In the present analysis, 
anisotropy of the one way speed of light in an inertial frame is governed by a 
physical law which is not influenced by changing the synchronization 
procedure. Synchronization emerges as a complementary issue needed for 
defining transformations of the space-time coordinates but physical effects are 
not changed by the way the clocks have been set. 
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Abstract 
In a number of experiments, when detecting particles emitted in beta decays, 
periodic oscillations of count rate with an amplitude up to tenths of a percent 
and short bursts vastly exceeding the usual count rate are found. At the same 
time, several experiments did not detect any differences from the “normal” 
course of beta decays greater than 0.01%. The article shows that the inconsis-
tency of the experimental results is due to different measurement technique. 
The assumption is made of the possible participation in the beta decay 
processes of cosmic slow neutrinos, which makes it possible to explain in a 
comprehensive manner not only periodic and sporadic changes in the beta 
decay rate, but also a number of other incomprehensible phenomena asso-
ciated with beta radioactivity. On the basis of the experiments carried out, an 
estimate is made of the flux density of slow cosmic neutrinos. 
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Beta Radioactivity, Nuclear Decay Rate, Solar Neutrinos, Relic Neutrinos, 
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1. Introduction 

Until recently, the strictly exponential nature of radioactive nuclides decay rate 
was considered unquestionable. But recently many articles have been published 
with the results of measurements of radioactivity, which give rise to doubts 
about the inviolability of this property of radioactivity. Both periodic (first of all, 
with a period of 1 year) [1]-[17] and sporadic deviations [14]-[20] were detected. 
Attempts were made to explain these anomalies by the action of a flux of solar 
[6]-[12] or relic [13]-[17] neutrinos. At the same time, a number of articles show 
the results of measurements in which the anomalies in the rate of radioactive 
decay are invisible [21]-[28]. The results obtained during these careful mea-
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surements, at first glance, refute reports of anomalies in the rate of radioactive 
decay, which calls into question the advisability of continuing research in this 
direction. We show that the absence of observed anomalies can be explained by 
an incorrect method of searching for variations. 

Let us assume that the anomalies in the beta decay rate are associated with the 
action of neutrinos or antineutrinos in accordance with nuclear reactions 

( ) ( ), , 1 ee A Z A Zν −+ → + +  

or 

( ) ( ), , 1 ee A Z A Zν ++ → − +                    (1) 

This occurs against the backdrop of spontaneous decays 

( ) ( ), , 1 e eA Z A Z ν−→ + + +   

or 

( ) ( ), , 1 e eA Z A Z ν+→ − + +                    (2) 

The problem is to detect a small number of reaction acts (1) against the back-
ground of a large number of reaction acts (2). Solution of this problem is possi-
ble due to the fact that in the reactions (2) there are electrons or positrons with 
energies from zero to the upper boundary Emax, characteristic for each nuclide. In 
the case of reaction (1), the emerging electrons or positrons have an energy ex-
ceeding Emax on the energy of the absorbed neutrino or antineutrinos. If neutri-
nos (antineutrinos) appear in nuclear reactions, for example, in the interior of 
the Sun, the excess reaches several MeV. If relic neutrinos with very low energy 
are registered, the electrons have energy close to Emax. 

If the number of induced reactions is much less than the number of sponta-
neous decays, in order to detect effects associated with the action of neutrinos 
(antineutrinos), it is necessary to have detectors that can selectively register elec-
trons (positrons) with an energy exceeding Emax. Geiger counters, proportional 
counters, ionization chambers, semiconductor and scintillation detectors allow 
you to directly register beta particles. Moreover, these detectors allow partially to 
solve the problem of high-energy particles separation by placing a layer between 
the source and the detector of a substance that absorbs the bulk of the particles 
that arise during spontaneous beta decays and which transmits most of the par-
ticles of higher energy. 

It is tempting to use gamma spectrometers to register beta decays. The use of 
such detectors is based on the fact that in most cases, as a result of beta decays, 
nuclei are formed in an excited state, which remove excitation by emitting 
gamma quanta. But the energy of the emerging gamma rays does not depend on 
the energy of the emerging electrons. Therefore, by detecting gamma quanta, it 
is practically impossible to isolate the events of interest related to the action of 
neutrinos (antineutrinos). 

Thus, to detect variations in the rate of beta decays, if they are associated with 
the action of neutrinos (antineutrinos), it is necessary to use beta spectrometers 
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or beta particle detectors in combination with the optimum absorbers of par-
ticles formed during spontaneous decays. The registration of gamma quanta [21] 
[23] [27] cannot lead to success. There can be no success in the search for varia-
tions in decays not associated with weak interactions: in isomeric transitions 
with gamma-ray emission (e.g., 121Snm [21]), and also in alpha decays [12] [16], 
[22] [25], if they are not are members of a chain including beta active nuclides. 

Some works, for example [26], refuting the presence of anomalies in the beta 
decay rate, are done very carefully, but they do not fulfill the conditions allowing 
to detect small changes associated with the desired effect on a high background 
of spontaneous beta decays. In this paper, just as in some others [21] [24], the 
ratio of the decay rates of various nuclides is investigated. But if the neutrino 
flux equally affects the decay rate of different nuclides, the absence of variations 
in the ratio of activities does not mean that there are no variations in the activi-
ties of individual radionuclides. 

An attempt was made in [24] to explain the observed variations by seasonal 
temperature changes. There is no doubt that variability of environmental factors 
in one way or another affects the results of measurements. It is possible that in 
some studies, despite the measures taken, the influence of these factors appears. 
But it is important to pay attention to the fact that the instability of equipment, 
the impact of a changing temperature, pressure, air humidity, the background of 
ionizing radiations, power supplies, etc. very different in different laboratories. 
Nevertheless, if the effect can be detected, when measuring different radionuc-
lides in different laboratories using different types of equipment, its period and 
phase are close [13] [14] [15] [16]. This indicates the existence of a non-trivial 
agent that equally affects the activity of various beta radionuclides. The neutrino 
flux coming from the Cosmos is the most suitable for the role of such an agent. 

With a lot of experiments in which anomalies in the beta-decay process are 
discovered, one can get acquainted in [1]-[20]. This article will describe some of 
the results obtained by the author of this article. 

2. Periodic Changes in the Beta Decay Rate 

To detect anomalies in the course of radioactive decay, it was necessary to create 
a set of facilities that made it possible to obtain and continuously record, over 
the years, various information [15] [16]. The complex consists of sensors with 
power sources, thermostats and a device for continuous multichannel recording 
of information coming from sensors. Information is collected in more than 20 
channels. In particular, data on the main parameters of the environment were 
collected. Comparison of this information with the results of measurements of 
radioactivity makes it possible to judge whether the detected effects are the result 
of effects on the equipment of changes in the environment. 

The testing of various detectors has shown that the most suitable for 
long-term detection of beta particles are halogen Geiger counters, and for alpha 
particles—semiconductor detectors. To reduce the influence of temperature 
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changes, not only detectors with signal amplifiers were thermostated, but also 
power supplies. 

Figure 1 shows the device of one of the installations on which the radiation of 
the beta source 90Sr90Y was recorded. This source consists of two equilibrium ra-
dionuclides. 90Sr emits relatively soft beta particles with a maximum energy of 
546 keV, and 90Y emits particles with energies up to 2.3 MeV. The first Geiger 
counter, type SBM-12, is located in the air cavity at a distance of 2 cm from the 
source. The second Geiger counter of the STS-5 type is separated from the 
source by a layer of aluminum and polyvinylchloride. Container with a source 
and detectors is filled with quartz sand to exclude the influence on the mea-
surement results of beta particles reflected by external objects. The thermostabi-
lization system maintains a temperature of 31˚C ± 0.1˚C in the installation. The 
power supply of the counters is also thermostatted. 

Counter located in the air cavity detects the radiation of both radionuclides, 
and the second, separated from the source by a layer of matter absorbing stron-
tium radiation, registers radiation only of yttrium. 

Figure 2 shows what happened as a result of 12-year measurements with av-
eraging covering more than 10 million pulses, corrected for the exponential de-
cay of activity (half-life 28.6 years). Such averaging is required in order for the 
oscillations to become clearly visible against the background of statistical fluctu-
ations. The magnitude of these fluctuations is shown near the vertical scale. The 
red lines show a deviation from the average by 0.1%. In spite of the fact that the 
measurements were made by counters of different types and the counters were 
in different conditions, they registered in-phase oscillations of the counting rate 
with amplitude of more than 0.1% of the mean value. 

Figure 3 at the top shows how the beta count rate on the average varies 
throughout the year. The results obtained on each calendar day of the year for 7 
years are superimposed and averaged. It can be seen that the results obtained by 

 

 
Figure 1. Scheme of installation for long-term measurement of beta source activity 
90Sr90Y by two counters. The thermostating system (temperature sensor, heater, thermal 
insulation) is not shown in the figure. 
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Figure 2. Results of beta source 90Sr90Y activity measurements by two Geiger counters 
adjusted for a decrease in activity with a half-life of 28.6 years [16]. 

 

 
Figure 3. Beta particles count rate on the average throughout the 
year as well as the main environmental parameters for the annual 
period. 
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three different detectors from two different beta sources on average vary 
throughout the year almost identically. At the same time, the main environmen-
tal parameters that can be suspected as a source of instability of the recording 
equipment are radiation background, temperature, atmospheric pressure, hu-
midity, behave differently. This indicates that there is a phenomenon associated 
with the beta sources, rather than the influence of variations in the parameters of 
the external environment. 

In addition to beta radioactivity, long-term studies of the alpha decay process 
were carried out. To do this, the alpha source 239Pu, located near to the silicon 
detector, was placed with the amplifier in a thermostat at a temperature of 18˚C. 
The results obtained for more than three years are shown in Figure 4 [16]. The 
red lines show a deviation from the average by 0.1%. Green lines show a differ-
ence from the average for 3 standard Poisson deviations. It can be seen that the 
measurement results fluctuate chaotically. No rhythmicity at the level of hun-
dredths of a percent is not visible. 

A large amount of accumulated data makes it possible to apply frequency 
analysis, which allows us not only to clarify the parameters of the observed an-
nual rhythms, but also to reveal other periodicity, imperceptible against the 
background of statistical fluctuations and interference acting at random times. 
For analysis of the results of 90Sr90Y beta particle count rate measurements fast 
Fourier transformation was applied, followed by recalculation of the frequency 
in the periods [13] [14] [15] [16]. On the periodogram, a peak with a period of 1 
year is allocated (amplitude 0.13%) and its harmonics (half, third, quarter of the 
year). In the region of near-monthly periods, peaks with amplitude of about 
0.01% are visible. 

The question arises, which of the known rhythms can be related to the ob-
served near-monthly periodicity? With the period of the change of the lunar 
phases, the period of the Moon’s rotation relative to the stars, the period of the 
change in the distance to the Moon, and perhaps with the period of solar activity 

 

 
Figure 4. Long-term measurements of 239Pu alpha source activity. 
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change associated with the rotation of the Sun-which is also close to 1 month? 
Analysis [15] shows that the clearest correspondence exists with the synodic lu-
nar month having an average period of 29.5 days. This clearly demonstrates the 
averaging of the results of radioactivity 90Sr-90Y measurements for 87 cycles of 
the synodic month. The count rate in the new moon is, on average, 0.02% higher 
than in the full moon. Without special analysis, such changes, unlike annual 
ones, are completely invisible. Only the imposition of epochs and averaging over 
a large number of cycles makes it possible to determine quite reliably the 
rhythms of such small amplitude. 

In the range of shorter periods, the peak of the solar-diurnal period is clearly 
visible, near which peaks corresponding to the star-day and moon-diurnal pe-
riods are visible [13] [14] [15] [16]. The amplitude of the diurnal variations does 
not exceed thousandths of a percent of the mean value and, unlike the variations 
with the annual and monthly periods, it cannot be said with certainty that they 
are not caused entirely or partially by temperature influences on the measuring 
apparatus. 

Summarizing the results of this section, taking into account the results ob-
tained with the use of other detectors and radionuclides [1]-[18], the following 
conclusions can be drawn. Rhythmic changes are characteristic of beta decays 
and are invisible in alpha decays. When using equipment that selectively records 
particles with energy close to the maximum energy of the beta spectrum, there 
are oscillations in the count rate with a period of 1 year and amplitude of up to 
tenths of a percent of the average, maxima from January to March, and lows 
from July to September. Oscillations were detected in radionuclides with 
half-lives from 2.6 hours to 300,000 years. Experiments, in which almost the en-
tire spectrum of beta particles emitted is detected, do not show an anomaly 
greater than 0.01% of the mean velocity. This indicates that the value of periodic 
oscillations do not exceed 1/10,000 of the average beta decay rate. 

3. Short-Term Bursts of Beta Radioactive Nuclides Activity 

Strong outbursts of beta particles count rate are detected with the continuous 
scanning of the celestial sphere by peculiar telescopes in which the beta source is 
located in the focus of the parabolic mirror. One of these types telescopes, with 
which the most striking results are obtained, has a steel mirror with a concave 
parabolic surface 22 cm in diameter with a focal length of 10 cm. A small beta 
60Co source connected to a miniature Geiger counter is located in the focus. Like 
astronomical telescopes, the telescope has two axes of rotation. One is parallel to 
the Earth’s axis. The other axis is perpendicular to the earth’s axis. This design 
allows you to determine which area of the celestial sphere the telescope is point-
ing to. More detailed description of the methodology of these experiments and 
the results obtained can be found in [15] [16] and [20]. 

At the first stage of the researches, the telescope was oriented in a direction 
close to the east, with a fixed inclination above the horizon. Rotating with the 
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Earth, the telescope “viewed” a strip of the celestial sphere about 1˚ wide. The 
count rate was continuously recorded by the computer. The astronomical coor-
dinates of the celestial sphere place, to which the telescope is currently directed 
(declination and right ascension), were determined with an error of about 1˚ on 
the basis of observations of the movement of the image of the Sun. Sometimes, at 
intervals of several months, bursts of counting counts from a few seconds to an 
hour were recorded, at which the count rate many times exceeded the back-
ground count (Figure 5). It was possible to detect these bursts only because of 
the long duration of almost continuous observations, since the total duration of 
recorded bursts did not exceed 1/1000 of the operating time of the installation. 

The effectiveness of observations has increased to several bursts per day in the 
transition from one-dimensional scanning to two-dimensional. For this purpose, 
the telescope was given an oscillatory motion perpendicular to the scanning line 
associated with the daily rotation of the Earth. The amplitude of the oscillations 
is up to 40˚, the “forward stroke” is about 10 minutes, the “reverse” is about 1 
minute, the time of the beginning and the end of the backward movement was 
recorded by a computer with an exact time reference, which made it possible to 
determine to what points of the celestial sphere the telescope “looks” when the 
bursts are discovered. 

The conducted investigations give grounds for the following generalizations 
[15] [16] [20]. The dynamics of the bursts in time is diverse. The simplest form 
is single bursts lasting a few seconds. In this case, the increase in counting speed 
can exceed three orders of magnitude. Longer events (up to several hours) con-
sist of short bursts of different amplitudes that are complexly distributed over 
time. The number of bursts per day and their connection with the orientation of 
the telescope are not clearly reproduced, although on the next days bursts are 
sometimes observed in nearby areas of the celestial sphere. The distribution of 
the telescope directions along the celestial sphere, at which bursts are recorded, 
is uneven. At different areas, the number of recorded events per square degree 
differs by more than 2 orders of magnitude. 

Important results were obtained using detector that allows the extraction of 
beta particles with energy close to the maximum energy of the beta spectrum 
[16]. The 90Sr90Y source was placed in the focus of the parabolic mirror. The 
emitted beta particles were detecting by a detector consisting of stilbene scintil-
lator and silicon photomultiplier. Such detector makes it possible not only to 
count particles, but also to determine their energy. The electronic circuit allows 
registration by two channels. In the former, pulses from particles of almost all 
the beta spectrum were detected. The discrimination threshold in the second 
channel is raised to a value at which the count rate is three orders of magnitude 
smaller than the counting rate in the first channel, but much larger than the 
background count without the source. In this channel, beta particles with energy 
near the upper limit of the 2.3 MeV beta spectrum were detecting. 

Figure 6 shows fragment of signals recording in these two channels. In both 
channels, there are coincident bursts of count rate. Magnitudes of these bursts in  
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Figure 5. Examples of count rate recording of 60Со, located in focus of the telescope with 
a parabolic mirror [15]. 
 

 
Figure 6. Comparison of count rates of bursts at different discrimination levels. On the 
horizontal axis the dates of 2012 [16]. 
 
the channel, where particles with an energy close to the boundary value are rec-
orded, is approximately equal to the magnitudes of the bursts in the channel, 
where the particles of the whole spectrum are recorded. This indicates that the 
emerging particles have energy close to the boundary energy, and not the 
“smeared out” spectrum inherent in the usual beta decay. Thus, during the out-
bursts, there is no intensification of the usual “direct” beta decay, but a nuclear 
reaction of the “reverse” beta decay occurs, as a result of which neutrinos and 
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nuclei interact with the same daughter nuclei as in “direct” beta decay, But the 
emerging electrons are not distributed over the spectrum, but have a fixed ener-
gy. 

4. Influence of Slow Neutrinos on Beta Radioactivity 

The hypothesis of the connection between the variations of beta sources decay 
rate with neutrinos arising in nuclear processes on the Sun [6]-[12] is highly 
questionable in connection with the extreme weakness of interaction neutrino 
arising in nuclear reactions with matter. This was first pointed out by Bethe and 
Peierls shortly after the appearance of the neutrino hypothesis [29]. Assuming 
that the probabilities of direct and inverse processes are the same, they obtained 
the formula 

3 TVσ λ=                            (3) 

where σ  is the reaction cross section, λ  is the de Broglie wavelength of the 
neutrino, T is the mean lifetime of radioactive nuclei, and V is the neutrino ve-
locity. 

In the case of relativistic neutrinos, which are dealt with in nuclear physics, 
hc Eλ =  (h is the Planck constant, c is the speed of light, E is the neutrino 

energy), relation (3) goes over into formula 
3 2 3h c E Tσ =                           (4) 

Substituting in Equation (4) typical for nuclear physics values E = 1 MeV 
(1.6∙10−13 J), T = 1000 s, we obtain the value of σ ~ 6∙10−48 m2, which is confirmed 
by experiments [30]. 

It follows from (4) that 
3 2 3 3 2 3n N N h c E T A h c Eϕσ ϕ ϕ= = =                  (5) 

where n is the number of acts of inverse beta decays per second, A = N/T is the 
number of direct beta decays per second (activity of the source), N is the total 
number of radioactive nuclei, and φ  is the neutrino flux density. 

Let us find the ratio of the rate of reverse beta decays to the rate of spontane-
ous beta radioactivity К = n/A, using the relation (5): 

3 2 3K h c Eϕ=                           (6) 

Substituting into (6) the flux density of solar neutrinos φ  ~ 6∙1014 m−2∙s−1 
[30], we obtain K ~ 3∙10−30. Such insignificant changes in activity cannot be 
measured. 

In the case of neutrinos of very low energies (relic neutrinos) V c , 
h mVλ =  (m is the neutrino mass), the ratio (3) goes over into formula 

3 3 4h m V Tσ =                           (7) 

Since neutrinos, which have very small kinetic energy and mass, cannot make 
a significant contribution to the energy of nuclear reactions, they can react only 
with nuclei that do not have an energy threshold. Such nuclei have beta radioac-
tivity 
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It should be noted that the term “relic neutrinos” arose in connection with the 
fact that initially the presence in the universe of a huge number of neutrinos 
with very low energies was predicted by the “big bang” theory. But it cannot be 
ruled out that there may be other sources of such neutrinos. For us it is impor-
tant that these particles have a rest mass and the speed of motion is so low that 
they are kept by the gravitational fields of the Galaxy, stars and other massive 
objects. Therefore, it is better to call such particles “slow neutrinos”. It cannot be 
ruled out that the anomalies in beta decays are associated not only with neutri-
nos, but also with other electrically neutral particles, capable of participate into 
weak interactions. But we are only considering neutrinos, since the initial as-
sumption of equal probability of direct and inverse beta decays implies the iden-
tity of the decayed particles emitted from spontaneous decays and absorbed 
upon inverse beta decays. 

It follows from (7) that in the case of neutrinos of very low energies 
3 3 4n N A h m Vϕσ ϕ= =                       (8) 

Let us find the ratio of the rate of reverse beta decays to the rate of spontane-
ous beta radioactivity K n A=  using the relation (8): 

3 3 4K h m Vϕ= .                        (9) 

Taking into account that V mϕ ρ= , where ρ is the mass neutrino density, we 
obtain 

3 4 3K h m Vρ=                         (10) 

An important feature of relations (9) and (10) is independence from the 
half-life of the nuclei. Any beta radioactive sources, being in the same stream of 
slow neutrinos, acquire the same relative increase in activity. If during its motion 
the Earth passes regions with different velocities or neutrinos flux density, the 
same relative changes in the activity of different beta sources should occur. 

These calculations do not pretend to be accurate, but clearly show that neu-
trino fluxes can be a tangible cosmic agent. In what follows we will assume that 
the agent that causes additional beta decays is neutrinos moving in the gravita-
tional field of the Galaxy. In addition to galactic neutrinos, neutrino fluxes 
moving in near-solar and near-Earth gravitational fields can influence be-
ta-radioactivity [15] [17] and [32]. But an assessment of their impact on radioac-
tivity is problematic. 

Combining the results of astronomical observations with relations (9, 10), we 
can estimate neutrino flux density, based on the strong dependence of the mag-
nitude of the effect on velocity. Suppose that the main reason for variations in 
activity with a period of 1 year is that the velocity of the neutrino flux coming to 
the solar system is summed with the speed of the Earth’s orbital motion around 
the Sun. 

According to [15] [32], near the solar system the fluxes of dark matter, in-
cluding neutrinos, have a velocity of about 3∙105 m/s and are directed predomi-
nantly perpendicular to the motion of the Sun in the Galaxy at a velocity of 
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about 2.5∙105 m/s. The speed of the Earth’s motion around the Sun is 3∙104 m/s. 
Based on these data, we can calculate that the speed of the Earth’s encounter 
with the flux of galactic neutrinos varies throughout the year from Vmin = 3.7∙105 
to Vmax = 4.1∙105 m/s. When the velocities vary from Vmin to Vmax, the activity  

increase due to the reverse beta decay changes on ( )
3

3 3
min max4 2hK V V a

m
ρ − −∆ = − = , 

where a  is the amplitude of the relative activity change, ρ is neutrino mass 
density, and m is neutrino mass. Therefore 

( )
4

3 3 3
min max

2am
h V V

ρ
− −

=
−

.                        (11) 

In [1]-[17], a change in the count rates of beta particle with an annual period 
up to 0.3% was found. These results prove the existence of variations, but they 
do not allow us to judge the value of a , since they were obtained with strong 
suppression of the beta particles of spontaneous decay. Precision measurements 
with the registering of all or most of the beta decays [21]-[28] revealed no varia-
tions with amplitude greater than 0.01%. Setting a  = 0.0001, we can estimate 
the upper bound of ρ. 

At present, there is no exact data on the mass of the electron neutrino (anti-
neutrinos). A variety of experiments and astronomical observations indicate that 
it does not exceed 1 eV [30]. Relation (11), if we assume a  = 0.0001 and m = 1 
eV (1.78∙10−36 kg), givesρ = 1.3∙10−31 kg/m3 (φ  = 3∙1010 m−2∙s−1). 

Note that the de Broglie wavelength h mVλ =  of slow neutrinos with a 
mass of 1 eV moving in the Galaxy with a velocity of about 4∙105 m/s relative to 
the terrestrial observer has a value near 1 mm. This means that the interaction 
region of these particles covers an enormous number of atoms (~1020 in a con-
densed matter), in contrast to relativistic neutrinos, which interact with only one 
particle. This is the main reason for a radical increase in the efficiency of neu-
trino interaction with matter at very low energies. Another reason is that the 
speed of movement is small, as a result of which the duration of neutrino contact 
with each particle of matter becomes much greater than in the case of “nuclear” 
neutrinos moving at a speed close to the speed of light. The interaction of slow 
neutrinos with matter is similar to the interaction of light with a transparent 
medium: refraction, reflection, and scattering on inhomogeneities occur practi-
cally without exchange of energy. Capture is possible only when interacting with 
beta radioactive nuclei. In addition, interference and diffraction are possible in 
slow neutrino fluxes. 

If surface is sufficiently smooth (unevenness is less than the wavelength), re-
fraction and reflection occur according to the laws of geometric optics, which 
makes it possible to focus by means of lenses or mirrors. This circumstance 
makes it possible to create telescopes for slow neutrinos, using mirrors with a 
concave parabolic surface with a beta source located in the focus [15]. The ad-
vantage of mirrors in front of lenses is the same focus position for any focused 
agent. The reflection and refraction coefficients only affect the degree of ampli-
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fication of the flux density at the focus. 
For telescopes with a diameter D and a focal length f under the action of a 

monodirectional agent having wavelength λ , excess of the flux density in the 
focus above the unfocused flux density 4 2 20.14kD fχ λ= , where k is the coef-
ficient that takes into account reflection losses from the mirrors or as a result of 
absorption in the lenses [15]. The telescope mentioned in the previous section 
has diameter of 22 cm and focal length of 10 cm. For such a telescope with λ = 1 
mm χ = 3.3∙105 k. The quantity k is not known. But it is clear that the telescope 
gives a lot of amplification even with very weak reflection from the mirror. For 
example, for χ = 0.01, k = 3300. 

Telescopes can only be used if the active agent is narrowly directed.  The 
presence of narrowly directed beams in slow neutrino fluxes is associated with 
another important feature of them: the influence of gravitational fields on their 
motion. Slow neutrinos trajectories, as well as other objects of dark matter, is not 
different from any other space objects (stars, planets, asteroids, cosmic dust, etc.) 
and can be calculated by conventional methods of celestial mechanics [15] [32]. 
When neutrino flux passing them past the celestial bodies, on the streams asso-
ciated with the orbital movements, phenomena associated with the gravitational 
focusing are superimposed. The essence of the gravitational focusing is that the 
trajectories of particles flying past a massive body, such as a star, bend to the axis 
connecting the center of the gravitating body and the observer. The magnitude 
of the bend depends on the distance of the trajectory to the center of gravity. 
There is such a distance at which the bent trajectory falls precisely into the ob-
server. All particles passing at such a distance from the center of gravity are 
“collapsed” at the observation point, as a result of which the flux density in-
creases sharply. This effect is analogous to light gravity lensing. But due to the 
fact that the speed of dark matter particles (including neutrinos) is much less 
than the speed of light, their focusing by the gravitational fields of celestial bo-
dies is incomparably stronger [15] [32]. Since gravitational focusing occurs with 
a completely determined mutual position of the focusing celestial body and tar-
get, which are in motion, this effect must be observed in the form of bursts. It is 
this kind of signal that was observed when working with telescopes with para-
bolic mirrors, in particular, with the telescope described in the previous section 
of this article. Strong bursts, at which the counting rate of beta particles in-
creased by 2 - 3 orders of magnitude, were recorded quite rarely (at best, several 
times a day) at unpredictable instants of time. But, in addition, events were rec-
orded that occurred at the predicted time when the telescope was being directed 
to a given area of the celestial sphere. 

Intent of this experiment was based on the idea of gravitational focusing of 
slow neutrino fluxes by a certain star and secondary focusing by the Sun. This 
effect can be observed if the star, the center of the Sun and the observer located 
on the Earth are on the same straight line. Close connections of the Sun with the 
near-by stars are rather rare events, the time of which is easy to determine using 
astronomical atlases. For example, on August 19 of each year the star v Leo  
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Figure 7. Count rate when scanning a near-solar region of the celes-
tial sphere with a telescope with a focusing mirror 22 cm in diameter 
[15] [16]. 

 
passes at a distance of 5 angular minutes from the center of the Sun. On this day 
of 1994, the telescope was directed in such a way that the scanning path of the 
celestial sphere passed through the Sun. When the telescope was aimed at a re-
gion near the Sun, a strong burst of count rate was recorded. A similar burst was 
registered exactly one year later (Figure 7). Similar bursts were recorded on 
August 1 and 28, 1994, when there were close connections with the Sun of stars 
Cnc and 45 Leo, and also repeatedly on July 29 and 30, when the solar disk was 
projected onto the scattered star cluster M44 [15] [16]. On the other days of sig-
nificant bursts of count rates were not found. 

5. Conclusions 

In a variety of experiments, periodic changes in beta particles count rate with 
amplitude up to tenths of percent were observed. However, such variations can 
be detected only with the predominant detection of particles with energies close 
to the maximum energy of the beta spectrum. This indicates that the observed 
oscillations in the count rate are associated with the action of neutrino fluxes. 
This is also indicated by the absence of such anomalies in alpha decays, in which 
the neutrino does not participate. Experiments in which most particles of beta 
spectrum are detected do not show periodic deviations from the usual beta decay 
process of more than 0.01%. This indicates that the periodic anomalies do not 
exceed 1/10,000 of the average beta decay rate. 

Short-term irregular bursts of count rate of beta particles can be observed by 
placing a radioactive source in the focus of a concave parabolic mirror. These 
bursts can highly exceed the normal counting rate. The energy of the detected 
particles, as in the case of periodic anomalies, is close to the maximum energy of 
the spectrum of spontaneous beta decays. 

In contrast to the hypothesis about the effects on beta radioactivity of solar 
neutrinos, the assumption of the possible involvement of space slow neutrinos in 
the process of beta decay allows, without departing from the scope of existing 
scientific knowledge, complex to explain not only the periodic and sporadic 
changes in the beta decay rate, but also a number of other phenomena associated 
with beta radioactivity, for example, inexplicable effects observed in the mea-
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surement of the neutrino mass by tritium decay beta studies [15] [17] [31]. It is 
important to note that the hypothesis about the impact of slow neutrinos on the 
beta decays gives experimentally testable predictions, some of which have al-
ready been confirmed. 
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Abstract 
Private monochromatic solutions of the free-field equation of elec-
tro-gravimagnetic charges and currents are constructed in the differential al-
gebra of biquaternions, which describe elementary particles as standing elec-
tro-gravimagnetic waves. The two classes of solutions of this biquaternionic 
wave equation have been investigated, generated by scalar potentials (pulsars) 
and vectorial potentials (spinors). Their asymptotic properties are considered, 
on the base of which they are classified into heavy (boson) and light (lepton) 
elementary particles. The biquaternion representation of the hydrogen atom is 
given. The periodic system of elements is produced, which is built on the 
principle of the musical structure of a simple gamma. 
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1. Introduction 

In [1] [2] [3], the author developed a biquaternion model of the electro- 
gravimagnetic field (EGM-field) and electro-gravimagnetic interactions. Its basis 
is made up of biquaternion representations of the generalized Maxwell and 
Dirac equations. The biquaternion representation of the Maxwell equations 
expresses the biquaternion of the mass-charge density and the EGM-current 
through the bigradient of the EGM-field tension. The biquaternionic represen- 
tation of Dirac equations determines the transformation of the density of mass 
charges and currents under the influence of external EGM-fields. In particular, 
in the absence of external fields, it is the biquaternionic wave (biwave) equation 
for the free field of mass-charges and currents, which is a field analogue of first 
Newton’s law (inertia law). 
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Here we construct particular monochromatic solutions of this equation that 
describe elementary particles as standing EGM-waves. They can be divided into 
two class, generated by scalar potentials (pulsars) and vector ones (spinors). 
Their asymptotic properties are investigated, on the basis of which they are 
classified into heavy (bosons) and light (leptons) elementary particles. It is 
shown that bosons are spherical harmonic pulsars whose mass-charge density is 
determined by their frequency of oscillations. This allows us to build periodic 
systems of elementary particles based on the classical harmonic musical scale. 

In particular, the biquaternion representation of the hydrogen atom is given 
and the periodic system is produced, which is built on the principle of the 
musical structure of a simple harmonic scale. 

2. Inertia Law for Monochromatic Fields of 
Charges-Currents 

The equation for the free field of charge-currents has the form of a 
homogeneous biwave equation [1] [2]: 

( ) ( ) ( ) ( )( ), , , 0x i i x J xττ ρ τ τ−∇ Θ ∂ − ∇ + =               (1) 

Here, ( ), xτΘ  is the biquaternion of the charge-current, the secular part of 
which ( ), xρ τ  describes the density of the electric and gravimagnetic charge 
(EGM-charge or mass-charge), and the vector ( ),J xτ  is the density of the 
electric and gravimagnetic current (EGM-current), more exactly: 

1 ,E Hi
ρ ρ ρ

ε µ
= −  

,E HJ j i jµ ε= −  

where ( ) ( ), , ,E Ex t j x tρ  are the electric charge and electric current densities, 
( ) ( ), , ,H Hx t j x tρ  are the gravimagnetic charge density and current density; 

,ε µ  are the constants of electric conductivity and magnetic permeability of 
vacuum, 1c εµ=  is speed of light, i is imaginary unit. 

The action of the biquaternion differential operators −∇  and +∇  (mutual 
bigradients) is determined, according to the quaternion multiplication rule (see 
Appendix), by the formula 

( ) ( ) ( ) ( )( )
( ) { }

F , , ,

div grad rot

x i f x F x

f i F i f F i F
τ

τ τ

τ τ τ±∇ = ∂ ± ∇ +

= ∂ + ± + ∂ ±





 

The biquaternion of the energy-momentum of the F-field is given by 

( ) ( ) ( ) *, , , 0.5F F ,x W x iP xτ τ τΣ = +    

where *F  is the conjugate biquaternion 

( ) ( )*F , , .f x F xτ τ−  

Here the bar over the symbol means complex conjugation. 
The scalar part W is the energy density of the F-field, and P is the analog of 

the generalized Poynting vector of the F-field, just as a generalized Poynting 
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vector is constructed in the biquaternionic representation of the electromagnetic 
field (in detail about the differential algebra of biquaternions with an application 
in electrodynamics, see [4]). 

The scalar part of the Equation (1) is the law of conservation of the 
EGM-charge: 

div 0,Jτ ρ∂ + =  

and the vectorial part describes the relationship between charges and currents 
in the absence of external EGM-fields: 

rot grad 0.J i Jτ ρ∂ − + =  

For monochromatic fields of frequency ω , the biquaternion of the 
charge-current can be represented in the form 

( ) ( ) ( ), , exp , 0.x x iτ ω ωτ ωΘ Θ >                (2) 

In this case, from the Equation (2) we obtain the equation for biquaternions of 
complex amplitudes ( biamplitudes) ( ),x ωΘ : 

( ) ( ) ( )( ) 0.i x J xω ρ−∇ + =  

As 

( ) ( ) ( ) ( ) 2 ,ω ω ω ω ω+∇ −∇ = −∇ +∇ = + ∆   

it follows that the biamplitudes satisfy the Helmholtz equation 
2 0ω∆Θ+ Θ =  

and monochromatic solutions have the form: 

( ) ( )( ) ( ) ( )
3

0

1
, exp , , ,j

j
j

x i x x eτ ωτ ω ψ ω ψ ω
=

 
Θ = +∇ + 

 
∑        (3) 

where the potentials jψ  are arbitrary solutions of the homogeneous Helmholtz 
equation 

2 0,ψ ω ψ∆ + =  

which have the form of a surface integral 

( ) ( ) ( ) ( ),, , e di xj jx Sξ

ξ ω
ψ ω ϕ ξ ω ξ−

=
= ∫                (4) 

for any function jφ  that is integrable on a sphere of radius ω . 

3. Biquaternions of Harmonic Elementary Particles 

We consider particular solutions of the Helmholtz equation [5] [6] 

( ) ( ) ( ), ,m
nm n nx j r Yψ ω ω ϑ φ=                   (5) 

where ( )nj rω  are spherical Bessel functions of order 0,1,2,n =  ; ( ),m
nY ϑ φ - 

spherical harmonics of order ( ), , 0,1, 2,n m m =   

( ) ( ) ( ), cos expm m
n nY P imϑ φ ϑ φ=  

( )...m
nP  are the associated Legendre polynomials, ( ), ,r ϑ φ  are spherical 
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coordinates. 
It is natural to take these solutions for the construction of elementary particles, 

which can be called harmonic. Among them we select the ones generated by the 
scalar potential, which we call pulsars: 

( ) ( ) ( )
( ) ( )

0 , ,

, grad ,
nm nm

nm nm

x x

x x

ω ω ψ ω

ωψ ω ψ ω

Θ = +∇

= +



             (6) 

and particles, generated by a vector potential, we call spinors: 

( ) ( ) ( )
( )( ) ( ) ( )( ){ }

, ,

div , , rot ,

j
nm nm j

nm j nm j nm j

x x e

x e x e x e

ω ω ψ ω

ψ ω ωψ ω ψ ω

Θ = +∇

= − + +



       (7) 

The latter are polarized in the direction of the coordinate axes, respectively, to 
the index 1,2,3j = . 

4. Biquaternions of Monochromatic Structures. Crystals 

Using structural biquaternions of arbitrary form ( )K x , on their basis, by the 
operation of biquaternion convolution 

( ) ( ) ( ) ( )

( ){ } ( ){ }3 3

1 , , 1

, K

j j jlm j l mj j l m

x x i J k K

i k J K i K J k J K e

ω ρ

ρ ρ ε
= =

Θ ∗ = + ∗ +

= ∗ − ∗ + ∗ + ∗ + ∗∑ ∑
   (8) 

where jlmε  is the Levi-Civita pseudo-tensor, it is possible to construct a variety 
of monochromatic fields of charge-currents: 

( ) ( ) ( )
3

0
, , Kj

nm j
j

x x xω ω
=

Θ = Θ ∗∑                  (9) 

In (8) there are functional convolutions, which for integrable functions have 
the integral form: 

( ) ( ) ( ) ( )3 1 2 3d d d
R

x k x y k x y y y yρ ρ∗ = −∫  

Component convolutions for vectors are written similarly. By virtue of the 
differentiation property of convolution, the convolutions (9) are also solutions of 
the equations (1). 

Formulas (9) allow us to construct various crystal lattices from harmonic 
elementary particles, if we take lattices as the structural biquaternion the 
different shifts of the δ-function, and other generalized functions. 

We give here a simple example of an inhomogeneous rectangular lattice with 
variable step ( ), ,l m nh h h  and weight lmna : 

( ) ( ) ( ) ( )1 2 3
0 0 0

K
L M N

lmn
l m n

l m n
x a x h x h x hδ δ δ

= = =

= − − −∑ ∑∑  

It corresponds, for example, to such a crystalline ω-pulsar 

( ) ( )0
1 2 3

0 0 0
, , , ,

L M N
lmn

l m n
l m n

x a x lh x mh x nhω θ ω
= = =

Θ = − − −∑ ∑∑  

The formulas (7)-(9) make it possible to construct a wide variety of 
monochromatic structures, such as crystals, bodies, tissues and filaments (for 
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more details, see [2]). And their frequency superpositions are generally immeasu- 
rable. 

5. Elementary Spherical Harmonic Pulsars and Their 
Properties 

Among the solutions of the Helmholtz Equations (7), only one is spherically 
symmetric [5]. It is 

( ) ( )00 0
sin, rx j r

r
ω

ψ ω ω
ω

= =                     (10) 

Here 2 2 2
1 2 3r x x x x= = + + , ( )0j rω  are spherical Bessel functions. 

The biamplitude of the corresponding pulsar is 

( ) ( ) ( )0
00

2

, ,

sin sin sin cos singrad ,x x

x x

r r r r r e e x r
r r r r r

ω ω ψ ω

ω ω ω ω ω
ω

ω ω ω

Θ = +∇

 = + = = + − = 
 





  (11) 

Whence follows 

0 0 1
1 1

sinsin cos ei
x

ri J r r r e
r

ωτω
ρ ω ω

ω
−   + = + −  

  
 

0 0
2

sin cos sine , ei i
x

i r r rJ e
r r r

ωτ ωτω ω ω
ρ

ω
− = − = − 

 
 

0 0
2

sin cos sin,
r r rJ

r r r
ω ω ω

ρ
ω

⇒ = = −  

We denote by 

( ) ( )1
sincos .zj z z z j z

z
= − = −  

Calculating the biquaternion of its energy-momentum 

( ) ( )
( )( ) ( )( )

( )( ) ( ){
( ) ( )[ ]}

*0 0 0 0 0

2

2 2 2

2

, 0.5 e e

0.5 sin sin

0.5 sin sin

sin , ,

i i

x x

x

x x x

x W iP

r r j r e r j r e

r r j r r j r e

r j r e j r e e

ωτ ωτω

ω ω ω ω

ω ω ω ω

ω ω ω

−

−

−

Ξ = + = Θ Θ

+ −

= + +

− −



 

 

we get 

( )( )0 2 2 20.5 sin , 0.W r r j r Pω ω−= + ≡               (12) 

It follows from (11)-(12) that the density of the mass-charge decreases as 1r−  
by increasing r, and the oscillation energy decays even more rapidly, as 2r− . 

It is interesting to investigate the asymptotic of these quantities as 
0,r constω→ = . Since 

( ) ( ) ( )

( ) ( ) ( )

2
1

2 3 2

sincos

1 1 ~ 0,
2 6 3

rj r r j r r
r

r r r
r

r

ω
ω ω ω ω

ω
ω ω ω

ω

= = −

= − − + + − →

        (13) 
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from (11) and (13) we obtain: by 0r →   

( )0 ~ ,o rρ ω ω ω= +  

2 2 3 3
0 2 2 2

2

0.5 6 20.5 6 ~ ,
3

r r r rJ r r
r r

ω ω ω ω
ω ω ω

ω
+ −

≈ − ≈ +  

( )2 4 2 2~ 0.5 9 ~ 0.5 .W rω ω ω+  

Let us now list these properties. 
The properties of spherical pulsars. In spherical harmonic pulsars at the center 

at 0x = , the mass-charge density is equal to its oscillation frequency ω ; the 
density of the EGM-current is zero; the energy density is equal to 20.5ω ; and 
the Poynting vector equal to zero everywhere. 

Proceeding from these properties of mass-charge density, spherical harmonic 
pulsars are heavy elementary particles—bosons. 

Non-spherical harmonic pulsars (6) for 0n >  have zero density at 0x = , 
because [5] 

( ) ( ) ( )( )1 0.
2 1 !!

n

n
zj z o z z

n
= + →

+
 

They are light elementary particles—leptons. 

6. Elementary Spherical Harmonic Spinors and Their 
Properties 

Consider a spinor polarized in direction 1X : 

( ) ( )0 0 0 0
1 1 1 1, , e ,ix t i J x ωτρ ωΘ = + = Θ  

whose biamplitude is 

( ) ( ) ( )
( )( ) ( ) ( )( )

( )

0
1 0 1

0 1 0 1 0 1

1 2

1 3 2 2 32

,

div rot

cos sin,

sin cos sin , , , , j
j

x j r e

j r e j r e j r e

r rr
r r

xr r re r e r e r
r r xr

ω ω ω

ω ω ω ω

ω ω
ω

ω ω ω
ω

Θ = +∇

= − + +

 = − − 
 

  + + − − =  
  



      (14) 

Whence follows 

( )0 1
1 2 ,ix j r

r
ρ ω= −  

( )( )( )0 1
1 1 3 2 2 3sin , , ;J r e r j r r e r eω ω−= + −  

( ) ( )
( )2 22

2 30 21
1 2 4

, sin,
x xr rj r J j r

r r r
ω

ρ ω ω
+

= = +  

We calculate the biquaternion of the energy-momentum and its asymptotic: 

( )0 0 0
1 1 1, ,x W iPωΞ = +                      (15) 
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( ) ( )
( )

( )
( )

( )( )

2 222
2 30 2 21

1 2 4

2 2 22
1 2 32

2 4

2 2 2

,sin2

sin

sin .

x xrrW j r j r
rr r

x x xr j r
r r

r r j r

ω
ω ω

ω
ω

ω ω−

+ = + + 
 

+ +
= +

= +

 

0
1 0.P ≡  

We construct their asymptotic for 0r →  with allowance (13): 
2 2 3 3

0 21
1 12

1~ 1 1 0,
2 6 3

x r r x
rr

ω ω
ρ ω

ω
 
− − + = → 

 
 

( ) ( ) ( )2 22 4
2 3

2 4~ ~ ,
9

x xr r
J

r r
ω ω

ω ω
+

+ →  

( ) ( )( )

( ) ( ) ( )

233

2 2 2

2 2 4 2
2

681 2~ 1
62

1 4 1 11 2 1 ~ 0.5 .
3 3 362

r rrrW
r rr r

r r r
r

ω ωωω
ω ω ω

ω ω ω ω

 − 
− + + 

 
 
 = − + + − + 
 

 

Following (14), we easily obtain a biquaternion representation of the spherical 
spinor polarized along the vector , 1e e = : 

( ) ( ) ( )
( )( ) ( ) ( )( )

0
0

0 0 0

0 0

,

div rot
e

e e

x j r e

j r e j r e j r e

i J

ω ω ω

ω ω ω ω

ρ

Θ = +∇

= − + +

= +



 

where 

( ) ( )( )0 0 1, sinx
e e jkl j k l

e j r J r e r j r x x e
r

ρ ω ω ω ε−= − = +  

with the same asymptotic properties. 
So we have the following properties of the constructed spinors. 
Properties of harmonic spherical spinors. For spherical harmonic spinors at 

the center (for 0x = ), the mass-charge density is zero, the norm of the density 
of the EGM-current vector is ω , the energy density is 2 2ω , the Poynting 
vector is equal to zero. 

Thus, spherical harmonic spinors in terms of the density of the EGM-charge 
belong to light elementary particles—leptons. 

7. Biquaternion Model of the Hydrogen Atom 

Thus, we have shown that among the monochromatic solutions of the charge- 
current free field Equations (1), only harmonic spherical pulsars have a nonzero 
density at their center, which is not the case for harmonic spinors. This suggests 
that spherical harmonic pulsars can be used to construct a biquaternion model 
of atoms. 
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The simplest atom is hydrogen (H). The simplest harmonic elementary 
particle is the above described spherical pulsar. I think they can be identified, 
namely: 

The hydrogen atom is a spherical harmonic pulsar with fixed oscillation 
frequency 

0Hω . It has the following biquaternionic representation 

( ) 0 0
0 0

0

1
0

sin
H , sin cos e .HiH

H H x
H

r
x r r r e

r
ω τω

τ ω ω
ω

−
   = + −      

       (16) 

The asymptotic properties of its density at the center of an atom are related to 
the frequency of the oscillations: 

( ) ( ) ( )
0 0 0 0

2 22, ~ , , ~ , ~ 0.5 , 0.
3H H H Hx J x r W x rρ τ ω τ ω ω →    (17) 

The nodes of this standing wave with respect to the mass density 
0Hρ  are 

spheres whose radius is determined by a simple trigonometric equation 

0
0

πsin 0 , 1,2,H k k
H

kr r kω
ω

= ⇒ = =   

To determine the nodes of this standing wave from the energy density 
0HW , it 

is necessary to find the zeros of the more complicated equation: 

0 0 0 0

2 2 2sin 2 sin 0H k H k H k H kr r r rω ω ω ω+ − =                 (18) 

where 
0

k
k

H

zr
ω

= , kz  are the roots of the transcendental equation: 

( ) 2 2sin 2 sin 0f z z z z z= + − =  

However, this equation has no real roots. 
Using the representation of complex charges and currents through electric 

and gravimagnetic charges and currents (1), we obtain for the hydrogen atom 
the following expressions for its electric and gravimagnetic charges, electric and 
gravimagnetic currents: 

( )

( )

0
0 0

0
0 0

, cos sin ,

, sin sin

HE
H H

HH
H H

w x
t x w t

r c
w x

t x w t
r c

ε
ρ

µ
ρ

= −

=

 

( )

( )

0 0
0 0

0

0 0
0 0

0

1, cos cos sin

1, sin cos sin

H HE
H H x

H

H HH
H H x

H

w x w xcJ t x w t e
c w r cr

w x w xcJ t x w t e
c w r cr

µ

ε

 
= −  

 
 

= − −  
 

 

Accordingly, in the initial space-time, the biquaternion of hydrogen has the 
form: 

( ) ( ) ( ) ( )0
0

0 0
0

0

sineH , sin cos .
Hiw t

H
H H x

H

c w r c
t x w r c w r c e

r w r

    = − + −     
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Here xe x x= , vibration frequency of a hydrogen atom 
0 0H Hw cω= . 

Accordingly (17), by 0r →  

( ) ( ) ( ) ( )
( )0

0 0 0 0 0

2
22, ~ , , ~ , ~ .

3 2
H

H H H H H

cw
x cw J x cw r W xρ τ τ  

Note that the energy density contains the square of the speed of light. Since 
the mass-charge density is determined by the oscillation frequency, the last 
formula correlates with the known Einstein’s formula for the total energy of a 
body with a fixed mass. 

8. Biquaternion Representation of Atoms. Simple Gamma 

So, in the biquaternionic representation, the hydrogen atom is a spherical 
harmonic standing wave with a fixed frequency in the field of EGM charge- 
currents. 

Since the main characteristic of the hydrogen atom is the oscillation frequency, 
which determines its mass, on its basis it is possible to construct a periodic 
system for atoms of substances according to the principle of the musical scale. 
As the frequency of vibrations increases, the mass of the atom increases. 

The musical scale is a system of octaves with frequency doubling for each 
subsequent octave: 

0 0 0 0 0
, 2 , 4 ,8 ,16 ,H H H H Hω ω ω ω ω   

The ratio of vibration frequencies for atoms inside the n-octave: 

0 0

12 , , 2n n
H Hω ω−
  

like the ratio of tone frequencies within the musical scale. Number of tones in 
the musical scale depends on the type of musical system. 

There are many musical structures, which are largely related to the national 
peculiarities of the musical perception of the peoples who created them. Here in 
Table 1 two musical systems are given ( simple gamma, [7]), which can be taken 
as a basis, in which the ratio frequency of tones is a rational number. For such 
tones (notes), there is the total period of oscillations, which is determined by the 
least common multiple for the period their harmonies, which makes it possible 
to harmoniously sound the accords from different notes. For each of them, in 
nature, there are substances that possess the described above properties. Which 
of them corresponds to Mendeleyev’s periodic table? It should be the subject of a 
special study for specialists in area of physical chemistry, spectral properties of 
substances. 

Perhaps among these three structures in Table 1 there is no such. But a 
similar musical scale should be, which contains the frequencies of these scales. 
The number of tones within an octave can be changed with growth octave 
numbers, but all the similar tones of the previous octave in it should be present, 
which explains the repeatability of chemical properties of substances in columns 
of periodic Mendeleyev’s system, just as the musical sounds are harmonious for 
perception for octaves and chords composed of them. 
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Table 1. Simple gamma. 

Clean structure  

Prima (ut) 
Major 

secunda 
(re) 

Major 
tertius (mi) 

Quartus 
(fa) 

Quintus 
(sol) 

Major 
sextus (la) 

Major 
septim (si) 

Octabas ut 

ω 9ω/8 5ω/4 4ω/3 3ω/2 5ω/3 15ω/8 2ω 

Pentatonic structure 

Prima Secunda Tertius - Quintus Sectus - Octabas 

ω 9ω/8 5ω/4 - 3ω/2 5 ω/3  2ω 

 

Proceeding from this, the atoms can be called musical elementary particles 
with the appropriate names. The hydrogen atom is the note ut of the first natural 
octave. Correspondingly, the biquaternion of the k-th atom in the n-th octave 
has the form 

( ) ( ), sin1Atom , e sin cos .nk nkiw tn k nk nk
x

nk

c w r cw wt x r r e
r c c w r

      = − + −     
      

 

Here the frequency of oscillations of the atom 

0
2 ,n

nk k Hw wγ=  

where kγ  is the k-th coefficient in the table of the corresponding musical scale. 
For it, all the above formulas for a spherical harmonic pulsar are correct by the 
frequency of oscillations corresponding to it. 

9. Conclusions 

How many such natural octaves exist? Obviously, no less than the number of 
rows in the periodic system of Mendeleyev. 

Let us note that the twelve-tempered musical scale, now accepted in classical 
music, with twelve notes inside the octave, can not be taken, since the ratio of 
frequencies of consecutive tones in it is a number irrational 12 2  and the 
general period of oscillation for any set of tones in the octave does not exist. 
Complete harmonious sound in this system can not be achieved. This is well 
known to the orchestral musicians of strings and wind instruments, the sound of 
which is determined by the above described musical arrangements. As is known, 
with disproportionate oscillation frequencies, beats occur. 

Such periodic systems can be constructed for elementary harmonic leptons 
(spinors and asymmetric pulsars), whose addition to atoms with the same 
vibration frequency apparently creates isotopes of these atoms. Moreover, the 
addition of the spinors is connected with the magnetization of matter. It is 
possible to construct many different isotopes with the same asymptotic density 
of the EGM charge. Which of them exist in nature is also a matter of special 
experimental research. 

We also note that this description of atoms is based on the construction of 
solutions to the equations of the free field of charge-currents. Under the influence 
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of external fields, charges and currents are transformed. Their transformation is 
described by the generalized Dirac equation (see [3]). In particular, under the 
influence of stationary EGM-fields, the oscillation spectrum shifts, which should 
be taken into account in the experimental substantiation of the model, are 
considered here. 

At present, the most widespread and canonized representations of light and 
heavy elementary particles and atoms are constructed on the basis of solutions of 
the equations of quantum field theory. The bibliography in this direction is half 
a century old and very extensive. Here we use the names for heavy and light 
particles adopted in this theory. However, the represented biquaternion model is 
completely different, deterministic, based on the determination of the real physical 
characteristics of elementary particles and atoms, rather than probabilistic ones. 
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Appendix 

To use biquaternions algebra we give here some definitions. 
We consider on Minkowski space ( ){ }, xτ=  the functional space of 

biquaternions in hamiltonian form: 

( ) ( ) ( ){ }, ,F f x F xτ τ= = +   

f is a complex function, 3
1 j jjF F e
=

= ∑ —a three-dimensional complex vector- 
function; 3

1 j jjx x e
=

= ∑ , 0 1e = , 1 2 3, ,e e e  are basic elements. 
We assume ( ) ( ), , ,jf x F xτ τ  are locally integrable and differentiable on   

or, in general case, they are generalized functions. 
Summation and quaternionic multiplication are defined as 

( ) ( ) ( ) ( ) ,f F b B f b F Bα β α β α β α β+ = + + + + + +F B  

( ) ( ) ( ) [ ], , ,f F b B fb F B fB bF F B= + + − + + +  F B  

where ( ) [ ], , ,j j jkl j k lF B F B F B e F B= =   are usual scalar and vector productions 
in R3 (here over repeated indexes there are summation from 1 to 3, jkl  is 
Levi-Civita symbol). 

The norm and pseudonorm of Bq. are denoted 

( )2 2 2 2 2 2F , F , , , .f F f F f ff F F F= + = − = =  

We’ll use convolution of biquaternions: 

( ) .j j j j j j jkl j k lf b F B f B e b F e e F B∗ = ∗ − ∗ + ∗ + ∗ + ∗F B  

For regular components a convolution has the form: 

( ) ( ) 1 2 3, , d d d d ,f b f t x y b t y t y y yτ∗ = − −∫  

to take a convolution for singular generalized function and conditions of 
convolution existence see [6]. 

Mutual bigradients ,+ −∇ ∇  are the differential operators 

( ) ( ) ( ) [ ], ,

div grad rot

i b B b i B i b B i B

b i B i b B i B
τ τ τ

τ τ

±∇ = ∂ ± ∇ + ∂ ∇ ± ∇ ± ∂ ± ∇

∂ ± ± ∂ ±

  

 

B
 

which are taken corresponding to the sign. 
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Abstract 
Since the first demonstrations of nuclear magnetic resonance (NMR) in con-
densed matter in 1946, the field of NMR has yielded a continuous flow of 
conceptual advances and methodological innovations that continues today. 
Much progress has been made in the utilization of solid-state NMR to illumi-
nate molecular structure and dynamics in systems not controllable by any 
other way. NMR deals with time-dependent perturbations of nuclear spin 
systems and solving the time-dependent Schrodinger equation is a central 
problem in quantum physics in general and solid-state NMR in particular. 
This theoretical perspective outlines the methods used to treat theoretical 
problems in solid-state NMR as well as the recent theoretical development of 
spin dynamics in NMR and physics. The purpose of this review is to unravel 
the versatility of theories in solid-state NMR and to present the recent theo-
retical developments of spin dynamics. 
 
Keywords 
Solid-state NMR, Hamiltonian Theory, Floquet Theory, Floquet-Magnus  
Expansion, Fer Expansion 

 

1. Introduction 

As front-line theories to control spin dynamics in solid-state nuclear magnetic 
resonance, the average Hamiltonian theory (AHT) and Floquet theory (FLT) 
have assumed great prominence and influence since the development of multiple 
pulse sequences and the inception of magic-angle spinning (MAS) methods in 
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the 1960s [1] [2] [3] [4] [5]. The first endeavor in NMR to tackle with 
time-dependent Hamiltonians was built on the Magnus expansion that generat-
ed in AHT [6]-[12]. The AHT formalism describes how periodic pulse sequences 
can be used to control or transform the symmetry of selected interactions in 
coupled, many-spin systems, enabling the creation of effective Hamiltonians 
with fascinating and useful properties. From its natural formulation, this is the 
most widely used approach which has been applied to almost every kind of situ-
ation, sometimes abusively [13] [14] [15] [16] [17]. 

Floquet theory dissimilar to AHT, is not restricted to stroboscopic observa-
tion, yield a more universal approach for the description of the full time depen-
dence of the response of a periodically time-dependent system [18] [19] [20] 
[21] [22] [23]. Methods developed over the past decade have enabled us to make 
a significant progress in the area of solid-state NMR by introducing an alterna-
tive expansion scheme called Floquet-Magnus expansion (FME) used to solve 
the time-dependent Schrodinger equation which is a central problem in quan-
tum physics in general and solid-state NMR in particular [9] [11] [24]. The FME 
establish the connection between the ME and the Floquet theory, and provides a 
new version of the ME well suited for the Floquet theory for linear ordinary dif-
ferential equations with periodic coefficients [9] [11] [24] [25] [26] [27]. We 
have proved that the ME is a particular case of the FME which yields new aspects 
not present in ME and Floquet theory such as recursive expansion scheme in 
Hilbert space that can facilitate the implementation of new or improvement of 
existing pulse sequences [24] [28]. In the same vein, Madhu and Kurur have re-
cently introduced the Fer expansion (FE) in Solid-State NMR [29] [30]. The Fer 
expansion was formulated by Fer and later revised by Fer [29], Klarsfeld and 
Oteo [31], Casas et al. [32], and Blanes et al. [33]. This expansion employs the 
form of a product of sub-propagators, which appears to be suitable for examina-
tion of time-dependence of the density matrix for each average Hamiltonian at 
different orders. Some papers which outline the comparison of both theories 
(FME and FE) in NMR and physics were recently published in the solid-state 
NMR, chemical physics, and physics [34] [35]. 

2. In the Beginning 

Historical overview of the first observations of NMR: Normally, credit for NMR 
first observation should go to Rabi and co-workers in 1939 who used a beam of 
silver atoms [36]. The noticeable change in the fluxes of beams representing the 
different energy states of the nuclear magnetic moments was the detection of 
transitions. However, the term NMR has come to be used as a convention for 
experiments, which differ from those of Rabi. The experiments set by the con-
vention in respect of NMR are those through the detection of the transitions 
with the energy absorbed from the RF field rather than through changes in the 
particle flux reaching a detector as in the beam experiments. Next, the term 
NMR is commonly reserved for phenomena occurring in bulk matter rather 
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than in a beam of essentially non-interacting atoms. As a result of these two im-
portant conventions, the first observations of NMR are attributed to two inde-
pendent groups: Purcell, Torrey and Pound, working on the east coast of Amer-
ica and Bloch, Hansen and Packard working on the west coast. They published 
their discoveries almost simultaneously in the same volume of Physical Review 
in 1946 [37] [38] [39]. The following is the list of Nobel Price laureates awarded 
in NMR: 
• Otto Stern, USA: Nobel Prize in Physics 1943, “for his contribution to the 

development of molecular ray method and his discovery of the magnetic 
moment of the proton”. 

• Isidor I. Rabi, USA: Nobel Prize in Physics 1944, “for his resonance method 
for recording the magnetic properties of atomic nuclei”. 

• Felix Bloch, USA and Edward M. Purcell, USA: Nobel Prize in Physics 1952, 
“for their discovery of new methods for nuclear magnetic precision 
measurements and discoveries in connection therewith”. 

• Richard R. Ernst, Switzerland: Nobel Prize in Chemistry 1991, “for his 
contributions to the development of the methodology of high resolution 
nuclear magnetic resonance (NMR) spectroscopy”. 

• Kurt Wüthrich, Switzerland: Nobel Prize in Chemistry 2002, “for his 
development of nuclear magnetic resonance spectroscopy for determining 
the three-dimensional structure of biological macromolecules in solution”. 

• Paul C. Lauterbur, USA and Peter Mansfield, United Kingdom: Nobel Prize 
in Physiology or Medicine 2003, “for their discoveries concerning magnetic 
resonance imaging”. 

An important landmark to describe the effect of time-dependent interactions 
and the accompanying improvements was the introduction of average Hamilto-
nian theory in solid-state NMR. Since its formal inception in 1968 by John 
Waugh, the average Hamiltonian theory has become the main tool to study the 
dynamics of spin systems subject to an RF perturbation and the most popular 
theoretical method in NMR. Its popularity stems from its excellently simple 
conceptual structure and computational elegance. AHT is a mathematical for-
malism that allows us to analyze how pulse sequences affect internal spin inte-
ractions. The rise of AHT in solid-state NMR began with the time-reversal expe-
riments in dipolar-coupled spin systems [40]. Rhim and co-workers applieda 
suitable sequence of strong rf fields to a system of dipolar-coupled nuclear spins 
which was made to behave as though the sign of the dipolar Hamiltonian had 
been reversed. The system then appears to develop backward in time, and states 
of non-equilibrium magnetization can be recovered in systems which would su-
perficially appear to have decayed to equilibrium. This behavior is consistent 
with dynamical and the rmodynamical principles, but shows that the spin-tem- 
perature hypothesis must be employed with caution [41] [42] [43]. The AHT is 
the most commonly used method to treat theoretical problems in solid-state 
NMR and have been used sometimes casually [17] [44]. As shown in Figure 1, 
the AHT method explains the average motion of the spin system, the effects of 

https://doi.org/10.4236/jmp.2018.98103


E. S. Mananga   
 

 

DOI: 10.4236/jmp.2018.98103 1648 Journal of Modern Physics 
 

multiple-pulse sequences, and the effects of a time-dependent perturbation ap-
plied to the system. 

The basic understanding of AHT involves considering a time dependent Ha-
miltonian ( )H t  governing the spin system evolution, and describing the effec-
tive evolution by an average Hamiltonian H  within a periodic time ( )T . This 
is satisfied only if ( )H t  is periodic ( )T  and the observation is stroboscopic 
and synchronized with period ( )T . Two major expansions (Baker-Cambell- 
Hausdorff and Magnus) and an exact computation including the diagonalization 
of the time evolution operator defined the average Hamiltonian. This technique 
has been widely used in the NMR literature in the development of multiple pulse 
sequences and in the context of both decoupling and recoupling experiments. 
AHT is especially convenient in the derivation and analysis of pulse sequences 
that incorporate a block of rf irradiation that is repeated many times. The AHT 
set the stage for stroboscopic manipulations of spins and spin interactions by ra-
dio-frequency pulses and also explains how periodic pulses can be used to 
transform the symmetry of selected interactions in coupled, many-spin systems 
considering the average or effective Hamiltonian of the RF pulse train [21]. To-
day, AHT finds itself under increasing pressure of complicated experiments and 
to adapt to ever more challenging problems. If we are not mindful, under these 
pressures may submerge the introduction of Floquet theory [18] [20], Flo-
quet-Magnus expansion [24], and Fer expansion in solid-state NMR [30]. 

3. The Birth of Floquet Theory and Its Introduction to  
Solid-State NMR 

In 1883, M. Gaston Floquet proved a remarkable theorem that asserts the exis-
tence of a periodic unitary transformation that maps a system of normal diffe-
rential equations with periodic coefficients into a system of differential equations 
with constant coefficients [2]. A well-known example of such a procedure is the 
passage to a rotating reference frame (RRF) in the study of a system with di-
pole-dipole interactions in a constant magnetic field and in a circularly polarized 
magnetic field. The Floquet theorem allows writing the solution of the Liouville 
evolution equation. Unfortunately, besides for the example with a RRF, the 

 

 
Figure 1. Basic Picture of average Hamiltonian theory. 

https://doi.org/10.4236/jmp.2018.98103


E. S. Mananga 
 

 

DOI: 10.4236/jmp.2018.98103 1649 Journal of Modern Physics 
 

Floquet Hamiltonian for multi-spin systems cannot be calculated exactly, and 
approximate methods such as AHT should therefore be used [12]. The Floquet 
formalism approach for solving the Schrödinger equation with a Hamiltonian 
representing periodically time-dependent interactions was introduced to spec-
troscopy by Shirley in 1965 [3]. Shirley replaced the Hilbert space finite-di-   
mensional time-dependent Hamiltonian by an infinite-dimensional time-inde- 
pendent Floquet Hamiltonian HF and showed how it can be used to obtain an 
exact solution to the LvN equation [19] [21] [22] [23] [24] [25]. Such an ap-
proach is often convenient, in particular, for describing solid-state NMR expe-
riments, where the Hamiltonian becomes time dependent due to external mani-
pulations such as MAS and/or periodic RF pulse trains. Shirley’s Floquet formal-
ism is also used in atomic and molecular spectroscopy methods [25]. The effec-
tive Hamiltonian derived using Floquet theory can be obtained in various ways. 
The most accurate way is to exactly diagonalise the Floquet Hamiltonian and 
transfer its diagonal form to the Hilbert space, taking into account the diagona-
lisation matrix. However, full diagonalisation can become very cumbersome and 
is rarely required. In most cases perturbation theory on HF can be applied, as 
done by Vega [20] [21]. Block diagonalisation methods, such as the van Vleck 
transformation, are extremely powerful in this case [17]. The resulting operator 
form of the effective Hamiltonian can then be used to design and evaluate the 
performance of NMR experiments. Solid-state NMR experiments are subjected 
to various time dependent perturbations of different frequencies, such as RF 
pulse schemes and MAS. We classify Hamiltonians into single mode, bimodal, 
and multimode depending on the number of distinct frequencies of perturba-
tions to which the spin system is subjected [21]. Shirley’s solution to the 
Schrödinger equation is also valid when the Hamiltonian is modulated by more 
than one periodic process [3]. Thus, Floquet theory provides a general descrip-
tion of many NMR experiments without placing any assumptions on the time 
scales of the perturbations. 

4. The Birth of Floquet-Magnus Expansion and Its  
Introduction to Solid-State NMR 

The Floquet-Magnus expansion was developed nearly a decade and half ago by 
Casas, Oteo, and Ros [11]. This approach is a new version of Magnus expansion 
well suited for Floquet theory of linear ordinary differential equations with pe-
riodic coefficients. Recently, the FME has been employed frequently for the 
treatment of quantum Floquet systems which open new possibilities to control 
quantum systems under periodic driving such as in quantum transport and 
quantum topological phases. The FME is a useful tool to treat a periodically dri-
ven system when the period T of the driving is very small. This approach is prac-
tically useful for the high-frequency driving, in which the higher-order contribu-
tion is not relevant to dynamics at short time scale. However, in the case of finite 
frequencies, the problem is more complicated since, in general, the FME is not 
convergent series expansion in the thermodynamic limit. More discussions on 
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the physical meaning of the FME can be found in the literature. The connection 
between the Magnus expansion and the Floquet theory was established in the 
FME [24]. The FME approach is an alternative approach recently developed by 
Casas and co-workers to solve time-dependent linear differential equation which 
is a central problem in quantum physics in general and solid-state nuclear mag-
netic resonance (SSNMR) in particular [24]. The authors Casas, Oteo, and Ros 
build up a recursive scheme to obtain the terms in the new expansion and give 
an explicit sufficient condition for its convergence. The method and formulae 
were applied to an illustrative example from nuclear magnetic resonance, quan-
tum mechanics, and physics [11]. When making the connection between the 
time-ordered products and the Magnus expansion, Oteo and Ros mentioned 
that the initial value problem originated from the linear homogeneous ordinary 
differential equation (LHODE) of first order [45]. The LHODE plays a pervasive 
role in many branches of mathematics, physics, and engineering with a wide 
range of different mathematical and physical meanings for the variable involved. 
Theoretical problems in solid-state NMR are widely treated with the average 
Hamiltonian theory and the Floquet theory. A variety of magnetic resonance 
phenomena has been described using both theories (AHT and FLT). These theo-
ries have been successful for designing sophisticated pulse sequences and under-
standing of different experiments. For instance, recently, the AHT has been used 
to develop a set of selection rules based on the symmetry of the internal interac-
tions and Euler angles in order to simplify the design of NMR multiple-pulse 
sequences in the presence of sample rotation. This allows the development of 
recoupling and decoupling sequences as well as many other experiments. The 
selection rules reveal which types of interactions can be recoupled by a sequence 
with a given symmetry. Similarly, the FLT has been used to describe multipho-
ton effects in NMR, electron paramagnetic resonance, and nuclear quadrupole 
resonance. The fusion of AHT and FLT is generalized by the Floquet-Magnus 
expansion [1] [9] [24] [46] [47] [48] [49] [50]. The FME has been recently ap-
plied to various problems in solid-state NMR and Physics [51] [52] [53] [54] 
[55]. 

5. The Birth of Fer Expansion and Its Introduction to  
Solid-State NMR 

The intuitive origins of Fer expansion date in the seminal 1958 Fer paper [29]. 
The FE approach is based on a factorization of the evolution operator as an infi-
nite product of exponentials of Lie operators and thus exactly preserves the 
Poincaré integral invariants. This approach is an alternative expansion method 
to solving time-dependent linear differential equations. As already mentioned 
above, the FE was formulated by Fer and later revisited by Fer, Klarsfeld and 
Oteo, Casas et al., and Blanes et al. [29] [30] [31] [32] [33]. These authors illu-
strated some of the salient features of Fer expansion, and applied the method to 
simple cases such as a driven Harmonic oscillator, two-level system, and a gene-
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ralized simple harmonic oscillator. The FE approach was introduced recently to 
the NMR community by Madhu and Kurur via the effect of Bloch-Siegert shift 
and heteronuclear dipolar decoupling [30]. Unlike in Magnus expansion where 
an evaluation of nested commutators and their integrals are required to obtain 
the correction terms of a Hamiltonian, in Fer expansion only an evaluation of 
nested commutators is required [30]. As discussed in the next section, the con-
vergence of Fer expansion is much faster than that of Magnus expansion, which 
lead to the calculation of the infinite number of commutators to be simple in 
most expereiments [30]. Indeed, from the point of view of physical applications, 
the Magnus expansion has been extensively used in a variety of issues, while the 
Fer expansion has been either ignored or misquoted until recently [35]. Both 
approaches are by no means equivalent, since, in general, the exponential oper-
ators do not commute with each other [25] [35]. The FE approach is still in its 
infancy in solid-state NMR and can be considered to be complimentary to the 
Magnus expansion (AHT) [34]. While the efficiency of Fer expansion seems ob-
vious, more work is still required to allow the scheme to overcome difficulties 
such as cases involving non-periodic and non-cyclic cases [30]. 

6. Convergence 

Setting an infinite sequence ∙∙∙( 1 2 3, , ,u u u  ), the thn  partial sum nσ  is the sum 
of the first n terms of the sequence, 

1

n

n l
l

uσ
=

= ∑                                (1) 

A series is convergent if the sequence of its partial sums { }1 2 3, , ,σ σ σ   be-
come closer and closer to a given number when the number of their terms in-
creases. Mathematically speaking, a series converges, if there exists a number p
such that for any arbitrarily small positive number ξ  there is a large integer 
Nsuch that for all n N≥  

n pσ ξ− ≤                           (2) 

If the series is convergent, the unique number p  is called the sum of the se-
ries. The Magnus and some of its equivalent such as Fer expansions have been 
applied to a wide range of problems in time-dependent quantum mechanics. 
Exponential time-dependent perturbation theories such as the Magnus expan-
sion or Fer expansion, have proven useful in the treatment of a variety of prob-
lems in non-relativistic quantum dynamics. Until in the 1980’s, very little was 
known about the convergence of exponential perturbation theory. In the original 
version, Magnus stated its convergence criterion in terms of the eigenvalues of 
the exponent itself. However, several groups have reported that application of 
the Magnus expansion in the Schrodinger representation to some problems of 
spectroscopy interest gave results which were less adequate [56]-[70]. Conver-
gence of the Magnus expansion has also come into question in different applica-
tions. In general, the Magnus series does not converge unless the Hamiltonian is 
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small in a suitable sense. Magnus expansion permits significantly simplifying the 
analysis of the behavior of spin systems in periodic external fields. However, di-
vergence of the Magnus expansion guides to inconsistencies in the spin dynam-
ics of solid-state NMR [8] [56]-[61]. Indeed, the convergence of the Magnus ex-
pansion is generally discussed in terms of a radius of convergence rc. Several re-
sults on the radius of convergence rc in terms of the H amiltonian have been ob-
tained in the literature. Pechukas and Light and Karasev and Mosolova obtained 
a radius rc = log2 = 0.693∙∙∙ [62] [63], whereas Chacon and Fomenko [64] got a 
radius rc= 0.577. Blanes et al. obtained the improved bound radius of rc = 1.086 
[65]. Recently, a new method was developed to enlarge the largest domain of 
convergence of the Magnus expansion (rc = 1.086∙∙∙) previously obtained [66]. 
An analytic estimate of the new domain of convergence found was almost twice 
the preceding one (rc = 2) and this new analytic bound was in agreement with 
the numerical estimate of the convergence radius such as no accuracy was lost in 
the bound [67]. Therefore, there are more than three different convergence es-
timated in the literature of Magnus expansion. These convergence estimates are 
given with their respective proofs in the references therein. The latest improved 
bound rc = π was derived by Moan but in the context of the conventional Mag-
nus expansion for real matrices [68]. This important results was then generalized 
to matrices in the Hilbert space (thus for complex matrices) by Casas [69]. A 
new version of Magnus expansion was reported recently by Butcher et al. [70]. 
The new scheme grows on trees and forests to reorder the terms of Magnus ex-
pansion for more efficient computation. While this scheme did not provide any 
substantial new result to the convergence of the ME, it provides a new mean to 
compute Magnus expansion to the desired order. This ME-type formalism has 
been developed in a more abstract setting of dendriform algebras. This form 
shows that the reordering of the terms in Magnus’ expansion may be 
represented graphically using trees and forests, which may be collected into 
groups according to the order in time for which the solution is valid. 

Recoupling schemes have all been extensively treated with Floquet theory in-
conjunction with the Van Vleck Transformation [17] [21] [23] [71]. The Floquet 
theory approach has also been used successfully to the study of decoupling of 
dipolar interactions. The discussion of the convergence of the Floquet theory 
was presented by Maricq [18]. Maricq first shows the convergence of the effec-
tive Hamiltonian in the mathematical sense. Next he elucidated by example, the 
conditions which must be satisfied in order to truncate the series for P(t) and HF 
after the first few terms. The appropriateness of the FME and FE are well related 
to the problem of convergence. This problem has played a pivotal role in the 
field of solid-state NMR and spin dynamics [8] [12] [25] [35]. FME and FE are 
divergent approaches and the physical nature of their divergences is discussed in 
the following paragraphs. The authors Casas, Oteo, and Ros investigated a suffi-
cient condition for the absolute convergence of the FME in ref. [11], Blanes and 
co-workers studied succinctly the convergence of the Fer expansion by looking 
for conditions on the time dependent Hamiltonian [33]. The authors derived a 
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convergent radius of the Fer expansion to be 0.8604065 and point out that, addi-
tional properties of the time dependent Hamiltonian allow an improvement of 
the result to extend the range of the radius originally given by Fer who used a 
slightly different argument [29]. In a similar vein, Zanna showed that a similar 
result holds for the symmetric Fer expansion by proving that the symmetric Fer 
expansion converges uniformly in the periodic interval [72]. 

This calculated radius, 0.60275ξ = , of the convergence of the symmetric Fer 
expansion by Zanna is smaller than the calculated radius for the classical Fer ex-
pansion [72], 0.8604065ξ = , by Blanes [33]. However, the bounds initiated by 
Zanna are not optimal and could be improved [72]. An important point of the 
FME approach is that the rate of convergence of the FME is faster than the Fer 
expansion in the sense that, for a prescribed precision, one needs more kF s′  
(for Fer expansion) than k s′Λ  (for Floquet-Magnus expansion) even if from 
the computational point of view, the Fer expansion could require more work 
than the FME. The convergence of these approaches is extensively discussed in 
the literature [8] [11] [18] [24] [25] [35] [58] [59] [60] [65] [72]. 

7. Applications of FME and FE in Physics 

Using the FME and FE approaches, many problems can be attacked in other 
fields of physics beyond the scope of NMR. It is important to remember that 
these considered methods have recently found new major areas of applications 
such as topological materials [73]. However, researchers dealing with these new 
applications are not usually acquainted with the achievements of the magnetic 
resonance theory, where those methods were developed more than thirty years 
ago [74] [75]. Researchers repeat the same mistakes that were made when the 
methods of spin dynamics and thermodynamics were developed in the past. 
Even though the FME is a divergent approach in general, its finite truncation 
can give useful information such as on the transient dynamics in periodically 
driven many-body quantum systems [73] [74]. Currently, the use of FME to ob-
tain the effective Hamiltonians for periodically driven systems is a hot topic in 
the investigation of dynamics of classical and quantum systems. Recently, Ku-
wahara and co-workers showed that the finite truncation of the FME can give 
useful information on the transient dynamics [85]. The authors gave a rigorous 
relationship between the FME and general properties of transient quantum dy-
namics. New avenues of exploring FME and FE can also be extended to other 
areas of physics such as particles and high energy physics [25] [35]. These two 
approaches (FME and FE) can be used to solve problems in quantum field 
theory (QFT) and high energy physics, in particular problems similar to the one 
solved or fail to be solved by ME. For instance, 

1) the ME has been used as an alternative to conventional perturbation theory 
for quantum fields to graph rules for functions of the time-evolution operator 
where normal products and Wick theorem were used. This was useful in the 
treatment of infrared divergences for some quantum electrodynamics process 
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such as the scattering of an electron on an external potential or the bremsstrah-
lung of one hard photon [76] [77]. I believe that effective method of approaching 
this problem demands more inspection where FME and FE can play a major 
role; 

2) an extension of the ME has been applied to the context of Con-
nes-Kreimer’s Hopf algebra approach to perturbative renormalization of quan-
tum field theory showing that the generalized MEallows to solve the Bogoli-
ubov-Atkinson recursion [78] [79] [80]. The FME and FE can also be applied in 
this context; 

3) in the field of high energy physics, ME has also found applications such as 
to heavy ion collisions. ME is applied in collision problems when the use of uni-
tary approximation scheme is necessary such as the unitary of the time evolution 
operator imposing some bound on the experimentally observable cross sections 
[80] [81]. FME and FE can also be used in this context as an intuitive method for 
simplifying calculations; 

4) the problem in neutron oscillations which is closely related to solar neutri-
no problem. As neutrinos with different masses propagate with different veloci-
ties, the mixing allows for flavor conversion corresponding to neutrinos oscilla-
tions [82] [83] [84]. Fer’s factorization as a symplectic integrator can, in prin-
ciple, enter in the solution of the evolution operator in one basis. 

The introduction of FME and FE as theoretical approaches to control the spin 
dynamics in the field of nuclear magnetic resonance are new exploratory and 
developmental researches which is a significant addition to the existing theoret-
ical framework of AHT and FT. QFT is the basic mathematical language used to 
describe and analyze the physics of elementary particles. The theory by itself is 
an abstract representation for constructing quantum mechanics models of sub-
atomic particles in particle physics and quasiparticles in condensed matter phys-
ics. The application of the FME and FE approaches as intuitive approaches in 
simplifying calculations to solve some specifics problems in the field of high 
energy physics and QFT such as those outlined in the above paragraph is of ma-
jor interest. It is worth noting that, the FME has the advantage of having the un-
itary character of the evolution operator which is preserved at all orders of ap-
proximation while the FE has an advantage over the ME that only an evaluation 
of nested commutators is required in the calculation of the Hamiltonian [25] 
[35]. 

8. Conclusion 

To summarize, our descriptions for all four theories suggest that the Fer expan-
sion is advantageous over the other three theories (AHT, FLT, and FME) in cal-
culation of higher-order corrections. As explained above, while the AHT and 
FLT are common in solid-state NMR, both the FME and Fer expansion are rela-
tively newcomer although the mathematical formalism has been known for sev-
eral decades [85]. One of the most salient features of the Fer expansion is that 
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the first fifth-order average Hamitonians are sufficient to control an NMR expe-
riment, and they are included in the first correction of the Fer expansion [86]. 
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Abstract 
A modified form of the Townsend equations for the fluctuating velocity wave 
vectors is applied to the interaction of a longitudinal vortex with a laminar 
boundary-layer flow. These three-dimensional equations are cast into a Lo-
renz-format system of equations for the spectral velocity component solu-
tions. Tsallis-form empirical entropic indices are obtained from the solutions 
of the modified Lorenz equations. These solutions are sensitive to the initial 
conditions applied to the time-dependent coupled, non-linear differential 
equations for the spectral velocity components. Eighteen sets of initial condi-
tions for these solutions are examined. The empirical entropic indices yield 
corresponding intermittency exponents which then yield the entropy genera-
tion rates for each set of initial conditions. The flow environment consists of 
the flow of hydrogen gas with impurities at a given temperature and pressure 
in the interaction of a longitudinal vortex with a laminar boundary layer flow. 
Results are presented that indicate a strong correlation of predicted entropy 
generation rates and the corresponding applied initial conditions. These ini-
tial conditions may be ascribed to the turbulence levels in the boundary layer, 
thus indicating a source for the subsequent entropy generation rates by the 
interactive instabilities. 
 

Keywords 
Interacting Laminar Boundary Layers, Intermittency Exponents, Entropy  
Generation Rates 

 

1. Introduction 

Results are reported for an innovative computational procedure applied to a 
study of the sensitivity to initial conditions in the computation of entropy gen-
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eration rates generated by the non-linear interaction of a longitudinal vortex 
with a laminar boundary layer flow. The equations for the fluctuating velocity 
components in a three-dimensional shear flow have been presented by Town-
send [1]. These equations are written in a Lorenz form (Sparrow [2]) and solved 
for the flow configuration shown in Figure 1. The mathematical bases and the 
corresponding computer program listings employed for these calculations have 
been discussed previously in Isaacson [3] [4] [5]. 

The nonlinear, time-series solutions for the spectral velocity wave compo-
nents are obtained from a modified Lorenz-type set of equations that is sensitive 
to the initial conditions applied to the integration of the equations. The control 
parameters for these equations are the steady state boundary layer velocity gra-
dients that are determined by the particular value of the kinematic viscosity for 
the system. Experimental measurements of the unsteady fluctuation levels in la-
minar boundary layers when subjected to free stream turbulence have been pre-
sented by Walsh and Hernon [6]. These results indicate that the free stream 
turbulence level has a significant effect on the resulting entropy generation rates 
in laminar boundary layers. The initial conditions for the integration of the Lo-
renz-type equations are heuristically assumed to be attenuated levels of the tur-
bulence imposed on the system from the free stream. 

However, the initial conditions for the integration of the modified Lorenz eq-
uations are the actual turbulent intensity levels applied to the flow system at the 
specific location within the boundary layer where the computational results are 
obtained. We have selected eighteen sets of initial conditions for the initial val-
ues for the computation of the time development of the spectral stream wise, 
normal and span wise velocity components. 

The boundary-layer environment used in the study reported here is the flow 
of helium with slight impurities at a temperature of T = 320.0 K and a pressure 
of p = 1.01325 × 105 N/m2 at a normalized boundary-layer vertical location of η 
= 3.00. The kinematic viscosity for the helium mixture at these conditions is ν = 
1.384696 × 10−4 m2/s. 

The Falkner-Skan transformation, in the form 
1 2

eu
y

x
η

ν
 =  
 

                          (1) 

provides the definition of the normalized distance, η from the surface of the 
boundary layer flow. In this expression, ue is the boundary layer edge velocity, x 
is the stream wise distance and the edge value for the normalized vertical dis-
tance is η∞ = 8.0. 

This article includes the following sections: 
In Section 2, the laminar boundary-layer flow configuration considered in this 

study is described. In Section 3, eighteen sets of initial conditions for the integra-
tion of the time-dependent modified Lorenz equations are presented. Section 4 
presents a brief review of the results of the study of the sensitivity of the solu-
tions of the modified Lorenz equations for the entropy generation rates to the 
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initial conditions. In Section 5, the fluctuation equations of Townsend [1], 
Isaacson [3] [4] [5], and Hellberg and Orszag [7] are transformed into the spec-
tral plane and written as modified Lorenz equations. Computational results for 
the time-dependent spectral velocity components are discussed. Section 6 de-
scribes the power spectral densities, the introduction of empirical entropies, em-
pirical entropic indices, and intermittency exponents extracted from the numer-
ical results of the computations. Section 7 covers the computation of the entropy 
generation rates for each of the sets of initial conditions, including a discussion 
of the strong correlation of these entropy generation rates with the correspond-
ing initial conditions, through the intermittency exponents. 

The article closes with a discussion of the results and final conclusions. 

2. Boundary-Layer Interaction Environment 

The solution of the modified Lorenz equations requires the input of various eq-
uation control parameters. The steady state boundary-layer velocity gradients 
and the time-dependent spectral wave component solutions serve as control pa-
rameters for the solution of the time-dependent fluctuating spectral velocity eq-
uations. The mathematical and computational methods used for the computa-
tion of the x-y plane and the z-y plane steady-state laminar boundary-layer ve-
locity gradients are summarized in this section. The boundary layer steady ve-
locity gradients vary with the stream wise distance x, indicating the initiation of 
instabilities within the boundary layer for several stream wise stations, similar to 
the development of a young turbulent spot. 

Singer [8] has reported the results of the direct numerical simulation of the 
effect of strong free stream turbulence on the development of a young turbulent 
spot in laminar boundary layer flow. These studies indicate the development of a 
counter-clockwise stream wise vortex that produces a laminar boundary layer in 
the z-y plane of the flow environment as shown in Figure 1. Ersoy and Walker 
[9] discus the development of this z-y plane boundary layer produced by the in-
teraction of the vortex tangential velocity with the flow surface. Belotserkovskii 
and Khlopkov [10] have computed the normalized span wise velocity at the out-
er edge of the vortex structure as we = 0.08. This is the value we use for the span 
wise velocity. Schmid and Henningson (pp. 429-436 [11]) discuss the develop-
ment of streaky structures, longitudinal vortex structures and the eventual de-
velopment of turbulent spots relative to the intensity levels of the free stream 
turbulence. These various observations provide a strong motivation to gain a 
better understanding of the transition of laminar flows to turbulent flows 
through the study of the effects of the values for the initial conditions applied to 
the solution of the modified Lorenz equations in the boundary layer flow. 

The computer source code listings that we have used to compute the steady 
laminar boundary layer velocity profiles for both the x-y plane and the z-y plane 
were developed by Cebeci and Bradshaw [12] and Cebeci and Cousteix [13]. 
These orthogonal profiles are similar in nature (Hansen [14]) and thus form the  
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Figure 1. A schematic diagram is shown of the configuration of a longitudinal vortex 
tangential velocity boundary layer profile in the z-y plane normal to the stream wise 
boundary layer profile in the x-y plane with free stream turbulence. 

 
steady boundary layer velocity gradient control parameters for the solution of 
the modified Lorenz equations. The working gas for these studies is a mixture of 
helium with several impurities, as described in [3], at a temperature of 320.0 K 
and a pressure of 0.101325 MPa. 

The boundary layer profiles are determined at six stream-wise stations, with 
the first station designated as the transmitter station. The following five stations 
are designated as receiver stations, with the first receiver station designated as 
station 1. The results obtained for the entropy generation rates at the receiver 
station 3, at x = 0.120, as a function of the initial conditions, are presented in 
depth in this article. A computational flow chart is presented in Figure 2 for the 
overall path of the computational procedure. The primary result of this study is 
the strong correlation of the resultant entropy generation rates with the corres-
ponding applied initial conditions for those rates. This is discussed in the next 
section. 

3. Selection of Initial Conditions 

An essential aspect of the computational procedure discussed in this article is the 
inclusion of the time-dependent, coupled, nonlinear modified Lorenz equations 
for the prediction of the development of ordered regions within the nonlinear 
time series solutions. For the studies reported in [3] [4] [5], a single set of initial 
conditions was used to obtain the reported entropy generation rates. However, 
solutions of the nonlinear modified Lorenz equations are very sensitive to the 
initial conditions applied in the calculation of the solutions ({Sparrow [2]). We 
have computed the entropy generation rates for the flow configuration shown in  
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Figure 2. Computational flow chart for the calculation of the entropy generation rates 
[3]. 

 
Figure 1 for a range of initial values for the stream wise spectral velocity wave 
component from 0.0050 to 0.2000, with the corresponding normal and span wise 
spectral velocity components at 40 percent of the stream wise initial value. Table 
1 shows the values for eighteen sets of initial conditions over this range. Also in-
cluded in Table 1 are corresponding values of an equivalent turbulence level as 
defined by Sengupta (pp. 103-105 [15]). Each of these set numbers are shown in 
Figure 3, for the corresponding entropy generation rates. 

4. Entropy Generation Rates: Sensitivity to Initial Conditions 

Application of the computational procedure outlined in Figure 2 to the fluc-
tuating velocity components in the three-dimensional flow shown in Figure 1 
yields the entropy generation rates that occur through the dissipation of the or-
dered regions predicted in the nonlinear solutions of the modified Lorenz equa-
tions. The solutions of the time-dependent modified Lorenz equations require 
initial values for each of the three spectral velocity components. The entropy  
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Table 1. This table provides the initial conditions for the computation of the three spec-
tral velocity components and the corresponding values of the equivalent turbulence level 
in percent. 

Initial conditions, 
set number 

Initial spectral 
velocity  

component, ax [1] 

Initial spectral 
velocity  

component, ay [1] 

Initial spectral 
velocity  

component, az [1] 

Equivalent  
turbulence level, 

percent 

1 0.00500 0.000200 0.000200 0.332 
2 0.00560 0.002240 0.002240 0.371 
3 0.01000 0.004000 0.004000 0.663 
4 0.01500 0.006000 0.006000 0.995 
5 0.02000 0.008000 0.008000 1.327 
6 0.03000 0.012000 0.012000 1.990 
7 0.04000 0.016000 0.016000 2.653 
8 0.05000 0.020000 0.020000 3.317 
9 0.06000 0.024000 0.024000 3.980 

10 0.07000 0.028000 0.028000 4.643 
11 0.08000 0.032000 0.032000 5.307 
12 0.09000 0.036000 0.036000 5.970 
13 0.10000 0.040000 0.040000 6.633 
14 0.12000 0.048000 0.048000 7.960 

15 0.14000 0.056000 0.056000 9.287 

16 0.16000 0.064000 0.064000 10.613 

17 0.18000 0.072000 0.072000 11.940 

18 0.20000 0.080000 0.080000 13.266 

 

 
Figure 3. The entropy generation rate as a function of the initial conditions applied to the 
solution of the modified Lorenz equations, at the stream wise location of x = 0.120, the 
normalized vertical location of η = 3.00 and the span wise velocity of we = 0.080. 
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generation rate for each set of initial conditions shown in Table 1 has been 
computed for a three-dimensional boundary-layer flow of a helium mixture at a 
temperature of T = 320.0 K and a pressure of p = 0.101325 MPa. This tempera-
ture and pressure for this mixture provide a kinematic viscosity of v = 1.384696 
× 10−4 m2/s. Figure 3 shows the entropy generation rate at the stream wise sta-
tion x = 0.120, for a normalized boundary layer distance of η = 3.00 [1] for each 
of the sets of initial conditions listed in Table 1. 

These results indicate a strong correlation of the predicted entropy generation 
rates with the corresponding initial conditions applied to the equations for the 
time dependent solutions. If the assumption is made that these initial conditions 
are provided by the attenuated free stream turbulence, these computational me-
thods may then provide a path to understanding bypass transition. A detailed 
explanation of the procedures used in the calculation of these results and a dis-
cussion of the possible sources for the indicated entropy generation rates are 
presented in the next sections. 

5. Modified Lorenz Equations in the Time Dependent  
Spectral Plane 

5.1. Transformation of the Townsend Equations to the Modified 
Lorenz Format 

For the flow of a wall shear layer with velocity fluctuations, the computational 
procedure may be separated into the evaluation of the steady state velocity pro-
files and a set of equations for the fluctuating velocity field (Townsend [1]). The 
non-equilibrium spectral equations of Townsend [1] and Hellberg, et al. [7] are 
arranged into a Lorenz format (Sparrow [2]) for the computation of the nonli-
near time series solutions for the fluctuating spectral velocity field. The 
time-dependent spectral equations of Townsend [1] and Hellberg, et al. [7] are 
then solved with the steady state boundary layer velocity profiles as control pa-
rameters. 

The solutions of the modified Lorenz equations yield the spectral velocity 
components within the nonlinear time series solutions. Statistical analysis of 
these spectral time-series solutions yields the power spectral densities and the 
empirical entropies over a range of sixteen empirical modes. The correspon-
dence of the peaks of the spectral power spectrum and the empirical modes of 
the singular value decomposition analysis is achieved by invoking the Wein-
er-Khintchine theorem (Attard (pp. 354-355 [16]). This theorem relates the 
power density spectrum and the autocorrelation function since both properties 
are computed from the same nonlinear time series data.  

The equations for the velocity fluctuations within a wall shear layer may be 
written as (Townsend (pp. 46-49 [1])): 

21i i i i i
j j j

j j j i j j

u u U u upU u u
t x x x x x x

ν
∂ ∂ ∂ ∂ ∂∂

+ + + = − +
∂ ∂ ∂ ∂ ∂ ∂ ∂

.          (2) 

Fourier transform of these equations yields the equations for the three 
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time-dependent spectral velocity wave components, ai(k), as (pp. 47-49 [1]): 

( ) ( ) ( ) ( )

( ) ( )

2
2

2

2i i i l l
i i i

i m

i m
l im l l mk k k

a k U k k U
k a k a k a k

t x xk
k k

i k k a k a k
k

ν

δ′ ′′+ =

∂ ∂ ∂
= − − +

∂ ∂ ∂

  ′ ′′+ − 
 

∑
            (3) 

The nonlinear coupling terms in the spectral velocity components in Equa-
tions (3) are represented in our series of equations by characterizing the transfer 
matrix 

2
i m

l im
k k

k
k

δ − 
 

                          (4) 

as basic to the formation of patterns in nonlinear time series solutions (Manne-
vile (pp. 302-312 [17])). A model equation for this expression in the form 

( )( )( )1 cosK k t− ∗                        (5) 

is introduced to provide the proper weighting of the transfer matrix (Equation 
(4) in our computational procedure. K is an empirical amplitude factor [18] and 
( )k t  is given by: 

( ) ( )2
xk t k=                         (6) 

Substitution of Equation (5) and with ( )( )cosF K k t= , the equations for the 
spectral velocity components, Equations (3), may be rearranged into Lorenz 
format as [2] [3]: 

d
d

xn
yn yn xn xn

a
a a

t
σ σ= − ,                      (7) 

( )
d

1
d

yn
xn zn n xn n yn

a
F a a r a s a

t
= − − + − ,               (8) 

( )d
1

d
zn

xn yn n zn
a

F a a b a
t
= − − .                 (9) 

The expressions for the coefficients ynσ , xnσ , rn, sn, and bn are given in detail 
in [3]. These coefficients are functions of the wave number components, ki, and 
the steady state values of the velocity gradients in the boundary layer flow, as in-
dicated in Equation (3). These equations are designated as the modified Lorenz 
equations. These equations are solved at the initial station of x0 = 0.06, consi-
dered as the transmitter station. 

The solutions of these equations at the transmitter station require additional 
assumptions for the modified Lorenz equations. Manneville (pp. 305-312 [17]) 
has discussed both the format and justification for the heuristic choice of Ex-
pression (5) as the approximate replacement for the basic pattern matrix of Equ-
ation (3). This form appears in the fundamental basis for pattern formation in 
the study of dissipative structures in turbulent flows. Therefore, since we are 
looking for the formation of ordered regions in solutions of the modified Lorenz 
equations, the model equation of Expression (5) appears to be a logical choice. 
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We have found that a value of K = 0.05 yields instabilities in the nonlinear time 
series solutions of the modified Lorenz equations for a normalized boundary 
layer location of η = 3.00. Sengupta (pp. 158-165 [15]) reported the excitation of 
instabilities in wall shear layers with the application of normal wall velocities 
with a time dependent magnitude of sinusoidal form with a coefficient of ap-
proximately 0.05. These experimental results provide a measure of validation for 
our computationally determined value for the amplitude factor K.  

Incorporating Expression (5) in Equation (3), with the definition of the term 
F, the modified Lorenz equations take the form of Equations (7-9). These equa-
tions are solved at the transmitter station for each set of initial conditions listed 
in Table 1. This station provides the initial generation of instabilities in the non-
linear time series solutions of the modified Lorenz equations at the stream wise 
location of x0 = 0.060. 

The following stations at x1 = 0.080, x2 = 0.100, x3 = 0.120, x4 = 0.140, and x5 = 
0.160 are designated as receiver stations. From thermodynamic considerations 
(Attard (pp. 329-331 [16])), for the solutions at the receiver stations, we must 
take into account that the solutions of the first and subsequent receiver stations 
will be influenced by the fluctuations produced in the transmitter station and 
prior receiver stations. The concept of synchronization and the application of 
the modified Lorenz equations at each of these receiver stations is discussed in 
the next section. 

5.2. Synchronization Properties of the Modified Lorenz Equations 

We apply the transformation of the pattern matrix (Equation (5)) to the trans-
mitter station at x = 0.060. The time-series solutions for this station indicate the 
generation of nonlinear instabilities in each of the spectral velocity components. 
These instabilities are then transferred to the next station, or first receiver sta-
tion. The modified Lorenz equations have been shown to have the property of 
synchronization or extraction of ordered signals from a chaotic signal. We will 
apply this property to each of the receiver stations in the system. 

The synchronization properties of systems of Lorenz-type equations have 
been shown by Pecora and Carroll [19], Pérez and Cerdeira [20], and Cuomo 
and Oppenheim [21] to have the capability to extract messages masked by chao-
tic signals. The modified Lorenz equations are adapted here to exploit these 
synchronization properties to extract ordered signals from the nonlinear time 
series solutions generated for each of the spectral components at each of the 
stream wise receiver stations. 

We apply the synchronization properties at each of the receiver stations 
downstream from the initial transmitter station. The various boundary layer 
control parameters at each of these stations are computed in the same manner as 
in the transmitter station. Following the results in [18], the time-dependent 
output for the x-direction spectral velocity component from the transmitter sta-
tion is used as input to the nonlinear coupled terms in the modified Lorenz equ-
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ations at the next station, which we denote as the first receiver station in the 
x-direction. Then, the input to the nonlinear-coupled terms at the next down-
stream receiver station is made up of the sum of the stream wise velocity wave 
component output from the transmitter station plus the x-direction spectral ve-
locity wave component output from the first receiver station. This process is re-
peated for each of the five receiver stations. With this method, the memory of 
the initial velocity fluctuations from the transmitter station and the influence of 
subsequent fluctuations from the receiver stations are retained in the overall 
computational procedure. 

For each receiver station, n, the system of nonlinear dynamic equations is 
written as: 

d
d

xn
yn yn xn xn

a
a a

t
σ σ= − ,                      (10) 

d
d

yn
rn zn n xn n yn

a
a a r a s a

t
= − + − ,                   (11) 

d
d

zn
rn yn n zn

a
a a b a

t
= − .                      (12) 

Note that for the initial station, characterized as the transmitter station, ax0 , is 
the time-dependent spectral velocity wave component output from the trans-
mitter station. The input driving term for the next station, the first receiver sta-
tion at x = 0.08, is then given by ax0, where ax0 is the output from the initial or 

transmitter station at x = 0.06. 
In Equations (10-12), the input driving signal, arn, carrying information from 

the transmitter and the previous receiver stations to the n-th station is given by 
the sum of the outputs from the transmitter station and the previous n-1 receiver 
stations: 

1
0 , 1, 2,3, 4,5i n

rn xiia a n= −

=
= =∑                (13) 

The initial conditions for the fluctuating spectral velocity wave vector com-
ponents for the transmitter station and for each successive receiver station are 
set equal to the values listed in Table 1. This process determines the result that 
the outputs from each of the receiver stations will be masked by the original 
transmitter output signal, and that the synchronization process will yield an in-
dication of the ordered regions within the transmitter signal and the output sig-
nal from each of the receiver stations. 

5.3. Sensitivity to Initial Conditions 

The free stream velocity for the stream wise boundary layer flow is taken as uni-
ty, ue = 1.00, while the vortex tangential velocity is we = 0.08 (pp. 101-102 [10]). 
The solutions of the steady boundary layer velocity gradient profiles in the x-y 
plane and the z-y plane at each stream wise station provide the control parame-
ters for the solutions of the modified Lorenz equations at these stations. The so-
lutions of the modified Lorenz equations at the transmitter station yield the 
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fluctuating spectral velocity wave components for the stream wise location x = 
0.060 and the span wise location of z = 0.003. The boundary layer instabilities 
are observed within the boundary layer at a normalized distance from the hori-
zontal surface of approximately η = 3.0. With the outer edge of the boundary 
layer at the normalized distanceη∞ = 8.00, the instabilities occur at 37.5 percent 
of the boundary layer thickness. The time step for the time-dependent integra-
tion process is taken as h = 0.0001 s. Initial values for the spectral wave number 
equations are taken as kx [1] = 0.04, ky [1] = 0.02 and kz [1] = 0.02. The initial 
conditions for the wave component solutions are kept at these values for each set 
of initial conditions for the spectral velocity components indicated in Table 1. 

The solutions of nonlinear, coupled differential equations, such as the mod-
ified Lorenz equations (Equations (7-10) and Equations (10-12)), are sensitive to 
the particular values of the initial conditions applied in the solutions. Table 1 
presents a range of initial conditions for the solutions of these couple equations 
from an equivalent free stream turbulence level of 0.332 percent to a level of 13.3 
percent. Eighteen different sets of initial values for ax [1], ay [1] and az [1] are in-
cluded in the table. Each set of initial conditions is applied to the solution of the 
modified, Lorenz equations for six stream wise stations. The initial station, at x = 
0.06, denoted as the transmitter station, with n = 0 has the stream wise spectral 
velocity component, denoted as ax0. The following station is denoted as the first 
receiver station, n = 1, at x = 0.08, with the stream wise spectral velocity compo-
nent as ax1. The results presented here are the sensitivity to the initial conditions 
for the entropy generation rates at the receiver station of n = 3, at the stream 
wise location of x = 0.120. The three spectral velocity components are denoted as 
ax3, ay3 and az3. 

The initial conditions applied to the spectral velocity wave equations must 
arise from the attenuation of the external free stream turbulence level through 
the boundary layer flow. Schmid and Henningson (pp. 401-413 11]) and Sen-
gupta (pp. 171-200 [15]) discuss the effect of outside disturbances on laminar 
boundary layer flows and the subsequent development of various instabilities 
that may occur in the flow environment. The incorporation of the time depen-
dent spectral wave equations of the Lorenz format in the computational process 
thus opens the possibility of connecting the concept of boundary layer bypass 
transition to the subsequent development of ordered regions in the interaction 
of laminar boundary-layer environments. 

5.4. Deterministic Results for the Modified Lorenz Equations 

The solutions of the modified Lorenz equations have been obtained for each set 
of intial conditions listed in Table 1 for the designated stream wise stations. We 
have chosen to present graphical results in Figure 4 for initial conditions Set 8, 
Figure 5 for Set 9 and Figure 6 for Set 10. These results are obtained for a flow 
temperature of T = 320.0 K and a pressure of p = 0.101325 MPa. Figure 4 shows 
the phase diagram for ay3 − ax3, where ay3 is the normal spectral velocity wave  

https://doi.org/10.4236/jmp.2018.98104


L. K. Isaacson 
 

 

DOI: 10.4236/jmp.2018.98104 1671 Journal of Modern Physics 
 

 
Figure 4. Shown is the normal spectral velocity component, ay3, versus the stream wise 
spectral velocity component, ax3, for the initial conditions of Set 8 at the stream wise loca-
tion of x = 0.120, the normalized vertical location of η = 3.0 and the span wise velocity 
component of we = 0.080. 

 

 
Figure 5. Shown is the normal spectral velocity component, ay3, versus the stream wise 
spectral velocity component, ax3, for the initial conditions of Set 9 at the stream wise loca-
tion of x = 0.120, the normalized vertical location of η = 3.0 and the span wise velocity 
component of we = 0.080. 
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Figure 6. Shown is the normal spectral velocity component, ay3, versus the stream wise 
spectral velocity component, ax3, for the initial conditions of Set 10 at the stream wise lo-
cation of x = 0.120, the normalized vertical location of η = 3.0 and the span wise velocity 
component of we = 0.080. 

 
component and az3 is the span wise spectral velocity wave component, again at 
the station x = 0.120. 

Figure 6 shows the phase diagram for ay3 − az3, where az3 is the span wise 
spectral velocity wave component and ay3 is the normal spectral velocity wave 
component, again at the station x = 0.120. These results indicate the formation 
of an initially strong spiral cone in the stream wise direction, transforming into a 
strongly oscillating motion in the stream wise, normal and span wise spectral 
planes of the flow environment. 

In Figure 3, the entropy generation rates for initial conditions sets, Set 8, Set 9 
and Set 10, are shown. The results for Sets 8 and 10 show relatively low values 
for the generation rates, while Set 9 indicates a spike in the generation rate. Fig-
ure 4 and Figure 6 indicate that for the relatively low generation rates, the 
stream wise spectral velocity components decrease in value relative to the com-
ponent values at the end of the spiral generation sequence. 

However, for the spike in entropy generation rate for Set 9, the stream wise 
spectral velocity component maintains a strong value, with significant structure. 
This pattern is repeated for initial condition Sets 6, 9, 12, 15 and 18, creating the 
strong patterns indicated in Figure 3. It is an interesting result that the solutions 
of the nonlinear modified Lorenz equations should exhibit such strong patterns 
in response to the values of the applied initial conditions. 
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6. Power Spectral Densities, Empirical Entropies, Empirical 
Entropic Indices and Intermittency Exponents 

6.1. Power Spectral Density Empirical Modes 

Burg’s method (Chen [22]) is used to compute the power spectral densities 
within the nonlinear time series solutions for the modified Lorenz equations. 
The computer program listing for Burg’s method given by Press et al. (pp. 
572-574 [23]) are incorporated into the computational procedure, providing the 
spectral peaks within the time series solutions. The mathematical basis for Burg’s 
method is found in information theory, with a thorough discussion presented by 
Cover and Thomas (pp. 409-425 [24]). Burg’s method provides excellent spectral 
resolution and yields sharp spectral peaks within the power spectral density 
computations. We have found that Burg’s method is an effective tool for ex-
tracting the underlying structural characteristics of the ordered velocity regions 
within the nonlinear time series solutions. 

The first five sets of initial conditions in Table 1 indicate relatively low levels 
of entropy generation. The nonlinear time series solutions of the modified Lo-
renz equations for these five sets indicate that instabilities are generated primar-
ily in the stream wise spectral velocity component, with relatively low levels of 
excitation in the normal and span wise spectral velocity components. However, 
for the initial conditions in Set 6 of Table 1, strong instabilities are observed in 
both the normal and the span wise components of the spectral velocity compo-
nents. Figure 7 presents the power spectral density for the normal spectral ve-
locity wave component, ay3 at the third receiver station at x = 0.120, for initial 
conditions, Set 6. For the power spectral density spectrum, we have assigned 
empirical mode numbers to the peaks, starting with mode j = 1 representing the 
highest peak in the distribution, continuing to mode j = 16, representing the 
corresponding lowest peak among the sixteen peaks. 

The power spectral density for the normal spectral velocity component shown 
in Figure 7 indicates that the kinetic energy available for dissipation is distri-
buted in well-defined spectral peaks or empirical modes. The kinetic energy 
within each empirical mode, jξ , of the power spectral density distribution is 
computed using Simpson’s integration rule. The sum of the individual contribu-
tions across the modes then yields the total kinetic energy contained within the 
ordered regions. This value is then used to get the fraction of kinetic energy in 
each mode that is available for dissipation into internal energy. 

6.2. Singular Value Decomposition and Empirical Entropies 

Additional fundamental characteristics within the nonlinear time series solu-
tions of the modified Lorenz equations may also be found using the singular 
value decomposition procedure (Holmes, et al. (pp. 130-152 [25])). The com-
puter program listings presented by Press et al. (pp. 59-65 [23]) for the singular 
value decomposition procedure have been incorporated into our overall compu-
tational program. The computer program for the singular value decomposition  
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Figure 7. The power spectral density for the normal spectral velocity component for the 
initial conditions Set 6 at the stream wise location of x = 0.120, the normalized vertical 
location of η = 3.00 and the span wise velocity of we = 0.080. 
 
[23] is made up of two parts, the computation of the autocorrelation matrix and 
the singular value decomposition of that matrix. This computer program then 
yields the empirical eigenvalues for each of the empirical eigenfunctions for the 
given nonlinear time series data segment. 

The singular value decomposition of the nonlinear time series solutions of the 
modified Lorenz equations yields the distribution of the spectral velocity com-
ponent eigenvalues λj across the empirical modes, j, for each set of initial condi-
tions listed in Table 1. Using Parseval’s theorem, (Thomas (pp. 97-100 [26])), 
the eigenvalues in the spectral plane, λj, are equivalent to the eigenvalues in the 
physical plane. These eigenvalues therefore represent the distribution of the ki-
netic energy of the fluctuating velocity components across the empirical modes, 
j. The fractional eigenvalues have an approximate exponential distribution over 
the empirical modes, j, as shown in Figure 8 (Isaacson [27]). 

Therefore, the analysis of Rissanen (pp. 58-60 [28]) is applicable and the em-
pirical entropy, Sempj, may be obtained from these eigenvalues by the expres-
sion: 

( )ln .j jSemp λ= −                      (14) 

In this expression, λj is the empirical eigenvalue computed from the singular 
value decomposition procedure applied to the nonlinear time-series solution. 
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Figure 8. The fractional eigenvalues from the singular value decomposition of the normal 
spectral velocity component at x = 0.120 are shown as a function of the empirical mode, j, 
for the initial conditions, Set 9. Also shown is an exponential curve fit to the data. 

 
The peaks of the spectral power density analysis and the empirical modes of 

the singular value decomposition analysis are computed from the same set of 
nonlinear time series data. Therefore, the Weiner-Khintchine theorem allows us 
to relate each power spectral density peak with a corresponding empirical ei-
genvalue. The Weiner-Khintchine theorem relates the power density spectrum 
to the autocorrelation function as they are operating on the same nonlinear time 
series data (Attard (pp. 354-355 [16]). 

The results for the empirical entropy value for each of the empirical modes 
allows us to compute a corresponding entropic index for these modes. This 
process is described in the next section. 

6.3. Empirical Entropic Indices 

The power spectral density spectrum shown in Figure 7 indicates regions of 
strongly peaked kinetic energy densities. The application of the singular value 
decomposition of the given time series data also provides us with a correspond-
ing value of the empirical entropy for each peak. These two properties allow us 
to construct a computational method to follow these regions from ordered 
structures into equilibrium thermodynamic states. To accomplish this, we use 
the approach of the Tsallis entropic indices (Tsallis [29]). 
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The empirical entropy, Sempj describes the entropy of an ordered region 
identified by the empirical eigenvalue, jλ , for the empirical mode, j. We have 
found that an expression from which we may extract an empirical entropic in-
dex, qj, from the empirical entropy, Sempj, may be written in a Tsallis entropic 
format as [18]: 

( ) ( )
( )

1
ln

1

jq
j

j j
j

Semp
q

λ
λ

−
= − =

−
.                 (15) 

The empirical entropy index, qj, provides a connection between the empirical 
entropy obtained from the singular value decomposition to the intermittency 
exponent of the ordered structures within the time series solutions. The inter-
mittency exponent describes the fraction of the available kinetic energy within 
each empirical mode, j, that is dissipated into thermodynamic internal energy, 
thus increasing the entropy of the system. The intermittency exponent for each 
of the empirical modes is discussed in the next section. 

6.4. Empirical Intermittency Exponents 

The final phase of the dissipation of fluctuating kinetic energy into thermody-
namic internal energy occurs through the process of intermittency exponents 
and a relaxation process into the final thermodynamic entropy state. 

The intermittency exponents for the each of the empirical modes, ζj, are ob-
tained from the empirical entropic indices of the Tsallis form extracted from 
the empirical entropies in Equation (15). Arimitsu and Arimitsu [30] derived, 
using multifractral methods, a relationship from which the intermittency ex-
ponent, ζj, may be extracted from the entropic index of Tsallis. The intermit-
tency exponent provides the fraction of fluctuating kinetic energy within the 
non-equilibrium empirical mode, j, that is dissipated into thermodynamic in-
ternal energy [30]. 

The absolute value of the empirical entropic index calculated from Equation 
(15) is used to extract the intermittency exponent from the equation derived by 
Arimitsu and Arimitsu [30]. This expression for the empirical mode, j, is written 
as: 

( ) ( )
( ) ( )

2 2

2 2

1 log 1 1 2 log 1 1 2
1

log 1 1 2 log 1 1 2

j j

j j

j

jq

ζ ζ

ζ ζ

ζ − −

− −

+ − + − − −
= −

+ − − − −


.     (16) 

The intermittency exponent, ζj, found from this expression, represents the 
fraction of kinetic energy in the empirical mode, j, that is dissipated into back-
ground thermal energy. The kinetic energy contained within the spectral mode, 
j, of the power spectral density is denoted as ξj. Thus, the product of the kinetic 
energy of the mode, j, and the intermittency exponent for that mode, ζj, summed 
over all of the empirical modes, represents the amount of kinetic energy in the 
given spectral velocity component that is dissipated into increasing the entropy 
of the reservoir. 
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The computation of the intermittency exponents yields two significant results. 
First, the computed value for each empirical mode allows the computation of the 
entropy generated through the dissipation of that mode. Second, the particular 
value for each empirical mode provides us with additional insight into the phys-
ical processes involved in the generation of entropy through the dissipation of 
the empirical modes embedded in the nonlinear solutions of the modified Lo-
renz equations. 

Consider the entropy generation rates for initial conditions Sets 8, 9 and 10 in 
Figure 3. The entropy generation rate for Set 9 indicates a spike in the value of 
the generation rate compared to the rates generated for Sets 8 and 10. We wish 
to compare the intermittency exponents for each of these sets of initial condi-
tions to better understand the physical processes related to the generation of the 
spike for Set 9. 

Figures 9-11 show the intermittency exponents for the stream wise, normal, 
and span wise spectral velocity wave components ax3, ay3 and az3 as functions of 
the empirical mode, j for the initial conditions Sets 8, 9 and 10, respectively. 
Note that the stream wise intermittency is relatively low for all three sets of ini-
tial conditions. The increase in value for the stream wise intermittency expo-
nents at the high empirical modes do not make a signifiacant contribution 

 

 
Figure 9. The intermittency exponents are shown for the spectral velocity components, 
ax3, ay3, and az3, for the initial conditions of Set 8 at the stream wise location of x = 0.120, 
the normalized vertical location of η = 3.00 and the span wise velocity of we = 0.080. 
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Figure 10. The intermittency exponents are shown for the spectral velocity components, 
ax3, ay3, and az3, for the initial conditions of Set 9 at the stream wise location of x = 0.120, 
the normalized vertical location of η = 3.00 and the span wise velocity of we = 0.080. 

 

 
Figure 11. The intermittency exponents are shown for the spectral velocity components, 
ax3, ay3, and az3, for the initial conditions of Set 10 at the stream wise location of x = 0.120, 
the normalized vertical location of η = 3.00 and the span wise velocity of we = 0.080. 
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to the entropy generation rates because these modes contain very low fractions 
of the available stream wise kinetic energy. 

However, for the normal and span wise spectral velocity components for ini-
tial conditions Sets 8 and 10, the first and third empirical modes make signifant 
contributions to the values of the intermittency exponents, with the third mode 
dominating the contributions. For the initial conditions Set 9, the fifth empirical 
mode comes into play with a significant increase in value. This indicates that as 
the initial conditions are increased in magnitude, the nonlinear time dependent 
solution of the modified Lorenz equations for the normal spectral velocity com-
ponent predicts the spread of ordered kinetic energy over an additional empiri-
cal mode for this component. This results in the predition of a higher rate of en-
tropy generation for this particular set of initial conditions. The repeated pattern 
shown in Figure 3 for the generation rates over the first twelve sets of initial 
conditions is rather surprising, given that we are using coupled, nonlinear 
first-order differential equations in our modified Lorenz equations. 

Figure 12 shows the intermittency exponents for the three spectral velocity 
components for initial conditions Set 15, which is the maximum entropy genera-
tion rate shown in Figure 3. The stream wise intermittency exponent shows an 
increase for empirical modes 1 and 3, with the span wise component increasing 
for modes 1, 3, and 5. The normal component indicates an almost linear increase 
in intermittency exponent value over empirical modes 1, 3, 5, and 7. This is also 
an interesting pattern within the nonlinear solutions of the modified Lorenze 
equations with the increase in intial conditions. 

The foundation for the Tsallis entropic index [29] and the Arimitsu and Ari-
mitsu intermittency exponent [30] lies in the concept of the fractal nature of the 
dissipation of turbulent kinetic energy (Mandelbrot [31]). Mandelbrot [31] also 
introduced the concept of fractals to describe the geometry of turbulent inter-
mittency. Frisch and Parisi [32] noted that there are actually many fractal scales 
involved in the dissipation of turbulent energy and in the process of intermit-
tency and introduced the concept of the multifractal model of turbulence. We 
have taken advantage of the considerable progress that has been made in ex-
tending these models to actual physical processes and wish to compare our re-
sults with recent theoretical and experimental results concerning the intermit-
tency of the turbulent dissipation of kinetic energy. 

To compare our computational results with results presented in the literature, 
we need to obtain average values for the intermittency exponents computed for a 
selected set of initial conditions from Table 1. For example, we will start with 
the results obtained for the initial conditions in Set 5 of Table 1. This set of ini-
tial conditions did not indicate the generation of significant flow instabilities and 
has a relatively low entropy generation rate, as indicated in Figure 3. The aver-
age intermittency exponent for the set of initial conditions is found by first av-
eraging the intermittency exponents found for each empirical mode of the sin-
gular value decomposition procedure applied to each of the three spectral veloc-
ity components. Then, these three average values are averaged across the three  
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Figure 12. The intermittency exponents are shown for the spectral velocity components, 
ax3, ay3, and az3, for the initial conditions of Set 15 at the stream wise location of x = 0.120, 
the normalized vertical location of η = 3.00 and the span wise velocity of we = 0.080. 

 
spectral velocity components to yield the average intermittency exponent for the 
entire Set 5 initial conditions. The resulting intermittency exponent will be des-
ignated as 

5ave
ζ . The value of the average intermittency exponent for initial 

conditions Set 5 is found to be 
5ave

ζ  = 0.349. 
Arimitsu and Arimitsu [33] found, in the analysis of quantum turbulent in-

termittency, a value of 
5ave

ζ  = 0.326, while Arimitsu, et al. [34] found by DNS 
analysis of this same quantum system a value of 

5ave
ζ  = 0.345. We may be able 

to gain a better understanding of the fundamental characteristics of systems with 
high values of intermittency exponents through a comparison of these two dif-
ferent systems. 

The low-temperature quantum superfluid system studied in [33] [34] appears 
to have negligible mutual friction between the superfluid and the normal fluid 
components. Therefore, the level of irreversibilities produced in the system 
would be very low. In the three-dimensional boundary-layer with initial condi-
tions given in Set 5 of Table 1, very low levels of instabilities are found in the 
nonlinear time-series solutions of the modified Lorenz equations. Subsequently, 
low values are predicted for the entropy generation rates for the initial condi-
tions of Set 5. Thus, the similarity between these two systems is that they each 
have very low levels of irreversibilities. 

However, when we move to the initial conditions Set 6, the first significant in-
stability is found in the nonlinear time series solutions of the modified Lorenz 
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equations. These instabilities give rise to a higher rate of dissipation of turbulent 
kinetic energy, thus increasing the irreversibilities in the process. This increase is 
reflected in the local peak in the entropy generation rate for Set 6, as indicated in 
Figure 3. 

The computation of entropy generation rates reported here are for a 
three-dimensional laminar boundary layer located at a stream wise distance of 
0.120 on a 1 m scale, with a stream wise velocity of unity, and at a normalized 
vertical distance in the boundary layer, η = 3.0, with the edge of the boundary 
layer at η

∞
 = 8.00, or 37.5 percent of the boundary-layer thickness. This loca-

tion is approximately the position of the hot-wire measurements reported by 
Meneneau and Sreenivan [35]. 

Table 2 shows the average intermittency exponents for a selected range of ini-
tial conditions, corresponding to the patterns apparent in Figure 3. Also shown 
are values of intermittency exponent used in a number of studies of the fractal 
nature of the dissipation of turbulent kinetic energy. The referenced values of 
the intermittency exponents are the values assumed in the indicated reference as 
either a given value for the analysis or an experimental value for comparison. 

An overall average intermittency value was determined by averaging over Sets 
6 - 10 and 14 - 16 with the results that 

5ave
ζ  = 0.241, which agrees with the un-

iversally accepted value of approximately 0.24 [33] [36]. It should also be noted 
that, in an analysis of the number of steps in the cascade process of the dissipa-
tion of turbulent kinetic energy [36], the number of steps was found to be 16.4, 
which is close to the number of empirical modes, 16, that we have found from 
the power spectral density results. 

6.5. Kinetic Energy Available for Dissipation 

The source of the kinetic energy to be dissipated through the empirical modes is 
considered as the local steady-flow kinetic energy, u2/2, at the normalized vertic-
al distance, η = 3.0 in the x-y plane boundary layer. This kinetic energy is as-
sumed to be distributed over the three fluctuating velocity components. The 
fraction of kinetic energy in the x-direction velocity component is denoted as 

xκ , the fraction of kinetic energy in the y-direction velocity component is de-
noted as yκ  and the fraction in the z-direction velocity component is denoted 
as zκ . The fraction of dissipation kinetic energy within each empirical mode of 
the power spectral energy distribution is denoted as jξ . Then the total rate of 
dissipation of the available fluctuating kinetic energy for the stream wise, normal 
and span wise velocity components is the summation, over the empirical modes, 
j, of the product of the kinetic energy fraction of each mode, jξ , times the in-
termittency exponent for that mode, ϕξ  [3]. 

The empirical intermittency exponent for each of the empirical modes has 
been obtained from the expression (Equation (16)) given by Arimitsu and Ari-
mitsu [31]. Thus, values are available for the input energy source for the 
non-equilibrium ordered regions, the fraction of the fluctuation kinetic energy  
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Table 2. This table shows the average value for the intermittency exponents for a selected 
range of sets of initial conditions. Also shown are comparable values from selected refer-
ences. 

Initial conditions: 
Set number 

Intermittency exponent: 
Average value 

Reference  
intermittency value 

Reference number 

5 0.3487 0.345 [34] 

6 0.2377 0.238 [33] 

7 0.2313 0.235 [35] 

8 0.2267   

9 0.2502 0.259 [36] 

10 0.2187   

14 0.2636   

15 0.2647 0.260 [34] 

16 0.2380 0.240 [33] 

 
available in each of the empirical modes within the non-equilibrium ordered re-
gions, and the fraction of the energy in each of the empirical modes that dissi-
pates into background thermal energy, thus increasing the thermodynamic en-
tropy. Concepts from non-equilibrium thermodynamics are used to calculate the 
dissipation process for the ordered regions as a general relaxation process. This 
is considered in the next section. 

7. Entropy Generation Rates through the Dissipation of  
Ordered Regions 

de Groot and Mazur (pp. 221-230 [37]), from the concepts of non-equilibrium 
thermodynamics, write the equation for the entropy generation rate in an inter-
nal relaxation process as: 

( ) ( )xs J x
t x

µ∂∂
= −

∂ ∂
.                       (17) 

Here, s is the entropy per unit mass, μ is the mechanical potential for the 
transport of the ordered regions in an external context and J(x) is the flux of ki-
netic energy through the ordered regions available for dissipation into thermal 
internal energy. The dissipation of the ordered regions into background thermal 
energy may be considered as a two-stage process from the transition of the or-
dered regions into equilibrium thermodynamic states and a turn-over process of 
the downstream velocity in the initial state to the final equilibrium state of the 
velocity over the internal distance x. The local boundary layer steady state veloc-
ity is written as eu u f ′= , where f ′  is the derivative of the Falkner-Skan 
stream function f with respect to the normalized distance η. The expression for 
the entropy generation rate (in Joules/(m3∙K∙s)) through the non-equilibrium 
ordered regions is then written as [3]: 
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In this expression, ρ is the density of the working substance, T is the temper-
ature and ue is the free stream velocity. The dissipation rate for each of the three 
fluctuating spectral velocity components is included in Equation (18). 

The kinetic energy in each spectral mode available for final dissipation into 
equilibrium internal energy is computed for each of the spectral peaks shown in 
Figure 7. The empirical entropy for each of the regions indicated by the spectral 
peaks is found from the singular value decomposition process applied to the 
given time series data segment. The connecting parameter, the empirical en-
tropic index, is then extracted from the resulting value of the empirical entropy. 
The empirical entropic indices then allow the extraction of the corresponding 
intermittency exponents. 

8. Discussion 

There are two significant issues with the computational procedure and the re-
sults reported in this article. First, there have been no comparable computational 
results which would validate the procedures adopted here. Second, experimental 
validation is sparse and applies only to selected aspects of the computational ap-
proach and the results. However, the computational procedure is innovative in 
that it provides a method for the incorporation of a deterministic set of equa-
tions for the development of instabilities within the steady state environment of 
a three-dimensional laminar boundary layer flow. The results indicate that the 
entropy generation rates resulting from nonlinear interactions in a three-    
dimensional laminar boundary-layer flow are significantly affected by the par-
ticular initial conditions that are applied to the longitudinal vortex structure and 
the adjacent laminar boundary layer flow. 

The counter clockwise rotating longitudinal vortex structure creates a viscous 
boundary layer along the z-y plane of the flow configuration. This viscous 
boundary layer is orthogonal to the laminar boundary layer in the x-y plane in 
the stream wise direction. It is shown that this nonlinear interaction creates in-
stabilities within the three-dimensional flow configuration. 

The computational results reported here for the entropy generation rates for a 
helium mixture boundary layer flow are obtained at the stream wise location of x 
= 0.120, in the range of stream wise locations from x = 0.06 to x = 0.18, for the 
normalized vertical station of η = 3.00. The weighting factor K in Equation (5) 
has been found to yield the prediction of instabilities for a value of K = 0.05. In 
an experimental investigation of laminar boundary layer receptivity to surface 
mass injection, Sengupta (pp. 158-170 [15]) found that the coefficient of 0.05 for 
a time-dependent sinusoidal surface mass injection rate also initiated instabili-
ties within a laminar boundary-layer flow. We thus have the implication that 
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Equation (5) is a proper choice for the transformation of the Townsend equa-
tions for the fluctuating velocity components into a modified Lorenz format. 

Free stream turbulence levels provide the turbulent kinetic energy that enters 
the wall shear layer. However, this level is attenuated within the layer and only a 
portion is available to serve as the initial conditions for the solution of the mod-
ified Lorenz equations describing the development of instabilities within the 
layer. Schmid and Henningson (pp. 430-436 [11]) discuss the resulting forma-
tion of stream wise vortices, streaky structures, and the subsequence formation 
of turbulent spots through the interaction of this turbulence level within the wall 
boundary layer flow. 

In the study reported here, we have modeled the interaction of a longitudinal 
vortex structure with a stream wise developing boundary layer through the time 
dependent modified Lorenz equations and have applied a range of initial condi-
tions to the solutions of these equations. 

Fluctuating spectral velocity components are found within the time-series so-
lutions for the modified Lorenz equations. Statistical processing of the solutions 
indicates the presence of ordered regions embedded within the nonlinear time- 
series solutions. The dissipation of these ordered regions into equilibrium ther-
modynamic states yields the entropy generation rates for the three-dimensional 
interaction flow environment. Significant entropy generation rates are predicted 
for the specified sets of initial conditions applied to the solutions. The results for 
these entropy generation rates indicate a strong correlation of the entropy results 
with the levels of the applied initial conditions and that a pattern emerges as a 
function of the increasing levels of the initial condition equivalent turbulence 
intensities. 

The sensitivity to initial conditions of the Lorenz format spectral velocity equ-
ations may provide a means of connecting the incorporation of these time de-
pendent spectral equations in the computational procedure with the concept of 
bypass transition of the boundary layer flow due to outside disturbances. 

9. Conclusions 

The flow configuration of a longitudinal vortex structure and an adjacent lami-
nar boundary layer for a helium mixture flow provides a three-dimensional non-
linear interaction of laminar boundary layers. In the study reported in this ar-
ticle, the velocity fluctuations produced by the instabilities that occur in such an 
interaction have been modeled through the transformation of the Townsend 
equations for the velocity fluctuations into a set of nonlinear deterministic Lo-
renz equations for the spectral velocity components of the fluctuations in the 
time frame. 

The steady boundary-layer velocity profiles in the longitudinal-normal plane 
and the span wise-normal plane are computed using well-established numerical 
methods and serve as control parameters for the solutions of the modified Lo-
renz equations for the time-dependent spectral velocity components. It is shown 
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that the solutions of the nonlinear deterministic modified Lorenz equations are 
strongly dependent on the values for the initial conditions applied to the solu-
tions. Eighteen sets of initial conditions are examined for the resulting effects on 
the final values for the computed entropy generation rates. 

Power spectral density analysis of the nonlinear time series indicates the 
presence of sixteen ordered spectral velocity modes within the time series data. 
Integration over each of these modes provides the ordered energy available 
within that mode for dissipation into background thermal energy, or increase of 
entropy. From the singular value decomposition of the time series data, the frac-
tion of kinetic energy in each of the sixteen modes yields a corresponding value 
of empirical entropy for that mode. The value of empirical entropy yields the 
value for the Tsallis empirical entropic index, from which the corresponding in-
termittency exponent for each mode is obtained. Combining these results yields 
the expression of the total entropy generation rate for all of the ordered modes.  

The entropy generation rates through the dissipation of these ordered regions 
are computed for eighteen sets of initial conditions for the given helium boun-
dary layer flow environment. Strong correlation is found between the predicted 
entropy generation rates and the initial conditions applied for the solutions of 
the modified Lorenz equations, both in amplitudes of the generation rates and 
the emergent of significant patterns of the entropy generation rates as a function 
of the intensity levels of the applied initial conditions. 

These results offer a deterministic path to the understanding of bypass transi-
tion and a foundation for the development of an understanding of the dynamics 
of turbulent spots in the transition from laminar to turbulent flows. 
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Nomenclature 

ai: Fluctuating i-th component of velocity wave vector 
bn: Coefficient in modified Lorenz equations defined by Equation (9) 
F: Time-dependent feedback factor 
h: Integration time step (s) 
j: Mode number empirical eigenvalue 
J: Net source of kinetic energy dissipation rate, Equation (17) 
k: Time-dependent wave number magnitude 
ki: Fluctuating i-th wave number of Fourier expansion 
K: Adjustable weighting factor 
n: Stream wise station number 
P: Local static pressure (N∙m−2) 
qj: Empirical entropic index for the empirical entropy of mode, j 
rn: Coefficient in modified Lorenz equations defined by Equation (8) 
s: Entropy per unit mass (J∙kg−1∙K−1)) 
sn: Coefficient in modified Lorenz equations defined by Equation (8) 
Sempj: Empirical entropy for empirical mode, j 

genS : Entropy generation rate through kinetic energy dissipation (J∙m−3∙K-1∙s−1) 
t: Time (s) 
u: Mean stream wise velocity in the x-direction in Equation (4) 
u’: Fluctuating stream wise velocity in Equation (4) 
ue: Stream wise velocity at the outer edge of the x-y plane boundary layer 
ui: The i-th component of the fluctuating velocity 
Ui: Mean velocity in the i-th direction in the modified Lorenz equations 
we: Span wise velocity at the outer edge of the z-y plane boundary layer 
x: Stream wise distance 
xi: i-th direction 
xj: j-th direction 
y: Normal distance 
z: Span wise distance 
Greek Letters 
δ: Boundary layer thickness (m) 
δlm: Kronecker delta 

jζ : Intermittency exponent for the j-th mode in Equation (18) 
η: Transformed normal distance parameter 
η∞: Transformed outer edge of the boundary layer 

xκ : Fraction of kinetic energy in the stream wise component 

yκ : Fraction of kinetic energy in the normal component 

zκ : Fraction of kinetic energy in the span wise component 
λj: Eigenvalue for the empirical mode, j 
μ: Mechanical potential in Equation (17) 
v: Kinematic viscosity of the gas mixture (m2∙s-1) 

jξ : Kinetic energy in the j-th empirical mode 
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ρ: Density (kg∙m−3) 
σy: Coefficient in modified Lorenz equations defined by Equation (7) 
σx: Coefficient in modified Lorenz equations defined by Equation (7) 
τw: Wall shear stress (N∙m−2) 
Subscripts 
e: Outer edge of the laminar boundary layer 
i, j, l, m: Tensor indices 
x: Component in the x-direction 
y: Component in the y-direction 
z: Component in the z-direction 
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Abstract 
In this paper the fractional Euler Lagrange equations for irregular Lagrangian 
with holonomic constraints have been presented. The equations of motion are 
obtained using fractional Euler Lagrange equations in a similar manner to the 
usual mechanics. The results of fractional calculus reduce to those obtained 
from classical calculus (the standard Euler Lagrange equations) when 0γ →  
and ,α β  are equal unity only. Two problems are considered to demonstrate 
the application of the formalism. 
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1. Introduction 

The Euler Lagrange equations and Hamilton’s principle form the basis of La-
grangian or Hamiltonian mechanics. The power of Lagrangian mechanics is that 
the given equations are characterized with only one scalar function the Lagran-
gian L, or the Hamiltonian H. In general, these functions only describe conserv-
ative systems. There have been some approaches at describing nonconservative 
systems in such formalism. The method presented by Rayleigh introduces a 
function R (called Rayleigh’s dissipation function). 

The study of holonomic constrained systems is discussed in most references of 
classical mechanics [1] [2]; these systems describe dynamic systems with con-
straints depend only on the generalized coordinates ( )iq t . The canonical for-
malism of holonomic systems was treated by Rabei [3]. In this formalism the 
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author has treated the regular Lagrangian with holonomic constraints as singular 
systems and the Lagrange multipliers as generalized coordinates. The equations 
of motion are written as total differential equations then, the holonomic systems 
are quantized using the WKB approximation [4]. 

Fractional calculus is a generalization of differentiation and integration to a 
noninteger order. The interest in fractional calculus has been growing conti-
nually during the last few years because of its numerous applications in science 
and engineering [5] [6] [7]. The traditional calculus of variation cannot be used 
to obtain the equations of motion for the nonconservative systems. 

Riewe has used the fractional calculus to develop a formalism which can be 
used for both conservative and nonconservative systems [8] [9]. The Hamilto-
nian and Lagrangian involving fractional derivative is also used to derive the 
equation of damped harmonic oscillator [10]. Therefore the dynamical systems 
with fractional order can be dissipative. For this reason, the theory and methods 
of fractional calculus are extensively used for describing critical phenomena in 
nonconservative systems of physics and mechanics [11] [12]. 

Recently, the classical calculus of variations was extended by Agrawal [13] for 
systems containing Riemann-Liouville fractional derivatives. The resulting equa-
tions are found to be similar to those for variational problems containing 
integral order derivatives. In other words, the results of fractional calculus of 
variations reduce to those obtained from traditional fractional calculus of varia-
tions when the derivative of fractional order replaced by integral order. More 
recently, Euler Lagrange equations for holonomic constrained systems with reg-
ular Lagrangian have been presented by Hasan [14] using the fractional varia-
tionl problems. 

In the present paper as a continuation of Jarab’ah work [15] the fractional Eu-
ler Lagrange equations are used to obtain the equations of motion for irregular 
Lagrangian with holonomic constraints, it seems that there are several choices of 
fractional Lagrangian giving the same classical limit, in other words the same 
classical Lagrangian. 

This paper is organized as follows: In Section 2, Euler Lagrange equations 
formulation for Irregular Lagrangian with holonomic constraints is reviewed 
briefly. In Section 3, basic definitions of fractional derivatives are briefly dis-
cussed. In Section 4, the fractional Euler Lagrange equations for irregular La-
grangian with holonomic constraints are explained. In Section 5, two illustrative 
examples are examined. The work closes with some concluding remarks (In Sec-
tion 6). 

2. Euler Lagrange Equations Formulation for Regular  
Lagrangian with Holonomic Constraints 

The Lagrangian formulation for regular Lagrangian is given by 

( ), ,i iL L q q t=
 

                           (1) 

Here ( ), ,i iL q q t


  stands for the Lagrangian of the corresponding conserva-
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tive systems. The standard method for incorporating the constraint functions to 
the equations of motion is the use of the so called Lagrange multipliers. The mo-
tion of a holonomic system could in principle be determined by making use of 
the n Euler Lagrange equations and m constraints. 

d , 1,2, ,
d i i i

fL L i n
t q q q

µ
µλ
∂ ∂ ∂

− = = 
∂ ∂ ∂ 

 





               (2) 

The constraint equation with m constraints can be written as ( ), 0if q tµ = , 
1, 2, ,n n n mµ = + + + . 

µλ : are the Lagrange multipliers. 

3. Basic Definitions of Fractional Derivatives 

Now, we will give the basic definition of a fractional derivatives include the left 
and the right Riemann Liouville fractional derivatives [16] [17] and their prop-
erties. The left Riemann Liouville fractional derivative is defined as 

( ) ( ) ( ) ( )11 d d
d

n x
n

a x
a

D f x x f
n x

αα τ τ τ
α

− − = − Γ −   ∫
           (3) 

which is denoted as the LRLFD, 
and the right Riemann Liouville fractional derivative is defined as 

( ) ( ) ( ) ( )11 d d
d

n b
n

x b
x

D f x x f
n x

αα τ τ τ
α

− − = − − Γ −   ∫
           (4) 

which is denoted as the RRLFD, 
Here Γ  represents the Euler’s gamma function, and α  is the order of the 

derivative such that 1n nα− ≤ <  and is not equal to zero. If α  is an integer, 
these derivatives are defined as follows: 

( ) ( )d
da xD f x f x
x

α
α  =  

 
                     (5) 

( ) ( )d
dx bD f x f x
x

α
α  = − 

 
                    (6) 

1,2,α =   

The fractional operator ( )a xD f xα  can be written as [18]. 

d
d

n
n

a x a xnD D
x

α α−=                         (7) 

and has the following properties: 

1) ( )d , Re 0
da xD
x

α
α

α α= >  

2) ( )1, Re 0a xDα α= =  

3) ( ) ( )d , Re 0
x

a x
a

D αα τ α−= <∫  

Theorem: Let f and g be two continuous functions on [ ],a b . Then, for all 
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[ ],x a b∈ , the following properties hold: 
1) For 0m > , ( ) ( ) ( ) ( )m m m

a x a x a xD f x g x D f x D g x+ = +    

2) For 0m n≥ ≥ , ( )( ) ( )m n m n
a x a x a xD D f x D f x− −=  

3) For 0m > , ( )( ) ( )m m
a x a xD D f x f x− =  

4) For 0m > , ( )( ) ( ) ( ) ( )( )d d
b b

m m
a x x b

a a

D f x g x x f x D g x x=∫ ∫  

4. Fractional Euler Lagrange Equations for Irregular  
Lagrangian with Holonomic Constraints 

The Lagrangian formulation for irregular Lagrangian without fractional deriva-
tives is given by [19] 

( ), e t
i iL L q q γ=



                          (8) 

where L is irregular Lagrangian which is a function of n generalized coordinates 
( )iq t  and n generalized velocities ( )iq t  and γ  is defined as damping factor. 
The Euler-Lagrange equation for the fractional calculus of variations problems 

is obtained as 

0t b a t
a t t b

L L L fD D
q qD q D q

α β
µα β λ

∂ ∂ ∂ ∂
+ + + =

∂ ∂∂ ∂
              (9) 

Here L is a function of the form ( ), , e t
a t t bL L q D q D qα β γ=



. 

It is worth to mention that for 1α β= = , we have d
da tD
t

α =  and  

d
dt bD
t

α = −  and Equation (9) reduces to the standard Euler Lagrange equation 

for holonomic constraints. 

5. Examples 

1) As a first model let us consider the following Lagrangian that describes the 
motion of a bead of mass m is constrained to move on a circular wire of radius 
R. 

The Lagrangian of our problem is given by 

( )2 2 21 cos
2

L m r r mgrθ θ= + −

  

In the presence of damping factor the Lagrangian becomes 

( )2 2 21 cos e
2

tL m r r mgr γθ θ = + −  


                 (10) 

Is subject to the holonomic constraint 

( ) 0f r r R= − =                       (11) 

The Lagrangian in fractional form can be written as 

( ) ( )2 22
0 1

1 1 cos e
2 2

t
t tL m D r mr D mgrα β γθ θ = + −  

          (12) 
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Using Equation (9), the corresponding Euler Lagrange equations are 

( ) ( )2

1 1 0e e cos e 0t t t
t t tmr D mg D m D rγ β γ α α γθ θ λ − + + =          (13) 

and 

( )2
0 1e sin e 0t t

t tmgr D mr Dγ β β γθ θ + =               (14) 

From Equations (13) and (14), we obtain the classical results if 0γ →  and 
, 1α β = . One can get the angular acceleration 

sing
R
θ

θ =                           (15) 

and the Lagrange multiplier is given by 

( )3cos 2mgλ θ= −                        (16) 

2) As a second model let us consider the following Lagrangian that describes 
the motion of a disk of mass m and radius R that is rolling down an inclined 
plane without slipping. 

The Lagrangian of our problem is given by 

2 2 21 1 sin
2 4

L my mR mgyθ ϕ= + +  

In the presence of damping factor the Lagrangian becomes 

2 2 21 1 sin e
2 4

tL my mR mgy γθ ϕ = + +  


                (17) 

where ϕ  is the angle of the inline plane. 
The holonomic constraint equation is 

( ), 0f y y Rθ θ= − =                         (18) 

The Lagrangian in fractional form can be written as 

( ) ( )2 22
0 1

1 1 sin e
2 4

t
t tL m D y mR D mgyα β γθ ϕ = + +  

          (19) 

Using Equations (9), the corresponding Euler Lagrange equations are 

( )1 0e sin e 0t t
t tmg D m D yγ α α γϕ λ + + =                 (20) 

and 

( )2
0 1

1 e 0
2

t
t tmR D D Rβ β γθ λ  − =                    (21) 

again, making use of Equations (20) and (21), if 0γ →  and , 1α β = . The an-
gular accelerations take the following form 

2 sin
3

g
R

θ ϕ=                           (22) 

2 sin
3

y g ϕ=                           (23) 

and the Lagrange multiplier 
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1 sin
3

mgλ ϕ
−

=                        (24) 

which are in exact agreement with that obtained by classical method. 

6. Conclusion 

In this work, Euler Lagrange equations have been presented for irregular La-
grangian with holonomic constraints using fractional approach, the fractional 
Euler Lagrange equations for holonomic constrained systems were derived, and 
through this approach we have shown that, the fractional results are very similar 
to those for the classical results. In special cases, when 0γ →  and ,α β  are 
equal unity only; the results of fractional calculus reduce to those obtained from 
classical calculus. Given the fact that many systems can be modeled more accu-
rately using fractional derivative models, it is hoped that future research will 
continue in this area. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Atam, A.P. (1990) Introduction to Classical Mechanics. Allyn and Bacon, Needham 

Heights. 

[2] Goldstein, H. (1980) Classical Mechanics. 2nd Edition, Addison-Wesley, Reading. 

[3] Rabei, E.M. (1999) Turkish Journal of Physics, 23, 1083.  
http://adsabs.harvard.edu/abs/2000NCimB.115.1159R  

[4] Serhan, M., Abusini, M. and Rabei, E.M. (2009) Journal of Theoretical Physics, 48, 
2731. https://doi.org/10.1007/s10773-009-0063-5 

[5] Miller, K.S. and Ross, B. (1993) An Introduction to the Fractional Integrals and De-
rivatives-Theory and Applications. John Willey and Sons, New York. 

[6] Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993) Fractional Integrals and Deriv-
atives: Theory and Applications. Gordon and Breach Science Publishers, Amster-
dam. 

[7] Gorenflo, R. and Mainardi, F. (1997) Fractional Calculus: Integral and Differential 
Equations of Fractional Orders, Fractals and Fractional Calculus in Continuums 
Mechanics. Springer Verlag, Wien and New York. 

[8] Riewe, F. (1996) Physical Review E, 53, 1890.  
https://doi.org/10.1103/PhysRevE.53.1890 

[9] Riewe, F. (1997) Physical Review E, 55, 3581.   
https://doi.org/10.1103/PhysRevE.55.3581 

[10] Tarawneh, K.M., Rabei, E.M. and Ghassib, H.B. (2010) Journal of Dynamics Sys-
tems and Theories, 8, 59-70. https://doi.org/10.1080/1726037X.2010.10698578 

[11] Hilfer, R. (2000) Applications of Fractional Calculus in Physics. World Scientific 
Publishing Company, Singapore, New Jersey, London and Hong Kong.  
https://doi.org/10.1142/3779 

[12] Malkawi, E., Rousan, A., Rabei, E. and Widyan, H. (2002) Fractional Calculus and 

https://doi.org/10.4236/jmp.2018.98105
http://adsabs.harvard.edu/abs/2000NCimB.115.1159R
https://doi.org/10.1007/s10773-009-0063-5
https://doi.org/10.1103/PhysRevE.53.1890
https://doi.org/10.1103/PhysRevE.55.3581
https://doi.org/10.1080/1726037X.2010.10698578
https://doi.org/10.1142/3779


O. A. Jarab’ah   
 

 

DOI: 10.4236/jmp.2018.98105 1696 Journal of Modern Physics 
 

Applied Analysis, 5, 155. 

[13] Agrawal, O.P. (1999) An Analytical Scheme for Stochastic Dynamics Systems Con-
taining Fractional Derivatives. ASME Design Engineering Technical Conferences, 
(7), 243-250. 

[14] Hasan, E.H. (2016) Applied Physics Research, 8, 60.   
https://doi.org/10.5539/apr.v8n3p60 

[15] Jarab’ah, O. (2016) Science International Lahore, 28, 3365.  
http://www.sci-int.com/Search?catid=71  

[16] Agrawal, O.P. (2001) Journal of Applied Mechanics, 68, 339.   
https://doi.org/10.1115/1.1352017 

[17] Agrawal, O.P. (2002) Journal of Mathematical Analysis and Applications, 272, 368.  
https://doi.org/10.1016/S0022-247X(02)00180-4  

[18] Igor, M., Sokolove, J.K. and Blumen, A. (2002) Physics Today, American Institute of 
Physics S-0031-9228-0211-030-1.  

[19] Jarab’ah, O., Nawafleh, K. and Ghassib, H.B. (2013) European Scientific Journal, 9, 
70. http://www.eujournal.org/index.php/esj/article/download/1946/1888  

 
 

https://doi.org/10.4236/jmp.2018.98105
https://doi.org/10.5539/apr.v8n3p60
http://www.sci-int.com/Search?catid=71
https://doi.org/10.1115/1.1352017
https://doi.org/10.1016/S0022-247X(02)00180-4
http://www.eujournal.org/index.php/esj/article/download/1946/1888


Journal of Modern Physics, 2018, 9, 1697-1711 
http://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2018.98106  Jul. 31, 2018 1697 Journal of Modern Physics 
 

 
 
 

Unravelling the Quantum Maze 

María Esther Burgos 

Department of Physics, University of Los Andes, Mérida, Venezuela 

 
 
 

Abstract 
The restoration of philosophical realism as the basis of quantum mechanics is 
the main aim of the present study. A spontaneous projection approach to 
quantum theory previously formulated achieved this goal in cases where the 
Hamiltonian does not depend explicitly on time. After discussing the most 
relevant flaws of orthodox quantum mechanics, a formulation of the sponta-
neous projections approach in the general case is introduced. This approach 
yields experimental predictions which in general coincide with those of the 
orthodox version and overcomes its main flaws. 
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Quantum Weirdness, Quantum Measurements, Spontaneous Quantum 
Jumps 

 

1. Introduction 

The foundations of quantum mechanics were laid in the period 1900-1926. Some 
of its achievements were introduced and discussed at the Fifth Solvay Congress 
(1927). Even though the theory seemed bizarre, it was accepted by the majority 
of participants at this meeting ([1], pp. 109-121). In 1930 Paul Dirac published 
the first formulation of quantum mechanics [2]. Two years later John von Neu-
mann published Mathematische Grundlagen der Quantenmechanik [3]. Quan-
tum mechanics was born. 

These first versions of the theory share two characteristics: 1) The state vector 
ψ  (wave function ψ ) describes the state of an individual system. 2) They 

involve two laws of change of the system’s state: Spontaneous (natural) processes, 
governed by the Schrödinger equation; and measurement processes, ruled by the 
projection postulate. This postulate gives an account for projections (collapses, 
reductions or quantum jumps) caused by measurements. Many other versions of 
quantum theory followed. Those where ψ  describes the state of an individual 
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system and the projection postulate is included among its axioms are generally 
called standard, ordinary or orthodox quantum mechanics (OQM), sometimes 
referred to as the Copenhagen Interpretation. 

From its inception OQM, and in particular its projection postulate, was the 
target of merciless criticism. Many scientists denounced what they considered its 
flaws. Among them, 1) it is incompatible with determinism; 2) it implies a kind 
of action-at-a-distance; and 3) it renounces philosophical realism. In addition, 
OQM presents a conflict with conservation laws which has been largely ignored 
[4] [5] [6] [7] [8] and carries the seeds of incoherence and contradictions [9] [10]. 

In 1931 Albert Einstein rightfully proclaimed: “the belief in an external world 
independent of the perceiving subject is the basis of all natural science” [11]. The 
restoration of philosophical realism as the basis of quantum mechanics is hence 
worth being pursued. The corresponding change of formalism should be realized, 
however, keeping as much as possible the experimental predictions of OQM, a 
theory imposingly successful [12]. 

This is the main aim of the spontaneous projection approach (SPA), a version 
of quantum theory previously formulated for cases where the Hamiltonian does 
not depend explicitly on time. It achieved this goal to a certain degree: it does 
not modify the Schrödinger equation and recovers a version of Born’s postulate 
where no reference to measurements is made [13] [14] [15]. But the fact that it 
cannot account for cases where the Hamiltonian depends explicitly on time was 
a flaw which became increasingly apparent during our critical review of time 
dependent perturbation theory (TDPT) and forced us to conclude that OQM 
weirdness is not limited to the measurement problem [9] [10]. 

The version of SPA introduced in the present paper is more general than the 
previous one for it includes cases where the Hamiltonian depends explicitly on 
time. It keeps, however, the essential traits of SPA first version and yields, as far 
as we can see, the same experimental predictions obtained from OQM. 

2. Philosophical Realism, Quantum Measurements and 
Scientific Problems 

We uphold philosophical realism. We did in the first version of SPA and adopt 
the same epistemology as the basis of our present, more elaborated and general 
formulation of SPA. Our philosophical starting point can be stated as follows: 1) 
the things physics is about are supposed to exist, whether they are observed or 
not; 2) every scientific theory represents things through conceptual models; and 
3) the adequacy of a theory (and corresponding models) to the things it refers to 
must take experimental results into account. In agreement with the philosophi-
cal point of view we adopt, “there are no definitive theories or models in (factual) 
science, because scientific knowledge is always of a hypothetical and never of a 
final nature” [16] [17]. More on this subject in ([18], p. 86). 

According to Mario Bunge, “the main epistemological problem about quan-
tum theory is whether it represents real (autonomously existing) things, and 
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therefore whether it is compatible with epistemological realism. The latter is the 
family of epistemologies which assume that a) the world exists independently of 
the knowing subject, and b) the task of science is to produce maximally true 
conceptual models of reality…” ([19], pp. 191-192). He adds: “The main pillar of 
the non-realist interpretations of quantum theory is a certain view on measure-
ment and on the projection (reduction) of the state function that is involved in 
measurement… [Sometimes] ‘measurement’ is misused to denote any interac-
tion of an entity with the environment… However, the worst misconception of 
measurement is its identification with the subjective experience of taking cog-
nizance of the outcome of measurement” ([19], pp. 192-193). For instance, in 
von Neumann’s view, a complete measurement involves the consciousness of the 
observer ([1], pp. 481-482) ([20], pp. 418-421). “By assuming that observation 
escapes the laws of physics… the orthodox view treats measurement as an un-
physical process…” ([19], p. 200). 

In his answer to the question “what can be observed?” Bell quotes Einstein 
saying “it is theory which decides what is ‘observable’. I think he was 
right—‘observation’ is a complicated and theory-laden business. Then that no-
tion should not appear in the formulation of fundamental theory” ([21], p. 208; 
emphases added). Bell exposes to ridicule the supposedly necessary intervention 
of an observer to cause projections when he asks: “What exactly qualifies some 
physical system to play the role of ‘measurer’? Was the wave function of the 
world waiting to jump for thousands of millions of years until a single-celled 
living creature appeared? Or did it have to wait a little longer, for some better 
qualified system... with a PhD? If the theory is to apply to anything but highly 
idealized laboratory operations, are we not obliged to admit that more or less 
‘measurement-like’ processes are going on all the time, more or less everywhere? 
Do we have jumping all the time?” ([21], p. 209). 

Some authors dealing with the measurement problem avoid reference to the 
observer, but assume that measuring devices are macroscopic. Concerning this 
hypothesis Max Jammer highlights: “as long as a quantum mechanical one-body 
or many-body system does not interact with a macroscopic object, as long as its 
motion is described by the deterministic Schrödinger time-dependent equation, 
no events could be considered to take place in the system… If the whole physical 
universe were composed only of microphysical entities, as it should be according 
to the atomic theory, it would be a universe of evolving potentialities (time-  
dependent ψ -functions) but not of real events” ([1], p. 474). 

A few authors have considered the possibility that projections may happen at 
the microscopic level, that they are not necessarily the result of the interaction 
between a quantum system and a macroscopic object [22] [23]. We agree. Col-
lapses are a kind of spontaneous processes occurring in nature. In order to take 
place, they require neither the intervention of observers nor the interaction of a 
microscopic (quantum) system with a macroscopic (classical) measuring device 
[13]. Reductions may also happen in tiny isolated systems. 
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According to Bunge “the question of reality has nothing to do with scientific 
problems such as whether all properties have sharp values, and whether all be-
havior is causal” ([19], p. 192; emphases added). He adds: “unfortunately the two 
main controversies, those over realism and determinism (or hidden variables), 
have often been mixed up—and this by scientists of the stature of Einstein and 
de Broglie, Bohm and d’Espagnat. Yet the two issues are quite different: whereas 
the problem of realism is epistemological, that of hidden variables is ontologi-
cal…” ([19], p. 168). We agree. But the list of scientific problems which have 
nothing to do with the question of reality ought to include at least three addi-
tional issues not mentioned by Bunge: the kind of action-at-a-distance pointed 
out by Einstein in the Fifth Solvay Congress ([1], p. 116); the validity of conser-
vation laws [8]; and OQM incoherence and contradictions introduced through 
TDPT [9] [10]. Let us briefly consider these three issues. 

2.1. OQM Implies a Kind of Action-at-a-Distance 

The contradiction between the individual interpretation of the wave function ψ
and the postulate of relativity was first pointed out by Einstein in the Fifth Sol-
vay Congress. In the case of a particle that, after diffraction in a slit arrives at a 
certain point of a scintillation-screen, he pointed out that the theory of quanta 
can be considered from two different viewpoints: I) The de Broglie-Schrödinger 
waves do not represent one individual particle but rather an ensemble of par-
ticles distributed in space. Accordingly, the theory provides information not on 
an individual process but rather on an ensemble of them… II) Quantum me-
chanics is considered a complete theory of individual processes. Hence, “each 
particle moving toward the screen is described as a wave packet which, after dif-
fraction, arrives at a certain point P on the screen, and ( ) 2

rψ  expresses the 
probability (probability density) that at a given moment one and the same par-
ticle shows its presence at r…” ([1], pp. 115-116). 

Einstein objected to the second possibility on the following grounds: “If 2ψ  
is interpreted according to II, then, as long as no localization has been effected, 
the particle must be considered as potentially present with almost constant 
probability over the whole area of the screen; however, as soon as it is localized, 
a peculiar action-at-a-distance must be assumed to take place which prevents the 
continuously distributed wave in space from producing an effect at two places in 
the screen… ‘It seems to me,’ Einstein continued, ‘that this difficulty cannot be 
overcome unless the description of the process in terms of the Schrödinger wave 
is supplemented by some detailed specification of the localization of the particle 
during its propagation… If one works only with Schrödinger waves, the [indi-
vidual] interpretation of 2ψ , I think, contradicts the postulate of relativity’.” 
([1], p. 116; emphases added). 

As early as 1927 (during the Fifth Solvay Congress) Einstein proved that the 
idea that quantum mechanics is a complete theory of individual processes rend-
ers inescapable the notion of instantaneous quantum jumps [15] [24]. His con-
clusion is the result neither of a sophisticated experiment nor of a cumbersome 
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argument. It comes from logical reasoning applied to a very simple though expe-
riment. To our knowledge, nobody has shown him wrong. 

Eight years later, Einstein et al. published their celebrated article Can Quan-
tum-Mechanical Description of Physical Reality Be Considered Complete? [25]. 
In this paper, best known as the EPR paradox, they referred to a system of two 
particles in an entangled state. In 1964 John Bell proved that no theory of nature 
that obeys local realism (and so satisfies certain inequalities) can reproduce all 
the predictions of quantum theory [26]. The contradiction between Bell’s in-
equalities and quantum mechanics was submitted to experimental test by Stuart 
Freedman and John Clauser in 1972 [27]. Many other experiments followed this 
pioneer contribution. In general they yielded results in agreement with quantum 
mechanics. We have addressed the EPR paradox and related contributions in 
previous papers [15] [16] [24]. 

OQM implies what Einstein named “a spooky action-at-a-distance.” There 
was a time when this notion was rejected by the majority of physicists. Nowa-
days it is accepted by almost everybody. This change of attitude can be retraced 
to the series of experiments aiming to test Bell’s inequalities, in particular that 
performed by Hensen et al. in 2015 [28] and quantum teleportation obtained 
quite recently [29]. Let us add that, even though non-locality has been mostly 
associated to systems of particles in an entangled state, non-locality has been 
proven to also be present in experiments performed with individual particles. 
This can be easily verified with experimental techniques accessible to everybody 
[24]. 

The experiment performed by Hensen et al. has prompted Howard Wiseman 
to claim Death by experiment for local realism [30]. Local realism has died. Let 
us stress, however, that neither realism implies locality nor locality implies real-
ism. These two concepts have been unduly mixed up. Non-locality really hap-
pens; the notion that every process is local lacks justification. This does not 
imply, however, renouncing realism. 

2.2. OQM Is at Variance with Determinism and Conservation Laws 

OQM conflicts determinism. To sample the reaction generated a century ago by 
such a conflict, let us recall that during the general debate of the Fifth Solvay 
Congress, its chairman Hendrick Lorentz objected the rejection of determinism, 
as proposed by the majority of speakers. He concluded with a desperate remark: 
“Je pourrais toujours garder ma foi déterministe pour les phénomènes 
fondamentaux… Est-ce qu’un esprit plus profond ne pourrait pas se rendre 
compte des mouvements de ces électrons? Ne pourrait-on pas garder le 
déterminisme en faisant l’objet d’une croyance? Faut-il nécessairement exiger 
l’indéterminisme en principe?” [I could always keep my faith in the determinism 
of fundamental phenomena… A more powerful mind could not give an account 
for the motion of these electrons? Determinism could be not kept as believe? Is it 
necessary to renounce determinism by principle?] ([1], p. 114). 
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The relation between determinism and conservation laws was first pointed out 
by Henry Poincaré. Concerning the law of conservation of energy, he declared: 
“[cette loi] ne peut avoir qu’une signification, c’est qu’il y a une propriété 
commune à tous les possibles; mais dans l’hypothèse déterministe il n’y a qu’un 
seul possible et alors la loi n’a plus de sens. Dans l’hypothèse indéterministe, au 
contraire, elle en prendrait un…” [this law cannot have more than one meaning, 
it is that there is a property shared by every possible; but in the determinist hy-
pothesis there is a unique possible, then the law has no sense any more. In the 
indeterminist hypothesis, by contrast, it would have a sense…] ([31], p. 161). 

This remark is pertinent: since OQM explicitly states that quantum measure-
ments are processes not ruled by deterministic laws, one should suspect that 
conservation laws are not necessarily valid in such processes [15]. We have dealt 
with this subject for some time and concluded that, in the framework of OQM, 
conservation laws are strictly valid in spontaneous processes (ruled by a deter-
ministic law); but have only a statistical sense in measurement processes (ruled 
by probability laws) [4] [5] [6] [7] [8]. Taking into account Poincaré’s remark, 
this should not be surprising: in the first case conservation laws are theorems 
which can be derived from an axiom which is not valid in the second case. 

2.3. OQM Is Incoherent and Contradictory 

OQM marvelous success in the area of experimental predictions requires, in 
general, the application of TDPT. It is agreed that the method provided by 
TDPT must be used in all problems involving a consideration of time, including 
spontaneous time dependent processes; see for instance ([2], p. 168). This is the 
case of absorption and emission of light and of processes occurring in semicon-
ductors. To give an account for such spontaneous processes, however, TDPT 
requires the application of a law which is not valid in spontaneous processes. 
This is a flagrant incoherence we have not noticed in the literature [9]. 

Let us sketch our argument: Consider a system with Hamiltonian ε  which 
does not depend explicitly on time. It will be called the unperturbed Hamilto-
nian of the system. Its eigenvalue equations are 

n n nEε φ φ=                           (1) 

where ( )1, 2,nE n =   are the eigenvalues of ε  and nφ  the corresponding 
eigenstates. For simplicity we assume ε spectrum to be entirely discrete and 
non-degenerate; all the states referred to in this study are normalized. 

Let us suppose that at initial time t = 0 the system is in the stationary state 

jφ . A system in a stationary state will remain in that state forever: if for 0t ≥  
the Hamiltonian were ε , the state vector at time t would be 

( ) ( )e 0 ej jiE t iE t
jtψ ψ φ− −= =                   (2) 

Nevertheless, TDPT establishes that by applying a time dependent perturba-
tion, transitions between different eigenstates of ε  can be induced and deter-
mines the probability corresponding to every particular transition ([2], pp. 
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172-173). 
If at t = 0 a time dependent perturbation ( )tW  is applied, for 0t ≥  the to-

tal, perturbed Hamiltonian will be 

( ) ( )t tε= +H W                           (3) 

The perturbation ( )tW  causes the state ( )0ψ  to change. According to 
TDPT, the Schrödinger evolution leads the initial state ( )0 jψ φ=  to the 
state 

( ) ( ) ( ) ( ),0 0 ,0 jt t tψ ψ φ= =U U                  (4) 

where ( ),0tU  is, by definition, the evolution operator corresponding to the 
Hamiltonian ( )tH . The probability of a transition taking place from state jφ  
to state kφ  during the time interval ( )0, t  is 

( ) ( )
2

0, ,0t j k k jE E tφ φ= UP                     (5) 

TDPT deals with processes having two clearly different stages. In the 
first—during the time interval ( )0, t —a Schrödinger evolution leads the sys-
tem’s state from ( )0ψ  to ( )tψ  given by Equation (4) with certitude; this 
change is automatic. In the second an instantaneous projection of ( )tψ  to a 
stationary state kφ  is ruled by probability laws [9]. According to OQM, the 
Schrödinger equation governs every spontaneous process; Born’s postulate 
and/or the projection postulate apply only when measurements are performed, 
resulting in a quantum jump. “The fact that TDPT requires the application of 
postulates concerning measurements to give an account for processes supposed-
ly spontaneous (v.g. absorption and emission of light) is at the very heart of 
OQM incoherence” [9]. 

A further critical review of TDPT unveiled a contradiction reminiscent of Ze-
no’s paradoxes concerning motion [10]. The argument can be sketched as follows. 

Referring to a system in the initial state ( )0 jψ φ= , Dirac asserts: “at time 
t the ket corresponding to the state in Schrodinger’s picture will be ( )tψ =  
( )t,0 jφU  according to Equation (4). The probability of the nE ’s then having 

the values kE  is ( )0,t j kE EP
 

given by Equation (5). For k j≠ , ( )0,t j kE EP
 

is 
the probability of a transition taking place from state jφ  

to state kφ  during 
the time interval ( )0, t , while ( )0,t jjE EP

 
is the probability of no transition 

taking place at all. The sum of ( )0,t j kE EP
 

for all k is, of course, unity” ([2], p. 
172-173; emphases added). 

The transition taking place from state jφ  to state kφ  during the interval 
( )0, t  involves an instantaneous jump, i.e. a discontinuous change at time t. 
Since the sum of probabilities corresponding to all possible discontinuous 
changes at time t is unity, no room is left for a non-null probability correspond-
ing to a process continuous at this instant [10]. Dirac does not impose any par-
ticular condition on the instant t. Hence the process cannot be continuous at any 
instant, the state vector at time t cannot be ( ) ( )t,0 jtψ φ=U  and transitions 
between stationary states during the time interval ( )0, t  as referred to in TDPT 

https://doi.org/10.4236/jmp.2018.98106


M. E. Burgos   
 

 

DOI: 10.4236/jmp.2018.98106 1704 Journal of Modern Physics 
 

cannot take place; the system remains stuck to its initial stationary state. “Pa-
raphrasing Zeno, these kinds of transitions between stationary states are nothing 
but illusions” [10]. 

Except Albert Messiah, no other author known to us imposes any particular 
condition on the interval ( )0, t . By contrast, Messiah explicitly assumes that an 
instantaneous measurement is performed at time t ([32], p. 621). In absence of 
measurement, the Schrodinger evolution follows and the probability of a transi-
tion taking place from jφ  to kφ  during the interval ( )0, t  is null. To avoid 
the “quantum Zeno contradiction” Messiah pays the price of assuming that an 
instantaneous measurement is performed every time a transition between two 
stationary states takes place [10]. 

Quantum weirdness has been traditionally associated with the measurement 
problem. To solve it, different authors have suggested several strategies. Among 
them are statistical interpretation of quantum mechanics [33], many worlds in-
terpretation [34], decoherence [12] and continuous spontaneous localization 
theory [22]. We have addressed these and other proposed solutions to the mea-
surement problem in previous papers [13] [14] [15]. Despite their value, these 
contributions do not solve the measurement problem, let alone OQM incohe-
rence and the quantum Zeno contradiction just mentioned. 

OQM weirdness is certainly not limited to the measurement problem. It is 
much more serious and justifies a radical revision of the theory [9] [10]. An 
overview of such a task follows. 

3. The Spontaneous Projection Approach 

Two kinds of processes irreducible to one another occur in nature: the strictly 
continuous and causal ones, which are governed by a deterministic law and 
those implying discontinuities, which are ruled by probability laws. This is the 
main hypothesis of SPA [13] [14] [15]. 

We explicitly discard the observer intervention and the interaction between 
the quantum system with a macroscopic measuring device as a source of projec-
tions. So the question is: what could then induce quantum jumps? SPA answers: 
the tendency the system’s state has to jump to the eigenstates of operators 
representing conserved quantities. Let us establish this hypothesis in a formal 
way. 

Let α  be the self-adjoint operator representing the physical quantity α  re-
ferred to the physical system ζ. We assume that the Hamiltonian, denoted by ε, 
does not depend explicitly on time t. Then, if the operator α  fulfills the condi-
tions 

0
t
α∂
=

∂
                              (6) 

and 

[ ], 0α ε =                             (7) 
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the system’s state ( )tψ  has the tendency to jump to the eigenstates of α . 
We have shown, however, that this tendency is seldom realized [13] [14] [15]. 

Let us highlight the difference between this hypothesis and that adopted in 
continuous spontaneous localization theory. In the last approach collapses local-
ize the wave function [22]. As a result, steady states cannot be attained [35]. By 
contrast, according to SPA in most cases projections lead the system to statio-
nary states [13]. 

3.1. The Statistical Sense of Conservation Laws 

We have previously asserted that the conflict of OQM with conservation laws 
has been largely ignored [4] [5] [6] [7] [8]. Let us briefly review this issue. 

The mean value of the physical quantity α  is by definition 

( ) ( ) ( )t t tα ψ α ψ=                         (8) 

In Schrödinger evolutions the validity of Equations (6) and (7) ensures that 
( )tα  remains a constant in time for every state ( )tψ  of ζ. It is said that 

α  is a constant of the motion and that α  is conserved. By contrast, in 
processes ruled by another, different law from Schrödinger equation, the validity 
of Equations (6) and (7) does not guarantee that ( )tα  remains a constant in 
time: if the process starts at 0t  and ends at ft , it can result ( ) ( )0ft tα α≠  
[8]. Hence the assertions “α  is a constant of the motion” and “α  is conserved” 
are not justified. However, the average of the changes ( ) ( )0ft tδ α α α= −  
obtained by repeating the process many times, converges to zero [8]. 

Let us consider a set of N orthonormal vectors: 1 2, , Nu u u  ({ }uN  for 
short) such that the system’s state at time t can be written 

( ) ( )j j
j

t c t uψ =∑                           (9) 

where ( ) ( )j jc t u tψ=  and 1, 2, , .j N= 
 The mean value of α  at time t 

is ( )tα  given by Equation (8); in particular, if ( ) jt uψ =  this mean value 
is j ju uα . Then, 

Postulate I: If Equations (6) and (7) are satisfied, the validity of 

( ) ( ) ( ) 2
j j j

j
t t c t u uψ α ψ α=∑                   (10) 

is a necessary condition for the state ( )tψ  given by Equation (9) may col-
lapse to the vectors of the set { }uN , i.e. for jumps like ( ) 1t uψ → , or 

( ) 2t uψ → ,   or ( ) Nt uψ → , may occur [13] [14] [15]. 
Postulate I recovers Poincaré’s assertion: In the indeterminist hypothesis, 

conservation laws have a statistical sense [13] [14] [15]. 

3.2. The Concept of Preferential Set 

If there is a unique set of 2N ≥  orthonormal vectors: 1 2, , , Nϕ ϕ ϕ  
({ }Nϕ  for short) such that 1) the state of the physical system ζ at time t can be 
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written 

( ) ( )j j
j

t tψ γ ϕ=∑                         (11) 

where 2) ( ) ( ) 0j jt tγ ϕ ψ= ≠  for every 1, 2, , ;j N= 
 3) at least ( )1N −  

vectors belonging to the set { }Nϕ  are eigenstates of the Hamiltonian ε  (i.e. 
stationary states); and 4) every self-adjoint operator α  for which Equations (6) 
and (7) are valid satisfies the relation 

( ) ( ) ( ) 2
j j j

j
t t tψ α ψ γ ϕ α ϕ=∑                 (12) 

we shall say that { }Nϕ  is the preferential set of ζ in the state ( )tψ  and the 
members of { }Nϕ  will be called its preferential states. 

Comment 1: According to this definition, a system ζ in the state ( )tψ  can 
either have a unique preferential set including at least two preferential states or 
not have a preferential set at all. 

Comment 2: The concept of the preferential set of ζ in the state ( )tψ  
adopted here coincides with that introduced in [10] and is different from our 
original concept of a preferential set of ζ in the state ( )tψ  [13] [14]; the dif-
ference being that in the original definition the set { }Nϕ  was not supposed to 
be unique, and condition (2) was not assumed to be valid. 

Comment 3: Besides the concept of a preferential set of ζ in the state ( )tψ , 
in previous papers we introduced the concepts of preferential basis and of max-
imal preferential set [13] [14]. Taking into account the present definition of the 
preferential set of ζ in the state ( )tψ , the concepts of preferential basis and of 
maximal preferential set become superfluous. Hence they will not be referred to 
in the following. 

We have so far assumed that the system’s Hamiltonian ε does not depend 
explicitly on time. Let us now consider cases where the system’s Hamiltonian 
depends explicitly on time. It can be written 

( ) ( )t tε= +H W                          (13) 

where ( )tW  includes every term of the Hamiltonian which depends explicitly 
on time. Then we state 

Postulate II: The preferential set (and its preferential states) of ζ in the state 
( )tψ  does not depend on the term ( )tW . 

Examples of the determination of preferential states have been given else-
where [10] [13] [14] [15]. 

3.3. The Formalism of SPA 

SPA includes the primitive (undefined) notions: system, state, physical quantity 
(or dynamical variable) and probability. Note that except the last one, these pri-
mitive concepts coincide with those adopted in Jammer’s axiomatic presentation 
of the formalism of quantum mechanics due to von Neumann ([1], p. 5). 

Postulate A: To every system ζ corresponds a Hilbert space S  whose vectors 
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(state vectors, wave functions) ( )tψ  completely describe the states of the 
system. 

Postulate B: To every physical quantity α  corresponds uniquely a 
self-adjoint operator α  acting in S . It has associated the eigenvalue equations 

k k ka a aν να =                         (14) 

(ν is introduced in order to distinguish between the different eigenvectors that 
may correspond to one eigenvalue ka ), and the closure relation 

,
k k

k
a aν ν

ν
=∑ I                         (15) 

is fulfilled (here I  is the identity operator). If k or ν iscontinuous, the respec-
tive sum has to be replaced by an integral. 

Comment I: The correspondence postulates A and B associate the primitive 
notions system, physical quantity and state of the system with mathematical ent-
ities. The same is true of von Neumann’s quantum mechanics version reported 
in ([1], p. 5). 

Postulate C: Continuous processes are governed by the Schrödinger equation 

( ) ( ) ( )d
d

i t t t
t
ψ ψ= H                      (16) 

where ( )tH  is the Hamiltonian of the system, 


 Planck’s constant divided by 
2π and i the imaginary unity. 

Comment II: The Schrödinger equation is a deterministic law. The solution 

( )tψ  of Equation (16) which corresponds to the initial condition ( )0ψ  is 
unique. The system’s state evolves in correspondence with the equation 

( ) ( ) ( ),0 0t tψ ψ=U                      (17) 

where ( ),0tU  is the evolution operator corresponding to the Hamiltonian 
( )tH ; more details in ([2], p. 109) ([36], p. 137) ([37], p. 308) ([38], p. 41). 
Postulate D: A discontinuous change of the system’s state occurs if and only if 

( )tψ  jumps to one of its preferential states. If the system ζ in the state 

( )tψ  does not have preferential states, the process is necessarily continuous 
and governed by the Schrödinger equation. 

Let us assume that the system ζ in the state ( )tψ  has the preferential set 

{ }Nϕ . So we can write 

( ) ( )k k
k

t tψ γ ϕ=∑                      (18) 

where 1, 2, , .k N= 
 Under these conditions we state 

Postulate E: In the small time interval ( ), dt t t+  the state ( )tψ  can un-
dergo the following changes 

( ) ( )d kt t tψ ψ ϕ→ + =                   (19) 

with probability 
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( ) ( ) ( )
2 dd k k

tt t
t

γ
τ

=P                      (20) 

or 

( ) ( ) ( ) ( )d d ,t t t t t t tψ ψ ψ→ + = +U U             (21) 

with probability 

( ) ( )
dd 1 tt
tτ

= −UP                        (22) 

Here 

( ) ( )
2

t tτ ε∆ =
                         (23) 

and 

( ) ( ) ( ) ( ) ( )
22 2t t t t tε ψ ε ψ ψ ε ψ ∆ = −                (24) 

Comment III: Since ( )tψ  is normalized, during a small time interval  

( ), dt t t+  the system in the state ( )tψ  has a probability 
( )
dt
tτ

 to jump to  

one of its N preferential states. If ( )dt tτ , the dominant process is the 
Schrödinger evolution [13]. 

Comment IV: In general the parameter τ  defined by Equation (23) depends 
on time t. But if τ is a constant, the state ( )tψ  may be considered as an un-
stable state that can decay to one of its N preferential states [13] [14] [15]. Let 

( )tUP  be the probability that the system’s state has not jumped to any preferen-
tial state in the interval ( )0, t . The well-known exponential decay law is then 
obtained: 

( ) e tt τ−=UP                            (25) 

4. Concluding Remarks 

Let us conclude with the following remarks. 
On the one hand SPA and OQM share several traits: 
1) Both theories refer to individual systems, not to ensembles of systems simi-

larly prepared. 
2) SPA does not modify OQM in a substantial way: It keeps without changes 

the Schrödinger equation and recovers a version of Born’s postulate where no 
reference to measurement is made. So, in general its experimental predictions 
coincide with those of OQM [13] [14] [15]. 

3) Both theories imply a “spooky action-at-a-distance” which is a kind of ac-
tion-at-a-distance easily verifiable with techniques accessible to everybody [24]. 
Since this effect actually happens, there is no reason to discard theories which 
imply it. 

4) In SPA as in OQM conservation laws fail in individual processes involving 
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quantum jumps. 
On the other hand, SPA and OQM exhibit remarkable differences: 
1) Unlike OQM, SPA is compatible with philosophical realism. In SPA there is 

no room for observers placed above the laws of nature. 
2) The conspicuous notions of measurement and observation in OQM are 

alien to SPA. Differing from OQM, SPA fulfills Bell’s requirement: “[the notion 
of observation] should not appear in the formulation of fundamental theory” 
([21], p. 208; emphases added). 

3) In OQM spontaneous processes are necessarily continuous and ruled by the 
Schrödinger equation, a deterministic law which yields automatic changes. By 
contrast, in SPA spontaneous processes are not necessarily continuous and ruled 
by the Schrödinger equation. If the system in the state ( )tψ  has the preferen-
tial set { }1 2, , , Nϕ ϕ ϕ

, it can either follow a Schrödinger evolution or in-
stantaneously jump to one of its preferential states. 

4) In OQM reductions are ad-hoc, in SPA they are not surreptitious but expli-
citly included in the formalism. 

5) OQM is incoherent and exhibits a contradiction reminiscent of Zeno’s pa-
radoxes of motion. SPA escapes these issues thanks to the hypothesis that col-
lapses are natural processes [10]. 

In sum: while yielding experimental predictions which in general coincide 
with those of OQM, SPA enjoys a coherence which is absent from OQM and 
overcomes its main flaws. 
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