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Abstract 
The paper suggests that quantum relativistic gravity (QRG) is basically a higher dimensionality 
(HD) simulating relativity and non-classical effects plus a fractal Cantorian spacetime geometry 
(FG) simulating quantum mechanics. This more than just a conceptual equation is illustrated by 
integer approximation and an exact solution of the dark energy density behind cosmic expansion. 
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1. Introduction 
Post modernistic research in theoretical physics [1]-[20] notably that connected to superstrings [21]-[25], loop 
quantum gravity [26] [27], fractal-Cantorian spacetime [28]-[30], M-theory [24] [30] [31] and a host of other 
theories [1] [2] [17]-[19] is most if not all pointing towards a rather firm fact that higher dimensionality and 
fractal geometry can be used to simulate relativity as well as quantum mechanics and possibly replace them, at 
least partially and at a minimum in basic situations where relativity and quantum mechanics are both relevant in 
equal measure [1]-[4] [32] [33]. Looking a little back in history, this is actually the achievement of visionaries 
and a few towering figures of science which are not credited sufficiently with pointing to what in our opinion is 
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the superior direction of geometrizing and “topologizing” physics and cosmology in a most general way [1] [2] 
[15] such as F. Gauss [3], J. Bolya, N. Lobachevsky, H. Minkowski [3], J. von Neumann and A. Connes [34]. 
All apart from these pioneers, the recent contributions to the theory of fractal spacetime and the E-infinity theory 
of G. Ord, L. Nottale and the present author are almost exclusively going in the same direction constituting the 
subject of the paper at hand [4] [6] [8]. 

In the present work which is anticipating a sweeping new revolution in the way, we will be doing physics in 
10 to 20 years, [1]-[54], we will illustrate the above by giving in a relatively short and concentrated form various, 
and on its face value, classical derivations of the fundamental major problem of the supposedly “missing” dark 
energy density of the cosmos amounting to 95.5 to 96 percent of the total theoretically expected value [33]-[36]. 

To keep the length of the present paper to a minimum we start from what we called in a recent paper [37] 
“The real Einstein” beauty E = kmc2 where k is essentially related to the familiar Lorentzian factor γ  with a 
twist. Thus in the present paper we introduce k γ=  as being the topological energy density factor of a gener-
alization of Einstein’s famous equation [1] [38] [39] 

2E mcγ=                                        (1) 

where E is the energy, m is the mass and c is the speed of light while 1γ =  is evidently related to the absolute 
maximal energy density possible E = mc2 [40]. The deep meaning of the above as well as the controversial as-
pect connected to rest mass, real mass conversion to energy, difference and similarity to Newton kinetic energy 
E(k) = (1/2)mv2 where v is the classical velocity of a particle as well as Einstein’s leap to a fully fledged gener-
alization of similar earlier discoveries of E = mc2 by Poincare and others will not be discussed here in the depth 
it requires [35]-[39]. Instead to cover these fundamental aspects, the reader is advised to consult first the out-
standing work of Prof. W. Rindler and Prof. L.B. Okun [40] [41] and second the earlier work of the present au-
thor and the references cited therein [35]-[39]. 

2. A More than Noteworthy Hidden Connection between Riemann’s Powerful  
Curvature Tensor [42]-[44] and I. Dvoretzky’s Magnificent Theorem Regarding  
Measure Concentration [45]-[48] 

We are invoking here nothing connected directly to the theory of relativity or quantum mechanics and yet we 
will arrive to a result which can be understood deeply only via these two pillars of modern physics [1] [3] [4]. 
The main idea behind the following analysis of dark energy is the intuitive picture that extra dimensions are 
where things can be there but not directly seen nor in fact measured by us 3-dimensional beings and with time 
being only a parameter not given to us in a tangible, physical way let alone the fifth dimension of Kaluza and 
Klein nor Witten’s eleven dimensional spacetime of his M-theory which is way above our non-mathematical in-
tuitive grasp. Confining ourselves to n dimensional Riemannian tensor R(n) one could take the view with consid-
erable justification, that R(5), i.e. five dimensions is about the limit of accessible physics in the experimental pos-
sibilities of a 3 + 1 dimensional conscious and well equipped observer. At the same time it is an educated guess 
that M-theory is real and R(11) is probably one of the best ways to describe not only theoretical high energy 
physics but the entire cosmos. To put this to a pragmatic test we calculate the vital independent components of 
the most important driving force in Einstein’s relativity, namely the Riemann tensor. For n dimensions this 
number is given by [42]-[44] [54] 

( ) ( )2 2 1 12nR n n= −                                   (2) 

Setting n = 5 and n = 11 one finds [54] 
( )5 50R =                                        (3) 

and 
( )11 2110R =                                       (4) 

respectively. Assuming that all these components have almost the same statistical weight, then the difference 
between 50 and 2110 measures clearly the sparseness of the associated space and consequently the totality of the 
average curvature. Similarly the ratio between 50 and 2110 is a measure of the density of the energy which is 
likened in the theory of relativity mainly to the curvature as it is in the case a simple elastic wire in the theory of 
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engineering elasticity. Viewing the complex problem in this quite simplistic way leads us directly to estimating 
( )Oγ , i.e. the density of the probably accessible energy which we can normally measure directly and call it 

aptly and logically, ordinary energy as follows [42]-[44] [54]: 

( )
( )

( )

5

11
50 121 0.04 4%RO

R
γ = =                               (5) 

Consequently the rest of the energy filling not only D = 5 but also D = 11 must be given by the so called dark 
energy density which is given logically by [35]-[39] 

( ) ( )1 1 0.04 0.958 96%D Oγ γ= − = −                             (6) 

For two important reasons the preceding rough result is truly striking. First it is quite close, in fact very close 
to highly accurate cosmic measurements and observations connected to the famous COBE, WMAP and Type 1a 
Supernova [33] [39] which was awarded the Nobel Prize in Physics or Cosmology in 2011. These measurements 
establish the existence of 4.5% ordinary energy density while the expected but missing 95.5% energy density 
was dubbed dark energy and concluded that it is behind the accelerated rather than previously believed decelera-
tion of cosmic expansion [33] [39]. The second reason for the profundity of our simple estimation is connected 
to the magnificent theorem of the late, great Ukrainian born legendary mathematician and past President of the 
Wiseman Institute, I. Dvoretzky [45]-[48]. This theorem states that in a high dimensional manifold almost 96 
percent of the volume is at the surface leaving only 4 percent in the bulk. The analogy and connection is obvious. 
Now we have solved this problem in numerous previous publications and came to a definite answer, namely that 
E of Einstein may be dissected into two quantum components E(O) of the quantum particle and E(D) of the 
quantum wave. Within an exact integer solution one finds that [35]-[39] 

( ) ( ) ( )2 222 21 22E E O E D mc mc= + = +                          (7) 

That means E(O) is not 4% but rather 4.5% while E(D) is not 96% but 95.5% to a very high degree of accu-
racy and in astounding agreement with measurements [33] [30]. This leads us to the next section where we will 
attempt to improve our first estimation presented at the beginning of this section. 

3. An Almost Exact Integer Solution of the Ordinary and Dark Energy Density  
Problem Based on the Number of Independent Riemannian Curvature 

Our first estimate of ( )Oγ  clearly missed the fact that we needed to add D = 5 to R(5) = 50 and analogously D 
= 11 to R(11) = 1210. This is an obvious and trivial embedding problem because R(5) and R(11) are treated as 
quasi-dimensions estimating the size of our spacetime manifold. Consequently a more accuret ( )Oγ  must be 
[35]-[39] [45]-[48] 

( )
( ) ( )

( ) ( )

5 5

11 11

50 5 55 1
1210 11 1221 22.2

R DO
R D

γ + +
= = = ≅

++
                        (8) 

This is almost the familiar exact rational (1/22) value as document in my previous papers using different 
methods. Clearly ( )Dγ  is given by the self explanatory values 

( ) ( )1 21.2 22.2D Oγ γ= −                                 (9) 

almost exactly as expected. 

4. The Exact Integer Value of Ordinary and Dark Energy Density  
Although not trivial, it is not difficult to obtain the truly exact formulas of energy density ( ) 1 22Oγ =  and 
( ) 21 22Dγ =  using the Riemannian tensor independent components method. The trick is to realize that we 

have to add not D(5) = 5 to R(5) but the full space which embeds the SL(2, 7) Lie symmetry group of the holo-
graphic boundary of our universe, i.e. D = 7 and similarly the vacuum of Witten’s D = 11 which is the corre-
sponding pure gravity with ( )3 2D n n= − . For n = 8 we have the famous D = 20 case but in the case of eleven 
dimensions we set n = 11 and find a 44 degrees of freedom vacuum. Consequently our exact ( )Oγ  must be 
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given by [35]-[39] [45]-[48]. 

( )
( ) ( )

( )

5 7

11

50 7
1210 44vacuum

R DO
R

γ + +
= =

++
                           (10) 

In other words we have [35]-[38] [52] 

( ) 57 1
1254 22

Oγ = =                                   (11) 

which is this time the truly exact integer value. For ( )Dγ  we have naturally also the exact integer value 

( ) 21 22Dγ =                                     (12) 

We may remark on passing that 57 is actually the intrinsic dimension of the fundamental E(8) exceptional 
group [52] with its famous 248 isometries which gives E8E8 of D. Gross et al. heterotic superstring symmetry 
group, the famous |E8E8| = (2) (248) = 496 dimensions [50]-[52]. 

5. A Short Introduction to the Von Neumann-Connes Theory and Comparison with  
the Exact “Transfinite” Solution of Ordinary Dark Energy Density 

Readers familiar with E-infinity Cantor spacetime theory [4] [8] know that the key to all exact results of this 
theory, including the ordinary and the dark energy density section of the cosmos, is the deceptively simple di-
mensional function due to the work of J. von Neumann in his unsung papers and book published posthumously 
“Continuous Geometry” as well as the work of the creator of noncommutative geometry, the great French pure 
and applied mathematician A. Connes [34]. This function as is well known is given by [34] 

HD a bφ= +                                     (13) 

where HD  is the Hausdorff dimension, ,a b Z∈  and ( )5 1 2φ = − . In E-infinity we made our first move 
by identifying the zero set as being necessarily be the empty set which we equate physically and mathematically 
to the pre-quantum wave. Therefore the Hausdorff dimension of the empty set is given by ( )1D −  and can be 
found together with all other sets recursively in a Fibonacci-like way as shown below where we start with the 
two trivial seeds, namely the zero set ( )HD O φ=  and the unity set ( ) ( )01 1 0 1 1.HD φ= + = =  which are in-
dicated in Equation (14) by two small arrows. Proceeding in this way we find [34] [39] 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

3

2

1

0

2

3 3

2 0 1

1 1 0 0

0 0 1

1 1 0 1 1

2 1 1 1

3 2 1 2

4 3 2 1 4

D

D

D

D

D

D

D

φ φ φ

φ φ

φ φ φ

φ

φ φ φ

φ φ φ

φ φ φ

−

− = − + − − =

− = − + − =

→ = + = =

→ = + = =

= + = = +

= + = = +

= + = = +

                           (14) 

From the above we see that the pre-quantum particle is identified by the bi-dimension [47] 

( ) ( )particle 0,QD φ≡                                  (15) 

while the pre-quantum wave is given by 

( ) ( )2wave 1,QD φ≡ −                                  (16) 

From all these previous results, it is easily reasoned that the “topological” volume of the pre-particle in 5D is 
given by the obvious multiplication formula [39] 

( ) ( ) 2

5 2

wave 5

5 2

Vol φ

φ φ

=

+ =
                                  (17) 
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The corresponding additive volume of the pre-quantum wave on the other hand is given by 

( ) ( ) 2wave 5Vol φ=                                   (18) 

The total volume is thus equivalent to world sheet of string theory [21]-[25] 
5 25 2φ φ+ =                                      (19) 

Inserting mean volume <vol(total)> = 2/2 = 1 in Einstein’s formula E = mc2 one finds [35]-[39] 

( ) ( ) ( )5 2 21 1Einstein 5
2 2

E mcφ φ = +  
                           (20) 

That means [35]-[39] [48]-[52] 

( ) ( ) ( ) ( ) ( )5 2 2 2

2 2 2

Einstein 2 5 2

21.1803322.18033989
22.18033

E E O E D mc mc

mc mc mc

φ φ= + = +

= + =
                   (21) 

This is the exact expression which leads to the integer solution by disregarding k = 0.18033989 compared to 
21 and 22. We note that this k was interpreted physically as ‘tHooft’s renormalon hypothetical particle which is 
equal to 52φ where 5φ  is hardy’s famous quantum probability of two entangled quantum particles which is the 
exact solution of the corresponding Dirac’s equations of the problem. In addition we must stress that 5φ  was 
verified experimentally and found to a very high degree of precision. Thus our theory is well founded theoreti-
cally and experimentally on all fundamental levels. The more interesting it must be that one can find the exact 
integer solution without direct reference to the theory of quantum relativity. In the next section we will look at 
the same problem using nothing more than our ordinary three dimensional space coupled to a rather familiar 
fractal curve [53]. 

6. Solving Dark Energy in a Classical Newtonian Three Space Dimensions 
Although we have not invoked in all the preceding analysis any Lorentzian transformations or Einsteinian con-
ception relating to the meaning of simultaneousity [40] nor of course a Schrödinger equations [1]-[9], we did 
make extensive use of higher dimensionality of spacetime as well as the basic final results of Einstein’s special 
relativity marvel, namely E = mc2. In the following solution all these things will be dispensed of so that the 
reader may see clearly the main message of the present paper that even a low dimensional fractal is essentially 
infinite quasi dimensional because of the involved infinite iteration and self similarity and that even a harmless 
conventional fractal curve in 3 dimensions like the familiar Menger sponge [53] could simulate quantum effects 
involved in the physics geometry and topology of ordinary and dark energy density of the cosmos [47]-[57]. 
Thus we draw in our following analysis on the classical three dimensional sponge named after the great Austria- 
American mathematician Karl Menger [53] who together with the outstanding young Russian mathematician P. 
Urysohn discovered the inductive dimensional theory which is one of our main tools in erecting E-infinity 
theory [28] [50]. The Hausdorff dimension in this case is [53] 

( ) 20Menger sponge 2.726833028
3

nD
n

= =




                        (22) 

This fractal, although it looks like a cubic sponge in 3D is essentially a curve, not a real 3D and possesses in 
our case the disadvantage of being continuous and could therefore be expected to deliver a good approximation 
only because continuity violates one of our main E-infinity theory principles, namely being the “pointless” 
point-set theory as emphasized in the pioneering work of von Neumann’s continuous geometry where continuity 
is not referring to the geometry [34] [39] [47] but to the spectrum of the most important topological invariant of 
a manifold, namely the dimension. Thus one should not be misled by the word “continuity” with which von 
Neumann means fractal dimensionality spectrum but at the time, the word fractal was not invented yet by Man-
delbrot nor were fractals part of the mathematical science culture [3] [46]. Since the Hausdorff dimension refers 
here not to the dark non-differentiable lines remaining from the Menger sponge iteration but to the space en-



M. S. El Naschie 
 

 
734 

cased between these 3 dimensional lines, we see that the ratio between DH = 2.726833028 and DT = 3 will give 
us the density of the involved empty set which represents dark energy. Consequently we may write 

( ) 20 3 2.726833028 0.09089443426
3 3

H

T

D n nD
D

γ = = = =
                    (23) 

Consequently the ordinary energy density must be 

( ) ( )1 1 0.9089443426 0.09105565738O Dγ γ= − = − =                    (24) 

Now, and this is a crucial point, we do not insert ( )Oγ  in Einstein’s formula 2E mcγ=  which we used all 
along because Einstein’s formula belongs to D = 4 while the previous analysis is in D = 3. Here we remain truly 
classical and insert in ( ) 21 2E mv=  of Newton and take the limit v c→  to find 

( ) ( )( )( )( )

( )

2 2

2 2 2

1 0.09105565738
2 2
0.0455278288 21.964 22

E D O m v c mc

mc mc mc

γ = → = 
 

= ≅ 

                   (25) 

For a basically almost entirely classical analysis this result reinforces our conjectured equation: 
Q R G H D F G+                                   (26) 

and together with the rest of the paper shows beyond reasonable doubt that there is far more than meets the eye 
to dimensionality of spacetime and fractal Cantorian geometry. 

7. Discussion and Conclusion 
There are many shortcut derivations and radically different solutions all converging directly or indirectly to-
wards the main thesis of the present work, namely that of measure concentration of volume in a sufficiently high 
dimensional manifold with fractal-Cantorian features. Thus, we have all three fractal spacetime theories of 
‘tHooft-Veltman-Wilson dimensional regularization spacetime D = 4 − k as well as Kaluza-Klein fractal space 

34D φ= +  and Witten’s fractal M-theory [55] with the remarkable dimensionality 511D φ= +  all leading to 
exactly the same result, namely [35]-[39] 

( ) ( ) ( ) ( )
( ) ( )

5 2 2 2

2 2

2 5 2

21 21 22

E E O E D mc mc

mc k mc k k

φ φ= + = +

= + + + +
                       (27) 

where ( )3 3 51 2 0.18033989k φ φ φ= − = = . The “integer” exact value is 

( )2 2 222 21 22E mc mc mc= + =                             (28) 

The analysis is in complete conformity with the result based on pure mathematical theorems such as 
Dvoretzky’s theorem as well as accurate measurements and observations such as COBE, WMAP and Type 1a 
supernova which is awarded the 2011 Nobel Prize [35]-[39].  

From all the above we conclude that higher dimensionality and fractality of spacetime are a reality of the 
small and large scale structure of spacetime and that our conceptual equation constituting the title of the present 
paper is far from being esoteric or mathematical abstraction with no tangible content. Hardy’s quantum entan-
glement [35]-[39], the missing dark energy which we find and the observed accelerated cosmic expansion 
clearly says that our conceptual equation is real. From this fundamental conclusion to the realization that nega-
tive probability, phantoms and ghosts in strings and quantum fields are fairly exchangeable concepts lurking be-
hind the empty set dark energy of the quantum wave is only one step [57]. 
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Abstract
This paper offers concrete spin matrix forms of 0 spin zero particle, and shows

the existent of the spin interactions among 0 spin zero particles. It is obviously
hoping to approach, on the most comprehensive level, to understand what really
Higgs Boson is and what role-play Higgs Boson is acting in particle physics.

As a " particle " of gravitational force, the spin interaction between 0 spin
zero particle (Higgs Boson) and 2 spin particle (Graviton) is given, which maybe
a way that people would find Graviton in future.

Keywords
Higgs Boson ; Graviton; Vacuum Bubble Pair ; Spin Topological Space, STS ;

Casimir operator; right-hand 0 spin zero particle; left-hand 0 spin zero particle
———————————————————————————————————–
———————————————————————————————————–
1. Introduction
Higgs particle is a fundamental particle predicted by the Standard Model, and

confirmed by the Large Hadron Collider at CERN.[1] Higgs particle could explain
why the photon has no mass while W and Z Bosons are very heavy in electron-weak
theory, and endows Fermions such as electron, muon and tau particle and quarks
with their masses. The intrinsic spin angular momentum of Higgs particle is 0.
In conventional quantum mechanics, the representation of spin zero particle is a
zero-matrix of one dimensional space, this means, in fact, Higgs particle has no
matrix representation for its spin property in the Standard Model. What a pity !
magical Higgs particle could create masses of the particles in universe, however,
failing to write out its own non-trivial spin matrices. Zero is not nothing, zero spin
is not non-twirling. From the pointview of The Third Kind of Particles, TKP, [2]
the angular momentum property of spin zero particle can be expressed by infinite
dimensional non-Hermitian matrices which related to Vacuum Bubble Pair, VBP ,

 

Journal of Modern Physics, 2016, 7, 737-759 
Published Online April 2016 in SciRes. http://www.scirp.org/journal/jmp 
http://dx.doi.org/10.4236/jmp.2016.78070    

How to cite this paper: Ren, S.X. (2016) Spin Forms and Spin Interactions among Higgs Bosons, between Higgs Boson and 
Graviton. Journal of Modern Physics, 7, 737-759. http://dx.doi.org/10.4236/jmp.2016.78070   



these pairs could be excited into 0 spin particle form phase transitions of
Vacuum Spin Particle, VSP, whose Casimir Operator is − 1

4 2I0, less than
zero. [3] ( Casimir Operator of Higgs particle is 02I0, of Graviton is 62I0 )

In conventional quantum mechanics, each particle has its own spin space: one
spin prticle, one spin space; two spin particles, two spin spaces; .......; n spin
particles, n spin spaces. These spin spaces are independent each other, and
expressed by V  V1 ⊗ V2 ⊗ V3 ⊗ . . . ⊗ Vn.

This paper gives advice: Since the spin angular momentum constituents of every
elementary particle are composed of the common series of math elements that based
on the raising operators j

  1; j,k
  i2; j,k

− and lowering operators k
−  1; j,k

 – i2; j,k
− ,

( which compose VBP, TKP ), then a new type of spin space, the so-called Spin
Topological Space, STS , [4] is established. All sorts of spin sparticles are attributed
to this spin space, STS.

In traditional views, there are no any spin interactions among spin zero particles.
However, by means of STS concept, on the contrary, it is shown there are the spin
interactions. 0 Spin zero particle not only possesses spin phenomena but also
appears out right-circumrotation and left-circumrotation, such kind of properties may
exist in Higgs Boson world of the Standard Model.

Same reason for, there should be spin particle interactions between Higgs
Boson and graviton, and spin interactions among gravitons, detecting gravitational
force, after the interference effect of gravitational wave is comfirmed. [5]

2. Higgs Boson’s Spin angular Momentum matrices 1l, 2l, 3l
The mathematical structure of 1l, 2l, 3l and 3

2l, 1
2l  2

2l are
given in matrix series (1), (2), (3) shown below.

They satisfy angular momentum commutation rules

iljl − jlil  ikl (0.1)
i, j, k  1, 2, 3 are circulative

Casimir Operator

2l  1
2l  2

2l  3
2l  0I0  00  1I0 (0.2)

Using raising operator, lowering operator

l  1l  i2l ； －l  1l − i2l (0.3)

Then (0.1) turns to

3ll − l3l  l (0.4)
3l−l − −l3l  −−l (0.5)
l−l − −ll  23l (0.6)

What follows are the explicit spin matrix representations of three generations
(l  1,2,3) of 0 Boson, (Higgs Boson).







Be brief, in Spin Topological Space, STS , [4], the above spin matrices
{ (1.1), (1.2), (1.3); (2.1), (2.2), (2.3); (3.1), (3.2), (3.3) } of Higgs Boson can be
rewritten in the spin forms of (4.1), (4.2), (4.3)

 0, 11  { 11, 21, 31 } (4.1)

 −1,12  { 12, 22, 32 } (4.2)

 −2,13  { 13, 23, 33 } (4.3)

For an example of  0, 11, now, (4.1) is denoted by (5.0):

 0, 11  { 1; 0, 11, 2; 0, 11, 3; 0, 11 } (5.0)
1; 0, 11  1

2 0
  1

−   11 (5.1)

2; 0, 11  1
2i 0

 − 1
−   21 (5.2)

3; 0, 11  1
i {1; 0, 112; 0, 11 − 2; 0, 111; 0, 11}31

(5.3)

3. Spin Interactions between Two Higgs Bosons
a) First we deal with two-body system that compose of Higgs Boson a,

a and Higgs Boson b, b. a and b are their spin angular momentum
matrix operators. Then show a case of a spin coupling interaction (6.0)
between a and b, the scalar products S2l, or Casimir operators of their
three generations as follows

S2l  Sl  Sl (6.0)

Where Sl  al  bl (7.0)

Or S 0, 1 ; −2, −11   0, 11  −2, −11 (7.1)

S −1,1 ; −3,−12  −1,12  −3, −12 (7.2)

S −2,1 ; −4,−13   −2,13  −4, −13 (7.3)

After careful calculation, for S2 (6.0), we have (8.0)

S2l  Sl  Sl  0I0 (8.0)
Or S 0, 1 ; −2, −1

2 1  0I0 (8.1)
S−1,1 ; −3,−1

2 2  0I0 (8.2)
S−2,1 ; −4,−1

2 3  0I0 (8.3)
I0  diag {..., 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...}(9.0)

(8.0) and (8.1), (8.2), (8.3) show: there are no any effects of spin coupling
bwtween two 0 zero spin particles, al and bl.



b) How can we find no-trivial spin-coupling interaction rather than (8),
by using augular momentum operators of 0 zero spin particle ?

Actually there are two types of 0 zero spin particles, which is a way to
overcome the obstacle

Assume 0 zero spin particles  0, 11 and −2, −11 to be thought of as
two right-hand spin particles, frmula (7.1) could be written as (10).

AR  S 0, 1 ; −2, −11   0, 11  −2, −11 (10)

Further the formula (8.1) is expressed as (11)

AR I0 AR  S 0, 1 ; −2, −1
2 1  0I0 (11)

On the other side, AL
⊙

is marked as the adjoint counter of AR with
metric cofficient operator , then  0, 1

⊙
1 and  −2, −1

⊙
1 are left-hand zero

spin particles accordingly. we have

AL
⊙

 S 0, 1 ; −2, −1
⊙

1   0, 1
⊙

1   −2, −1
⊙

1 (12)

We are now ready to take further our discussion of scalar product of
right-hand-to-right-hand, AR I0 AR (11), to psecudo-scalar product of
left-hand-to-right-hand, AL

⊙
 AR (13), as follows

AR I0 AR  AL
⊙
 AR (13)

Here metric cofficient operator  is selected as

 
0 1 0
1 0 0
0 0 1

(14)

Attention:
right-hand 0 zero spin particles  0, 11 and −2, −11 obey angular

momentum commutation rules of right-handed coordinate system；

left-hand 0 zero spin particles  0, 1
⊙

1 and −2, −1
⊙

1 obey angular
momentum commutation rules of left-handed coordinate system.

For more concise, the symbols (15) are given in the future discussions
AR j, k ; r, s ≡  j , k1  r, s1, 3i, j ≡ 3; i , j1 (15)



c) Let us have a look at an example of psecudo-scalar product of
left-hand-to-right-hand of spin zero particles, AL

⊙
 AR. After careful

calculation, we get two groups of 0 spin interactions, Group-A and
Group-B.

By way of illustration, we shall refer to the feature B(1) of Group-B：
Formulas (16.1) (16.2) and formulas (17.1), (17.2) are the third

compoments of initial state i and final state f of psecudo-scalar spin
interaction of the first generation spin particles (l1).

Initial state
0 3 0 , 1  diag {...6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4,...} (16.1)
0 3−2, −1  diag {...4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6...} (16.2)

Final state
0 3 0 , −1  diag {...5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5,...} (17.1)
1 3−2, 1  diag {...5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5,...} (17.2)

And the conservation of the third compoment of spin angular momentums
between initial state i and final state f is obtained as (18.0)

3 0 , 1; −2, −1  3 0 , −1; −2, 1 (18.0)
ininal sum of s.a.m final sum of s.a.m

Where
3 0 , 1; −2, −1  3 0 , 1  3−2, −1 (18.1)
3 0 , −1; −2, 1  3 0 , −1  3−2, 1 (18.2)

And the conservation of psecudo-scalar spin interaction about ininl state i
and final state f is obtained as (19.0)

LB,i (1)  LB,f (1)  LB (19.0)

Where
LB,i (1)  BL,1

⊙
 0 , 1; −2, −1  BR,1  0 , 1; −2, −1 (19.1)

LB,f (1)  BL,1
⊙
 0 , −1; −2, 1  BR,1  0 , −1; −2, 1 (19.2)

LB  −2 diag {...102, 82, 62, 42, 22, 02, 22, 42, 62, 82, 102, ,...} (20)

What mentioned above is so-called fission of 0 zero spin particles, refer
to Fig4.

Conservation (18.0) and conservation (19.0) imply that if initial state i
and final state f exchange places, so-called fusion of other spin particles is
given, refer to Fig3.

Fig1, Fig2 of Group-A are obtained by the analogy to those of Fig3,
Fig4 of Group-B above.



A(3) 0 −2, 1 ↖ LA,f(3)  1
32 LA ↗ −3, 0  0 A(3)

A(2) 0 −1, 1 ↖ LA,f(2)  1
22 LA ↗ −2, 0  0 A(2)

A(1) 0  0 , 1 ↖ LA,f(1)  1
12 LA ↗ −1, 0  0 A(1)

1 0

fusions A

A(3) −/6 −2, 0  ↗ LA,i(3)  1
32 LA ↖ −3, 1 /6 A(3)

A(2) −/4 −1, 0  ↗ LA,i(2)  1
22 LA ↖ −2, 1 /4 A(2)

A(1) −/2  0 , 0  ↗ LA,i(1)  1
12 LA ↖ −1, 1 /2 A(1)

Fig1 zero spin particles are formed by the fusions of other spin particles

A(3) −/6 −2, 0  ↖ LA,f(3)  1
32 LA ↗ −3, 1 /6 A(3)

A(2) −/4 −1, 0  ↖ LA,f(2)  1
22 LA ↗ −2, 1 /4 A(2)

A(1) −/2  0 , 0  ↖ LA,f(1)  1
12 LA ↗ −1, 1 /2 A(1)

fissions A

1 0

A(3) 0 −2, 1 ↗ LA,i(3)  1
32 LA ↖ −3, 0  0 A(3)

A(2) 0 −1, 1 ↗ LA,i(2)  1
22 LA ↖ −2, 0  0 A(2)

A(1) 0  0 , 1 ↗ LA,i(1)  1
12 LA ↖ −1, 0  0 A(1)

Fig2 other spin particles are released by the fissions of zero spin particles

LA,f(3) ≡ AL,3
⊙
−2, 0 ; −3, 1  AR,3 −2, −1; −3, 1 (21.1)

LA,i(3) ≡ AL,3
⊙
−2, 1; −2, 1  AR,3  0, 1; −3, 0  (21.2)

LA,f(2) ≡ AL,2
⊙
−1, 0 ; −2, 1  AR,2 −1, −1; −2, 1 (22.1)

LA,i(2) ≡ AL,2
⊙
−1, 1; −1, 1  AR,2 −1, 1; −2, 0  (22.2)

LA,f(1) ≡ AL,1
⊙
 0 , 0 ; −1, 1  AR,1  0 , 0 ; −1, 1 (23.1)

LA,i(1) ≡ AL,1
⊙
 0 , 1; −1, 0   AR,1  0 , 1; −1, 0  (23.2)

LA  −2 diag {...112, 92, 72, 52, 32, 12, 12, 32, 52, 72, 92, ,...} (24)



B(3) 0 −2, 1 ↖ LB,f(3)  1
32 LB ↗ −4, 1 0 B(3)

B(2) 0 −1, 1 ↖ LB,f(2)  1
22 LB ↗ −3, −1 0 B(2)

B(1) 0  0 , 1 ↖ LB,f(1)  1
12 LB ↗ −2, −1 0 B(1)

1 −1

fusions B

B(3) −/3 −2, −1 ↗ LB,i(3)  1
32 LB ↖ −4, 1 /3 B(3)

B(2) −/2 −1, −1 ↗ LB,i(2)  1
22 LB ↖ −3, 1 /2 B(2)

B(1) 0  0 , −1 ↗ LB,i(1)  1
12 LB ↖ −2, 1 1 B(1)

Fig3 zero spin particles are formed by the fusions of other spin particles

B(3) −/3 −2, −1 ↖ LB,f(3)  1
32 LB ↗ −4, 1 /3 B(3)

B(2) −/2 −1, −1 ↖ LB,f(2)  1
22 LB ↗ −3, 1 /2 B(2)

B(1) 0  0 , −1 ↖ LB,f(1)  1
12 LB ↗ −2, 1 1∗ B(1)

fissions B

1 −1

B(3) 0 −2, 1 ↗ LB,i(3)  1
32 LB ↖ −4, −1 0 B(3)

B(2) 0 −1, 1 ↗ LB,i(2)  1
22 LB ↖ −3, −1 0 B(2)

B(1) 0  0 , 1 ↗ LB,i(1)  1
12 LB ↖ −2, −1 0 B(1)

Fig4 other spin particles are released by the fissions of zero spin particles

LB,f(3) ≡ BL,3
⊙
−2, −1; −4, 1  BR,3 −2, −1; −4, 1 (25.1)

LB,i(3) ≡ BL,3
⊙
−2, 1; −4, −1  BR,3  0, 1; −4, −1 (25.2)

LB,f(2) ≡ BL,2
⊙
−1, −1; −3, 1  BR,2 −1, −1; −3, 1 (26.1)

LB,i(2) ≡ BL,2
⊙
−1, 1; −3, −1  BR,2 −1, 1; −3, −1 (26.2)

LB,f(1) ≡ BL,1
⊙
 0 , −1; −2, 1  BR,1  0 , −1; −2, 1 (27.1)

LB,i(1) ≡ BL,1
⊙
 0 , 1; −2, −1  BR,1  0 , 1; −2, −1 (27.2)

LB  −2 diag {...102, 82, 62, 42, 22, 02, 22, 42, 62, 82, 102, ,...} (28)



4) Spin Interactions between Higgs Bosons and Gravitons
d) To return to the case of scalar product of right-hand-to-right-hand

particles, AR I AR, because we could get no-trivial spin-coupling interactions
between 0 zero spin particle and 2 spin particle. Here two groups of ,
Group-C and Group-D. are given. Analogously, illustration by example of the
feature D(1) of Group-D as follows：

Formulas (29.1) (29.2) and formulas (30.1), (30.2) are the third
compoments of initial state i and final state f of scalar spin interaction of
the first generation spin particles (l1)

Initial state
0 3 0 , 1  diag {...6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4,...} (29.1)
2 3−3, 2  diag {...5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5,...} (29.2)

Final state
1/2 3 0 , 2  1

2 diag {...13, 11, 9, 7, 5, 3, 1, -1, -3, -5, -7,...}
(30.1)

3/2 3−3, 1  1
2 diag {... 9, 7, 5, 3, 1, -1, -3, -5, -7, -9, -11...}

(30.2)
And the conservation of the third compoment of spin angular momentums

between initial state i and final state f is obtained as (31.0)
3 0 , 1; −3, 2  3 0 , 2; −3, 1 (31.0)
ininal sum of s.a.m final sum of s.a.m

Where
3 0 , 1; −3, 2  3 0 , 1  3−3, 2 (31.1)
3 0 , 2; −3, 1  3 0 , 2  3−3, 1 (31.2)

And the conservation of scalar spin interaction about ininl state i and
final state f is obtained as (32.0)

LD,i (1)  LD,f (1)  LD (32.0)
Where

LD,i (1)  DR,1 0 , 1; −3, 2 I DR,1  0 , 1; −3, 2 (32.1)
LD,f (1)  DR,1 0 , 2; −3, 1 I DR,1  0 , 2; −3, 1 (32.2)
LD  8I0 (33)

What mentioned above is so-called fission of Higgs Boson and Graviton,
refer to Fig8.

Conservation (31.0) and conservation (32.0) imply that if initial state i
and final state f exchange places, so-called fusion of other spin particles is
given, refer to Fig7.

Fig5, Fig6 of Group-C are obtained by the analogy to those of Fig7,
Fig8 of Group-D above.



C(3) 0 −3, 0  ↖ LC,f(3)  LC 0 ↗ −9, 6 2 C(3)
C(2) 0 −2, 0  ↖ LC,f(2)  LC ↗ −6, 4 2 C(2)
C(1) 0 −1, 0  ↖ LC,f(1)  LC ↗ −3, 2 2 C(1)

0 0

fusions C

C(3) 1 −3, 6 ↗ LC,i(3)  LC ↖ −9, 0  1 C(3)
C(2) 1 −2, 4 ↗ LC,i(2)  LC ↖ −6, 0  1 C(2)
C(1) 1 −1, , 2 ↗ LC,i(1)  LC ↖ −3, 0  1 C(1)

Fig5 Higgs Boson and Graviton are formed by fusions of other spin particles

C(3) 1 −3, 6 ↖ LC,f(3)  LC ↗ −9, 0  1 C(3)
C(2) 1 −2, 4 ↖ LC,f(2)  LC ↗ −6, 0  1 C(2)
C(1) 1 −1, , 2 ↖ LC,f(1)  LC ↗ −3, 0  1 C(1)

fissions C

0 0

C(3) 0 −3, 0  ↗ LC,i(3)  LC ↖ −9, 6 2 C(3)
C(2) 0 −2, 0  ↗ LC,i(2)  LC ↖ −6, 4 2 C(2)
C(1) 0 −1, 0  ↗ LC,i(1)  LC ↖ −3, 2 2 C(1)

Fig6 other spin particles are released by fissions of Higgs Boson and Graviton

LC,f(3) ≡ CR,3
⊙
−3, 6; −9, 0  I0 CR,3 −3, 6; −9, 0  (34.1)

LC,i(3) ≡ CR,3
⊙
−3, 0 ; −9, 6 I0 CR,3 −3, 0 ; −9, 6 (34.2)

LC,f(2) ≡ CR,2
⊙
−2, 4; −6, 0  I0 CR,2 −2, 4; −6, 0  (35.1)

LC,i(2) ≡ CR,2
⊙
−2, 0 ; −6, 4 I0 CR,2 −2, 0 ; −6, 4 (35.2)

LC,f(1) ≡ CR,1
⊙
−1, 2; −3, 0  I0 CR,1 −1, 2; −3, 0  (36.1)

LC,i(1) ≡ CR,1
⊙
−1, 0 ; −3, 2 I0 CR,1 −1, 0 ; −3, 2 (36.2)

LC  8I0 (37)



D(3) 0 −2, 1 ↖ LD,f(3)  LD ↗ −9, 6 2 D(3)
D(2) 0 −1, 1 ↖ LD,f(2)  LD ↗ −6, 4 2 D(2)
D(1) 0  0 , 1 ↖ LD,f(1)  LD ↗ −3, 2 2 D(1)

1 0

fusions D

D(3) 5/6 −2, 6 ↗ LD,i(3)  LD ↖ −9, 1 7/6 D(3)
D(2) 3/4 −1, 4 ↗ LD,i(2)  LD ↖ −6, 1 5/4 D(2)
D(1) 1/2  0 , 2 ↗ LD,i(1)  LD ↖ −3, 1 3/2 D(1)

Fig7 Higgs Boson and Graviton are formed by fusions of other spin particles

D(3) 5/6 −2, 6 ↖ LD,f(3)  LD ↗ −9, 1 7/6 D(3)
D(2) 3/4 −1, 4 ↖ LD,f(2)  LD ↗ −6, 1 5/4 D(2)
D(1) 1/2  0 , 2 ↖ LD,f(1)  LD ↗ −3, 1 3/2 D(1)

fissions D

1 0

D(3) 0 −2, 1 ↗ LD,i(3)  LD ↖ −9, 6 2 D(3)
D(2) 0 −1, 1 ↗ LD,i(2)  LD ↖ −6, 4 2 D(2)
D(1) 0  0 , 1 ↗ LD,i(1)  LD ↖ −3, 2 2 D(1)

Fig8 other spin particles are released by fissions of Higgs Boson and Graviton

LD,f(3) ≡ DR,3
⊙
−2, 6; −9, 1 I0 DR,3 −2, 6; −9, 1 (38.1)

LD,i(3) ≡ DR,3
⊙
−2, 1; −9, 6 I0 DR,3 −2, 1; −9, 6 (38.2)

LD,f(2) ≡ DR,2
⊙
−1, 4; −6, 1 I0 DR,2 −1, 4; −6, 1 (39.1)

LD,i(2) ≡ DR,2
⊙
−1, 1; −6, 4 I0 DR,2 −1, 1; −6, 4 (39.2)

LD,f(1) ≡ DR,1
⊙
 0 , 2; −3, 1 I0 DR,1  0 , 2; −3, 1 (40.1)

LD,i(1) ≡ DR,1
⊙
 0 , 1; −3, 2 I0 DR,1  0 , 1; −3, 2 (40.2)

LD  8I0 (41)



5) Conclusions
LA(l) and LB(l) in paragraph 3), which construct self-actions of zero spin

particles, could be thought of as the Lagrangian function of Higgs Boson in
quantum quantum field. Further research could show that such kind of
mechanism may lead to the change of symmetry breaking in the Standard Model.
LC(l) LD(l) in paragraph 4), which construct creation and annihilation

between 0 zero spin particles and 2 spin particle, may be able to
dectect the existent of graviton from the ‘particulate’ nature of gravitation
experimentally, comparative study, wavelike properties of gravitation have been
exhibited [5]
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6) Appendix: Higgs Boson Wave Differential Equation of First Order
and Klein–Gordon Wave Differential Equation

e) Using math elements  j , k in STS [4], the Hamiltonians of the first
order and the second order linear wave differential equantions of 0 spin
zero particles, (Higgs Boson) are written as the following：

H j , j  l l  { H j , j  l l  3m } (A–1)
H j , j  l ; k , k  l l  H j , j  l lH k , k  l l (A–2)

H j , j  l l in (A–1) is kinectic energy. There are many combinations in
(A–2), which made by various choise of j and k.

For clarity, here l  1 and omitting the mark " 1 " in above expressions.
Then, taking j  k  −1 in cases of (A–1) and (A–2). getting below：

For (A–1) H −1 , 0  1 −1 , 0  P (A–3)

and first order wave differential equantions of 0 spin zero particle

0 { i∂t − 1 −1 , 0  P − 3m } −1 , 0  0 (A–4)

For (A–2) H −1 , 0 ; −1 , 0  H −1 , 0
2  m2 (A–5)

and second order wave differential equantions of 0 spin zero particle

0 { ∂tt
2  H −1 , 0

2  m2 } −1 , 0  0 (A–6)

To make it clearer, we consinder the diagonal terms of (A–5) and have：

diagonal {H −1 , 0
2 } (A–7)

 diag{, –25/2, –16/2, –9/2, –4/2, –1/2, 0, –1/2, –4/2, –9/2, –16/2, –25/2, }P1
2

 diag{, –25/2, –16/2, –9/2, –4/2, –1/2, 0, –1/2, –4/2, –9/2, –16/2, –25/2, }P2
2

 diag{, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, }P3
2

(A–8)
 { − 1

2 {P1
2  P2

2}  P3
2 }0

20 (A–9)

0
20  diag{, 52, 42, 32, 22, 12, 02, 12, 22, 32, 42, 52, } (A–10)

(A–9) indicates

{ − 1
2 {P1

2  P2
2}  P3

2 } ⊂ diagonal {H −1 , 0
2 ; 0 spin } (A–11)

and
{ ∂tt

2  1
2 {∂xx

2  ∂yy
2 } − ∂zz

2  m2 }diagonal; −1 , 0  0 (A–12)



f) The Hamiltonians of the first order and the second order linear
differential equantions of /2 spin Fermion particles are written as
following：

H j , j − 2l l  { H j , j − 2l l  3m } (A–13)
H j , j − 2l ; k , k − 2l l  H j , j − 2l lH k , k − 2l l (A–14)

Accordingly, taking j  k  0 in case of (A–13) and (A–14), we get：

For (A–13) H0 , −2  210 , −2  P (A–15)
and first order wave differential equantions of /2 spin particle

/2 { i∂t − 210 , −2  P − 3m }0 , −2  0 (A–16)

For (A–14) H 0 , −2 ; 0 , −2  H 0 , −2
2  m2 (A–17)

and second order wave differential equantions of /2 spin particle

/2 { ∂tt
2  H 0 , −2

2  m2 } 0 , −2  0 (A–18)

Taking out the diagonal terms from (A–17) and have：
diagonal {H 0 , −2

2 } (A–19)

 diag{, –39, –23, –11, –3, 1, 1, –3, –11, –23, –39, –59, }P1
2

 diag{, –39, –23, –11, –3, 1, 1, –3, –11, –23, –39, –59, }P2
2

 diag{, 81, 49, 25, 9, 1, 1, 9, 25, 49, 81, 121, }P3
2

(A–20)
Now, we see the two terms (A–21) in the center part of diagonal

{H 0 , −2
2 } (A–20), is just the square sum HDirac

2 of kinectic energy of
well-known Dirac equation of second order.

{HDirac
2 }  diag{..., 1, 1, ...}{P1

2  P2
2  P3

2} ⊂ diagonal {H 0 , −2
2 }

(A–21)
Or

{HDirac
2 }  {HKG}  −∇2 ⊂ diagonal {H 0 , −2

2 ; /2 spin } (A–22)

And contrast with (A–11), we get
{HDirac

2 }  {HKG}  −∇2  diagonal {H −1 , 0
2 ; 0 spin } (A–23)

Formula (A–22) and (A-23) mean：−∇2 is a subset of H 0 , −2
2 , not a set

of H −1 , 0
2 . So Klein-Gordon Equation

{ 2∂tt
2 − c22∇2  m2c4 }KG  0 (A–24)

{  − 2 }KG  0 (A–25)
  ∇2 − ∂tt

2/c2,   mc/ (A–26)
is closer to /2 spin Fermion particle, rather than 0 spin Boson particle.
It is more reasonable to use equation (A–4), equation (A–6) to describe

zero spin Boson particle (Higgs Boson) than to use Klein Gordon equation.



g) For Vacuum Spin particle, VSP, –/2 negative one-second fermion
particle, its Hamiltonians of the first order and the second order linear wave
differential equantions are written as the following：

H j , j l  { H j , j l  3m } (A–27)
H j , j ; k , k l  H j , j lH k , k l (A–28)

Taking j  k  0 in case of (A–27) and (A–28), we get：

For (A–27) H0 , 0  210 , 0  P (A–29)

and first order wave differential equantions of –/2 spin particle

–/2 { i∂t − 210 , 0  P − 3m }0 , 0 ; VSP  0 (A–30)

For (A–28) H 0 , 0 ; 0 , 0  H 0 , 0
2  m2 (A–31)

and second order wave differential equantions of –/2 spin particle

–/2 { ∂tt
2  H 0 , 0

2  m2 }0 , 0 ; VSP  0 (A–32)

Taking out the diagonal terms from (A–31) and have：
diagonal {H 0 , 0

2 } (A–33)

 diag{, –61, –41, –25, –13, –5, –1, –1, –5, –13, –25, –41, }P1
2

 diag{, –61, –41, –25, –13, –5, –1, –1, –5, –13, –25, –41, }P2
2

 diag{, 121, 81, 49, 25, 9, 1, 1, 9, 25, 49, 81, }P3
2

(A–34)

Now turn to the two terms (A–35) in the center part of diagonal {H 0 , 0
2 }

{HVSP }  diag{..., 1, 1, ...}{–P1
2 − P2

2  P3
2} ⊂ diagonal {H 0 , 0

2 }

(A–35)
and have wave equation of VSP, (–/2 spin fermion particle)

{ ∂tt
2  ∂xx

2  ∂yy
2 − ∂zz

2  m2 }VSP  0 (A–36)

h) Next we shall discuss the solutions 0 ≡  j , 0
m0 of zero mass particle

differential equantions of First Order, which are based on free −/2 VSP
particle (A–30), free 0 zero spin particle (Higgs Boson) (A–4), free /2
Dirac spin particle (A–16). Which are given as below：

−/2 { i∂t − 2 0 , 0  P } 0 , 0 ; VSP
0  0 (A–37)

0 { i∂t −  −1 , 0  P } −1 , 0 ; Higgs Boson
0  0 (A–38)

/2 { i∂t − 2 0 , −2  P } 0 , −2 ; Dirac
0  0 (A–39)



Notation：
E  E   p , p  p1

2  p2
2  p3

2 (A–40)

h1) For free −/2 VSP zero mass particle (A–37)
 0 , 0 ; VSP

0  F 0 , 0 e−iEt (A–41)
Getting

Fp； 0 , 0 e−iEt F−p； 0 , 0 e−iE−t



− p − p35 /p5

 p − p34 /p4

− p − p33 /p3

 p − p32 /p2

− p − p31 /p1

 p − p30 /p0

 p  p30 /p−0

− p  p31 /p−1

 p  p32 /p−2

− p  p33 /p−3

 p  p34 /p−4

− p  p35 /p−5

e−iEt 

 p  p35 /p5

 p  p34 /p4

 p  p33 /p3

 p  p32 /p2

 p  p31 /p1

 p  p30 /p0

 p − p30 /p−0

 p − p31 /p−1

 p − p32 /p−2

 p − p33 /p−3

 p − p34 /p−4

 p − p35 /p−5

e−iE−t

(A–41.1) (A–41.2)

Fp; 0 

− tan5/2 e−i5

 tan4/2 e−i4

− tan3/2 e−i3

 tan2/2 e−i2

− tan1/2 e−i

 ei0

F−p; 0 

 cot5/2 e−i5

 cot4/2 e−i4

 cot3/2 e−i3

 cot2/2 e−i2

 cot1/2 e−i

 ei0

Fp; 0 

 ei0

− cot1/2 ei

 cot2/2 ei2

− cot3/2 ei3

 cot4/2 ei4

− cot5/2 ei5

F−p; 0 

 ei0

 tan1/2 ei

 tan2/2 ei2

 tan3/2 ei3

 tan4/2 ei4

 tan5/2 ei5

(A–41.3) (A–41.4)

VSP particle Fp； 0 , 0  Fp; 0  Fp; 0 (A–41.5)
F−p； 0 , 0  F−p; 0  F−p; 0 (A–41.6)



h2) For free 0 zero spin zero mass particle (Higgs Boson) (A–38)

 −1 , 0 ; HB
0  F −1 , 0 e−iEt (A–42)

Getting
p ； −1 , 0 ; HB

0 −p ； −1 , 0 ; HB
0



− p − p34 p/p5

 p − p33 p/p4

− p − p32 p/p3

 p − p31 p/p2

− p − p30 p/p1

 p ∓ p30 p0/p0

− p  p30 p/p−1

 p  p31 p/p−2

− p  p32 p/p−3

 p  p33 p/p−4

− p  p34 p/p−5

e−iEt 

 p  p34 p/p5

 p  p33 p/p4

 p  p32 p/p3

 p  p31 p/p2

 p  p30 p/p1

 p  p30 p0/p0

 p − p30 p/p−1

 p − p31 p/p−2

 p − p32 p/p−3

 p − p33 p/p−4

 p − p34 p/p−5

e−iE−t

(A–42.1) (A–42.2)



− tan4/2 e−i5

 tan3/2 e−i4

− tan2/2 e−i3

 tan1/2 e−i2

− e−i

sin 
− ei

 cot 1/2 ei2

− cot 2/2 ei3

 cot 3/2 ei4

− cot 4/2 ei5

e−iEt 

 cot4/2 e−i5

 cot3/2 e−i4

 cot2/2 e−i3

 cot1/2 e−i2

 e−i

sin 
ei

 tan 1/2 ei2

 tan 2/2 ei3

 tan 3/2 ei4

 tan 4/2 ei5

e−iE−t

(A–42.3) (A–42.4)

There are two singularities at   0, and  in the above two
expressions. Obviously, some uncertainties of choise of free 0 zero spin
zero mass wavefunction should be addressed. Here (A–42.3) and (A–42.4)
are only an investigation.



h3) For free /2 Dirac spin zero mass particle (A–39)
 0 , −2 ; Dirac

0  F 0 , −2 e−iEt (A–43)
Getting

p ； 0 , −2 ; Dirac
0 −p ； 0 , −2 ; Dirac

0



......
 p  p34 / p4

 p  p33 / p3

 p  p32 / p2

 p  p31 / p1

 p  p30 /p0

 p − p31 / p−1

 p − p32 / p−2

 p − p33 / p−3

 p − p34 / p−4

 p − p35 / p−5

.....

e−iEt , 

......
− p − p35 / p5

 p − p34 / p4

− p − p33 / p3

 p − p32 / p2

− p − p31 / p1

 p ∓ p30 / p0

− p  p31 / p−1

 p  p32 / p−2

− p  p33 / p−3

 p  p34 / p−4

......

e−iE−t

(A–43.1) (A–43.2)



......
cot4/2 cos /2 e−i4

cot3/2 cos /2 e−i3

cot2/2 cos /2 e−i2

cot1/2 cos /2 e−i

cos /2
sin /2 ei

tan1/2 sin /2 ei2

tan2/2 sin /2 ei3

tan3/2 sin /2 ei4

tan4/2 sin /2 ei5

.....

e−iEt , 

......
− tan4/2 sin /2 e−i5

 tan3/2 sin /2 e−i4

− tan2/2 sin /2 e−i3

 tan1/2 sin /2 e−i2

− sin /2 e−i

cos /2
− cot1/2 cos /2 ei

 cot2/2 cos /2 ei2

− cot3/2 cos /2 ei3

 cot4/2 cos /2 ei4

.....

e−iE−t

(A–43.3) (A–43.4)
The two elements in the centers of the above expressions are just the

spin wavefunction representation of operator   n of /2 Dirac spin in two
dimensional spin space in traditional quantum machenics.

p ；Dirac
0 −p ；Dirac

0


cos /2

sin /2 ei
, 

− sin /2 e−i

cos /2
(A–43.5) (A–43.6)



i) Finally we digress slightly, to tackle the situations of the velocity of
light, because light speed is related to spin angular momentum in STS.

i1) The special case of P1  P1  0 for non-zero mass particle Second
Order differential equantions –/2 (A-32), VSP particle, zero spin particle
(Higgs Boson) (A-6), /2 Dirac spin particle (A–18) are given below：

−/2 { E2  0 , 0
2 ∂zz

2 − m2 } 0 , 0 ; VSP  0 (A–44)
0 , 0

2  diag{, 121, 81, 49, 25, 9, 1, 1, 9, 25, 49, 81, }

0 { E2  −1 , 0
2 ∂zz

2 − m2 }  −1 , 0 ; Higgs Boson  0 (A–45)
−1 , 0

2  diag{, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, }

/2 { E2  0 , −2
2 ∂zz

2 − m2 }  0 , −2 ; Dirac  0 (A–46)
0 , −2

2  diag{, 81, 49, 25, 9, 1, 1, 9, 25, 49, 81, 121, }

getting [2]

ES|j−k|
   m2c4  i , j

2 c2P3
2 ≥ m2c4  c2P3

2 (A–47)

Photon velocity in multi-level universes world is quantized：the limiting
speed of particle with zero mass m  0, could be greater than c

CS|j−k|  i , j c  1c, 2c, 3c, 4c, . . . or 1c, 3c, 5c, 7c, . . . ≥ c, (A–48)

i2) Lorentz Group Operators are constructed by six 44 dimensional
matrices : J1, J2, J3 and K1, K2, K3

J1 

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

, J2 

0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

, J3 

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

(A–49)

K1 

0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

, K2 

0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

, K3 

0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

(A–50)

K3  i ∂
∂3

L3|  3  0  i ∂
∂3

Ch  0 0 Sh 
0 1 0 0
0 0 1 0

Sh  0 0 Ch 

|  3  0 (A–51)

L3 is the familiar expression of Einstein special relativity.



Using infinite dimensional spin augular momentum operators −2 , 1

(1: −2 , 1, 2: −2 , 1, 3: −2 , 1) of 1 spin boson particle, we could get six infinite
dimensional matrices J1, J2, J3 and K1, K2, K3 of Lorentz Group Operators.
Among them, matrix K3 is shown below

K3  K3 

             
 0 0 0 0 5i 
 0 0 0 0 4i 
 0 0 0 0 3i 
 0 0 0 0 2i 
 0 0 0 i 
 0 0 0 0 
 0 0 0 0 
 i 0 0 0 
 2i 0 0 0 0 
 3i 0 0 0 0 
 4i 0 0 0 0 
 5i 0 0 0 0 
             

(A–52)

Or

K3  K3 

             
 0 0 0 0 5 
 0 0 0 0 4 
 0 0 0 0 3 
 0 0 0 0 2 
 0 0 0 1 
 0 0 0 0 
 0 0 0 0 
 −1 0 0 0 
 −2 0 0 0 0 
 −3 0 0 0 0 
 −4 0 0 0 0 
 −5 0 0 0 0 
             

(A–53)

Take note of (A–52) and (A–53), they are two different types of
Non-Hermitian operators, antisymmetrical matrices, base on them, proceed
as follows

L3  L3 (A–54)



From (A–57), some curious spectacles that similar to (A–48) are emerged
[6] ：

For (A–52) , For (A–53)

L3
00 

Ch  Sh 
Sh  Ch 

， L3
00 

Sech  −Th 
Th  Sech 

L3
01 

Ch 2 Sh 2
Sh 2 Ch 2

， L3
01 

Sech 2 −Th 2
Th 2 Sech 2

L3
02 

Ch 3 Sh 3
Sh 3 Ch 3

， L3
02 

Sech 3 −Th 3
Th 3 Sech 3

.....  ................ .....  ................
(A–55) (A–56)

Then, Einstein Special Relativity is extended to the following so-called ：

Worm Hole Special Relativity in Multi-Level Universes World：[6]

x0, j
′

x3, j
′

 L3
0, j

x0, j

x3, j
(A–57)

For (A–55), have: , For (A–56), have
x0
′  Ch  x0  Sh  x3 , x0

′  Sech  x0 − Th  x3

x3
′  Sh  x0  Ch  x3 , x3

′  Th  x0  Sech  x3

  , 2, 3, . . . ,   , 2, 3, . . .
(A–58) (A–59)

and
Sh    (A–58.1) , Th    (A–59.1)
Ch    (A–58.2) , Sech    (A–59.2)
Th    (A–58.3) , Sh    (A–59.3)

Ch2  − Sh2   1 (A–58.4) , Sech2   Th2   1 (A–59.4)

j) Spin Topological Space STS is the space that could discribe and help
people understand how the transitions of particle spins, between various types
of spin particles, are happening. Before this, the concepts of physics and
math about these transitions were indistinct and blurred.

To appreciate the beauty and subtlety of STS, the FIG. below is essential.
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Abstract 
High-temperature and pressure boundaries of the liquid and gas states have not been defined 
thermodynamically. Standard liquid-state physics texts use either critical isotherms or isobars as 
ad hoc boundaries in phase diagrams. Here we report that percolation transition loci can define 
liquid and gas states, extending from super-critical temperatures or pressures to “ideal gas” states. 
Using computational methodology described previously we present results for the thermody-
namic states at which clusters of excluded volume (VE) and pockets of available volume (VA), for a 
spherical molecule diameter σ, percolate the whole volume (V = VE + VA) of the ideal gas. The mo-
lecular-reduced temperature (T)/pressure(p) ratios ( BT k T p 3∗ = σ ) for the percolation transi-

tions are PET ∗  = 1.495 ± 0.015 and PAT ∗  = 1.100 ± 0.015. Further MD computations of percolation 
loci, for the Widom-Rowlinson (W-R) model of a partially miscible binary liquid (A-B), show the 
connection between the ideal gas percolation transitions and the 1st-order phase-separation tran-
sition. A phase diagram for the penetrable cohesive sphere (PCS) model of a one-component liq-
uid-gas is then obtained by analytic transcription of the W-R model thermodynamic properties. 
The PCS percolation loci extend from a critical coexistence of gas plus liquid to the low-density 
limit ideal gas. Extended percolation loci for argon, determined from literature equation-of-state 
measurements exhibit similar phenomena. When percolation loci define phase bounds, the liquid 
phase spans the whole density range, whereas the gas phase is confined by its percolation boun-
dary within an area of low T and p on the density surface. This is contrary to a general perception 
and opens a debate on the definitions of gaseous and liquid states.  
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1. Introduction 
Almost 40 years ago, in their classic review on the status of liquid state theory [1], Barker and Henderson began 
with the words “Liquids exist in a relatively small part of the enormous range of temperatures and pressures ex-
isting in the universe”. The tiny liquid area, in the T-p projection of Gibbs density surface, was defined within 
either a critical isotherm, or isobar, and a triple point. Above a critical temperature (or pressure) and below the 
triple-point, the liquid state did not exist. Not everyone agreed with these ad hoc bounds, however. For example, 
recent research on percolation transition loci on Gibbs thermodynamic surfaces [2] shows that J. D. Bernal may 
have been closer to the truth. Besides noting that the liquid state, albeit metastable, should extend down to abso-
lute zero using random close packing as a starting point, Bernal also argued that the liquid state should extend to 
supercritical temperatures and pressures, where it is bounded from the gas phase by a “hypercritical” line of 
discontinuity.  

Here, we report results for ideal gas properties, which, alongside real experimental p-V-T properties of a typ-
ical real fluid (argon), comprise compelling evidence that the liquid state is not bounded, by either the critical 
isotherm or isobar. Liquid and gas phases are terminated by percolation loci along any isotherm. Moreover, we 
find that percolation loci extend all the way from critical coexistence to low density states with ideal gas proper-
ties.  

The equation-of-state of a real gas with finite molecular size (diameter σ) behaving ideally within a low-den- 
sity limit, is simply 

* *p ρ=                                        (1) 

where p* is a molecular-reduced pressure (pσ3/kBT), T is temperature (K), kB is Boltzmann’s constant, ρ* is a re-
duced density (ρ* = Nσd/Ld), where Ld is length (L, d = 1), area (A, d = 2) or volume (V, d = 3). Equation (1) has 
an abiding role in the description of thermodynamic properties of real molecular fluids. Pressure is everywhere 
continuous; second and all higher derivatives of p(ρ) are zero. Because of this simplicity, all state functions are 
exactly known for any d. Equation (1) is a universal scaling law that spans the dimensions.  

Within the ideal gas limit of obedience to Equation (1), real fluids with finite size, i.e. σ > 0, however, exhibit 
various properties that cannot scale with d, linear transport coefficients, for example. Percolation transitions, not 
unrelated to the transport coefficients, are also strongly dimension dependent in form, and are known to deter-
mine thermodynamic phase changes in model lattice gases [3]. Percolation transitions of the available volume 
(VA) and excluded volume (VE) for the insertion of one more molecule of a finite diameter are properties relating 
to Gibbs energies that effect phase transitions.  

For hard-core fluids,  

A EV V V= +                                      (2) 

then, the ensemble averages AV  and EV  equate with chemical potential (μi) of species i 

( )logi B e Ak T V Vµ = −                                (3) 

Equation (3), with Equation (2), defines AV  and EV  for real fluids. 
For the ideal gas, percolation of VE is defined as a density above, or temperature below which, the overlapping 

exclusion spheres of radius σ/2 from a point in a uniformly random distribution of N points, form clusters that 
can span the whole of V. VA comprises a distribution in configuration space of accessible pockets in which there 
are no ideal gas point molecules within one sphere diameter anywhere in the pocket. The percolation transition 
for VA is the density above, or temperature below which, the empty pockets coalesce to span the system. For 
temperatures above percolation, VA comprises a network of connecting pathways to the whole system accessible 
to a diffusing sphere in the static ideal gas equilibrium configuration.  

2. Percolation Transitions 

For an ideal gas the exclusion sphere diameter defines * 3 *1BT k T pσ ρ= = . Experimental coexistence data 
on binary liquid phase diagrams is generally obtained at constant pressure (1 atm.) and presented with tempera-
ture (T) the dependent variable as a function of mole fraction (XB), hence at this stage, with binary liquids in 
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mind, we choose T* as the state variable. (note: for an ideal gas * * * *1 1T p V ρ= = = ) We designate the per-

colation transition reduced temperatures as PET ∗  and PAT ∗  respectively. Relationships between dimensionality 
and percolation transitions can be summarized: 

d = 1 no percolation 
d = 2 PE and PA coincide PE PAT T∗ ∗=  and PE PAρ ρ∗ ∗=   

d = 3 there is an inequality PE PAT T∗ ∗>  and PE PAρ ρ∗ ∗<   
There is a fundamental difference between 2 and 3 dimensions. For d = 2, there are two regions, “gas-like” 

PET T∗ ∗>  and “liquid-like” PET T∗ ∗< , whereas for d = 3 there are three regions, gas-like T* > TPA, liquid-like T* 

< TPA and a mesophase, PA PET T T∗ ∗ ∗> > . In the mesophase, both the pockets of availability and clusters of ex-
clusion sites percolate the system. The mesophase is both gas-like and liquid-like. 

PE both for d = 2 and 3 has been investigated by a number of authors for the present and related systems 
[4]-[11] Rough estimates of PE for d = 2 and 3 ideal gases can be gleaned from Figure 3 and Figure 4 of the 
paper by Bug et al. [4]. Extrapolating their data points, when their attraction parameter ε = 0, to zero density one 
obtains for d = 2 ΦPE ~ 1.2 and for d = 3 ΦPE ~ 0.35, where Φ is the excluded volume fraction (=πρσ3/6). Heyes 
and coworkers [5]-[8] report related investigations of PE for various models by MC and MD simulations. From 
an interpolation to zero density of the hard-sphere fluid variable-exclusion shell percolation threshold Heyes et 
al. [7] obtain ΦPE = 0.346 (d = 3). The most accurate values for both the d = 2 (PE and PA) percolation transi-
tion are probably those of Ziff and coworkers: the values for ρ* are 1.275 (d = 2) and 0.653 (d = 3). An extensive 
study of ideal-gas PE transitions for exclusion squares, cubes, and other geometric shapes has also been reported 
[11]. 

Educational insight, and estimates of /PE PAρ∗  for d = 2 can easily be obtained pictorially in just a few minutes 
using an EXCEL spreadsheet. Figure 1 shows a typical configuration, 2000 random numbers from a uniform 
distribution 0 - 1, i.e. an ideal gas (N = 1000) in the vicinity of the percolation transition. Disc diameters do not 
vary when the square area is expanded or contracted on the display. Fixing the diameter at 5 mm, percolation  
occurs at L ~ 14.0 cm hence / 1.28PE PAρ∗ =  or / 0.77PE PAT ∗ = , i.e. in close proximity to reference [9]. Computa-
tion of PA for the ideal gas d = 3 has not previously been reported. 

There are no reports of PA (d = 3) having been previously investigated or determined for the ideal gas, al-
though the transition density PAρ∗  is known to be 0.537 ± 0.05 for the hard-sphere fluid [12]. Here, we use the 
same methods, and criteria for percolation, as described previously for the hard-sphere fluid. Both PET ∗  and 

PAT ∗  have been computed for a range of finite size systems; the results are summarized in Figure 2. Thermody-
namic limiting values (N  ∞) are obtained from the linear trendlines. 

Every configuration either has a percolating cluster or it does not. Clearly, for small finite systems, there will 
be configurations that percolate, and some that do not, in the vicinity of PE. The percolation threshold in the 
computations of Heyes et al. [5]-[8] was defined when 50% of configurations have a percolating cluster, with 
details described by Seaton et al. [13]. Here, we define PE using an ensemble average definition of a percolation  

 

       
(a)                                 (b)                                 (c) 

Figure 1. Excluded and accessible areas (black and white respectively) for a configuration of a two-dimensional ideal gas: (a) 
“gas-like” density below the percolation transition (b) close to the percolation transition and (c) “liquid-like” density above 
the percolation transition.                                                                                      
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(a)                                            (b) 

Figure 2. (a) Ideal gas PE transition ( PET ∗ ) from the mean cluster size distribution saddle-point method [12] 

for a range of finite systems: (b) Ideal gas PA transition ( PAT ∗ ) from zero-diffusivity limit method [12].        
 

density [12]; i.e. PEρ∗  is the saddle-point density above which the cluster size probability distribution P(n) is 

bimodal. This is the normalized probability of a site belonging to a cluster of size n. Above PET ∗ , P(n) is a mo-

notonic gas-like distribution, for all PE below PET ∗  it is bimodal. Plotting the saddle-point definition of 

( )PET N∗  against 1/N1/3 (Figure 2(a)) gives a linear trendline that interpolates to the result  

( ) 1.495 0.01PET N∗ → ∞ = ±  ( 0.668PEρ∗ = ).  
Our method for determining PAT ∗  is essentially that described previously for hard spheres [12], except that it 

is easier for the ideal gas. Here we use N-V-T MD for non-additive binary spheres that can simulate the Widom- 
Rowlinson (W-R) model fluid [14] [15]. This belongs to the general class of symmetric binary non-additive 
hard-sphere fluid mixtures defined by collision diameters 

( )1AA BB ABσ σ δ σ= = +  

where δ is a dimensionless non-additivity, that varies from −1, for the W-R penetrable-sphere model binary fluid, 
via zero for one-component hard spheres, to infinity. Positive δ relates to ionic liquids and ionic crystal struc-
tures when mole fraction XB = 0.5. 

The MD program solves equations of motion of a binary mixture NA + NB. The results for the PA values in 
Figure 2(b) are obtained by the mean-squared displacements of B average over many frozen random configura-
tions of ideal gas A. As the B particles do not interact with themselves, we average over all NB in the same MD 
simulation run. All the values in Figure 2(b) were obtained for equimolar systems. Plotting the point of zero dif- 
fusivity, Di(ρ, N)  0, against N (NA in MD run) gives a linear trendline with the result ( ) 1.100 0.01PAT N∗ → ∞ = ±  

( 0.908PAρ∗ = ). 

3. W-R Model Binary Liquid  
3.1. MD Simulation Results 
We have determined PET ∗  along isopleths of the binary W-R model fluid; T* is defined as T* = 1/p* and p* = 
pσ3/kBT. MD simulations have some advantages over Grand Canonical Monte Carlo [15] (GCMC). Not least is 
the direct extraction of transport properties for determination of PAT ∗  loci. These are obtainable by “freezing” 
component A whilst allowing B to diffuse. The cluster distributions that determine PET ∗  also yield accurate 
values for coexisting XB by integrating the solute cluster probability distribution P(n) which decreases monoton-
ically, from a maximum at n = 1, to zero for clusters of B in solution of A, or vice-verser. Accurate MD pres-
sures are calculated from A-B collision frequencies. 

What is the effect on the percolation transitions of increasing the mole fraction of B from the ideal gas limit 
(XB = 0)? For the isopleth at XB = 0.1, and for N = 10,000, the reduced pressures at which the two transitions oc-
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cur, i.e. PEp∗  and PAp∗  are 0.715 and 0.923 respectively. We find, up to XB = 0.1 and beyond, both percolation 
pressures increase with XB, PE more so than PA, roughly according to 

( ) ( )~ 0 1PE B PE Bp pρ ρ∗ ∗ ∗ ∗ +   

( ) ( )~ 0 1 2PA B PA Bp pρ ρ∗ ∗ ∗ ∗ +   

where B BXρ ρ∗ ∗= . The percolation transition pressures increase with Bρ
∗  because, as B are added at constant 

T, the system expands with both VA and VE increasing, but VE increases more than VA; adding B causes A-sites to 
cluster more, whilst creating more spherical B-pockets. The pressures of percolation transitions for finite XB ap-
pear to be coincident with higher-order discontinuities (Figure 3) in the supercritical region. Weak thermody-
namic discontinuities have been both predicted theoretically for real systems [16], and reportedly seen experi-
mentally [17]. Changes in pressure slopes are evident from the MD excess pressures defined relative to the ideal 
gas. 

* *
 exp p ρ∗ = −                                       (4) 

Figure 3(a) shows the isopleth XB = 0.1 has four distinct regions. At high density, in the two-phase region, the 
MD pressures averaged over 100 million A-B collisions still show fairly large uncertainties. The maximum 
pressure along any isopleth coincides with the first-order mixing-demixing transition. This reflects the thermo- 
dynamic equilibrium condition of minimal Gibbs energy (G) (since 1d dTG pρ−= ) for equilibrium on either side  
of the transition. At the mole fraction XB = 0.1 in the mesophase region pressure increases linearly with density. 
In the one-phase region, the MD data is sufficient to observe that the percolation loci appear to be associated  

 

 
(a) 

 
(b) 

Figure 3. Excess pressures of the Widom-Rowlinson binary fluid mixture: (a) along the 
isopleth XB = 0.1 (N = 10,000); (b) along the equimolarisopleth XB = 0.5 (N = 8000).        
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with changes in slope that could reflect higher-order thermodynamic phase transitions, but presently not suffi-
ciently accurate to establish the order or strength of discontinuities. 

The vertical dashed lines in Figure 3 correspond to the percolation transition densities computed explicitly by 
the methods described in the text and referenced [5]: they coincide with changes in the slope of the excess pres-
sure. The MD results for XB = 0.5 show three regions; there is no PA, just the PE transition at the density 0.65. 
The change in the slope of  exp∗ , and hence also p*, is more pronounced. The rigidity function (dp/dρ)T is again 
constant in the mesophase, close to zero as evidenced by a very slight slope.  

3.2. Demixing Phase Transition 
In all previous investigations of the W-R fluid, the existence of a critical point  singularity at the UCST has in-
variable been assumed at the outset [14] [15]. The connection between percolation loci and phase transitions is 
now well-established. Equation (3) of this paper exactly relates VA or VE to chemical potentials, which determine 
equilibrium between phases. The essential new result here, is for the percolation of VA i.e. PAT ∗  in 3d (Figure 
2(b)) which ~35% greater than the already known PET ∗ . Between these transition temperatures both VE and VA 
percolate, hence the mesophase only exists in real 3d liquid-liquid or liquid gas fluids. This result for the ideal 
gas enables the connection between percolation loci and the demixing transition to be determined. 

As solute concentration (XB) increases in the W-R fluid, the two percolation temperatures become closer and 
then coincide. From thermodynamic considerations, this intersection triggers a first-order phase transition, with 
the two different phases having the same T, p and chemical potential. It is this fundamental property of percola-
tion in 3d that does not exist in 2d that vitiates the hypothetical concept of universality, and confirms the new 
science of criticality for both liquid-gas [2], and now also liquid-liquid coexistence.  

Along any isopleth, the pressure is a maximum at the two-phase boundary to comply with the thermodynamic 
requirement of minimum Gibbs energy as shown in Figure 3. However, we have also determined the coexis-
tence line directly from the results for the XB = 0.5 equimolar isopleth by a more accurate method than GEMC 
[15], by integrating the cluster distribution, obtained from all MD runs, up to the hiatus in 2-phase region. Fig-
ure 4 shows some plots of the cluster distributions and the integrated mole fractions. The distribution is bimodal 
in the mesophase and monomodal in the one-phase region. In the two-phase region it is bimodal with a hiatus. 

Reference [15] provides an estimate of the coexistence density and pressure for several XB well away from the 
critical coexisting compositions. For XB = 0.1, ρ* ~ 0.86. Because of the symmetry of the W-R model the mean 
of the two coexisting compositions at the upper critical consolute composition must be at XB = 0.5. Our results 
show that there is no “critical point”. Thus in Figure 3(b) the onset of the two-phase region is at the mean criti- 

 

 
(a)                                          (b) 

Figure 4. (a) Cluster size distributions for W-R binary fluid; (b) integrated mole fractions for state 
points in 4a showing how the coexistence mole fraction is obtained in the 2-phase region, e.g. at the 
density 0.8 (black points) XA = 0.214 ± 0.01.                                                    
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cal density; there is a flattish pressure vs. density mesophase up to the phase separation followed at higher den-
sities by a steady fall of pressure in the two-phase region. The vertical line is at ρ* ~ 0.75 is close to the pre-
viously estimated demixing density ρ*(T) = 0.749 of de Miguel et al. [15].  

The percolation loci on the T*-XB surface (Figure 5), to within the uncertainty of the data, decrease with XB an 
intersection occurs when T* = 1.00 ± 0.01 with the uncertainty estimated from the combined regressions. At this 
intersection the fluid phase separates as solutions of A in B and B in A have the same T, p, and μ of both species  
(chemical potential). Solving for XB when PE PAT T∗ ∗=  gives XB = 0.339 for the critical coexistence mole fraction.  
From the coexistence pressures, and direct computations of PA and PE, we are able to construct a phase diagram 
for the W-R binary fluid. The temperature loci of the percolation transitions fit the trendlines (dashed lines in 
Figure 5) 

1.495 0.750PE BT X∗ = −  

21.100 0.045 1.004PA B BT X X∗ = + −  

showing the connection between percolation and the demixing phase transition. Note the perfect symmetry 
about the isopleth XB = 0.5. 

The present results show a dividing line at cT ∗ , rather than an Ising-like singular critical point. The evidence 
for higher-order discontinuities at PE and PA loci may invalidate some mean-field theoretical approaches.  

The W-R binary fluid is essentially a simple model of partially miscible liquids, e.g. cyclohexane and metha-
nol. The high-density fluid states at low temperatures are immiscible ideal gases. Here we have an example of 
what could arguably be described as “liquid states” of the ideal gas. Within the respective uncertainties, the 
present results agree with de Miguel et al. [15]. Our phase diagram could just as easily be presented as p*, ρ* or 
V*, it would not change the science. We choose T* to identify directly with real binary-liquid experimental phase 
diagrams that exhibit a similar UCST (Figure 6). 

3.3. Experimental Evidence 
Many mixtures of dissimilar liquids, just as seen here for the W-R fluid, separate into two coexisting phases 
over a lower temperature range. On heating, compositions of the two phases become more and more similar and 
at a critical temperature there is a single phase. This is the UCST. At higher temperature there is just one liquid 
phase. It is possible to define various percolation thresholds for clusters of solute molecules in the single liquid 
phase by analogy with clusters of molecules in a gas phase. The present evidence suggest that they these perco-
lation loci that delimit the solution will give rise to a mesophase and a coexistence line the UCST [17]. 

 

 
Figure 5. Phase diagram of the Widom-Rowlinson binary fluid; PET ∗  and PAT ∗  lo-
ci blue and green respectively; percolation transitions of the ideal gas open circles 
at XB = 0; computed 2-phase coexistence state points are the red circles.              
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Figure 6. Typical experimental data points for the 2-phase coexistence of a par-
tially miscible liquid-liquid mixture showing a UCST at horizontal line within the 
uncertainty: data from [19] [19] The black dot is a hypothetical “critical point”.      

 
Experimental critical parameters for a range of partially miscible binary liquids are tabulated in Kaye and 

Laby [19]. The critical compositions are actually mean compositions of the maximum observable coexisting 
compositions, defined and obtained using the law of rectilinear diameters in the vicinity of Tc., usually in con-
junction with a cubic equation-of-state, or similar [19] [20]. This also applies to the critical densities of comput-
er models using Gibbs ensemble Monte Carlo methods [15], just as for liquid-gas coexistence in square-well 
model fluids [21]-[24]. Likewise, within the uncertainties of experimental measurements of liquid-liquid UCST 
(Figure 6), the coexistence envelopes at Tc are flat on top. The hypothetical “critical point” has been obtained 
using a priori hypothesis of existence, and is defined only by a numerical parameterization. 

The simulation results we present for the W-R mixture suggest that the phase diagram of real liquids will be 
determined by the intersection of percolation loci. These results for the W-R mixture should stimulate further 
laboratory experimental research into the percolation loci. The critical “point” in Figure 6 is defined only by a 
numerical parameterization using a theoretical functional form that presumes its existence. 

4. PCS Liquid-Gas Model  
Probably the simplest 3D model Hamiltonian of a molecular fluid, which is continuous in phase space, and ex-
hibits liquid-gas criticality and two-phase gas-liquid coexistence, is the penetrable cohesive sphere (PCS) fluid 
[14] [15]. The internal energy (U) is simply 

( )03 2B EU Nk T V v Nε= + −                            (5) 

where kB is Boltzmann’s constant and T is temperature (K); the angular brackets denote a configurational aver-
age. Equation (5) defines an attractive molecular energy (ε) complementary to the volume of overlapping clus-
ters, i.e. VE as defined above for an ideal gas, of a configuration of N penetrable spheres, and ν0 (=4πσ3/3) is the 
volume of a sphere. At low temperatures, this model exhibits the exact properties of an ideal gas in both the low- 
density (gas phase) and high-density (liquid-phase) limits. Here again, there is a liquid-like state with the prop-
erties of the ideal gas. Both W-R and PCS models, therefore raise a curious conundrum. Could a supercritical 
fluid with the properties of an ideal gas be described as “liquid”?  

Experimental thermodynamic liquid-gas coexistence phase diagrams [21] [23] have traditionally been ob-
tained along isotherms by measurements of coexistence pressures. Hence, we prefer to maintain the connection 
with experimental data of gas-liquid thermodynamic equilibrium measurements established over a period of 150 
years by plotting p(ρ)T isotherms (note the contrast with [15]). A more detailed analysis of the connection of 
percolation loci with experimental isotherms is recently published [18]. 

Every state of the PCS fluid corresponds to a transcribed state of the W-R binary model fluid. The equations 
for the transcription from the W-R binary percolation and coexistence pressures (Figure 7(a)) to the PCS 
one-component gas-liquid pressure can be derived, for example, from an analysis of the respective grand parti-
tion functions as described by de Miguel et al. [15]. The transcription equations we need here are 
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(a)                                                  (b) 

Figure 7. (a) Phase diagram of the W-R binary fluid in the pressure-density projection: PEp∗  and PAp∗  loci 
are dashed blue and green respectively; coexistence data points are red circles; (b) phase diagram of the PCS 
liquid-gas system obtained by transcription of W-R pressures in 7a.                                       

 

pressure [ ] [ ]( )3 *PCS W-R A o Bp p Z v k Tσ ε ε∗= −                      (6) 

density [ ] [ ]3PCS W-R Bpσ ρ∗=                             (7) 

where AZ ∗  is the thermodynamic activity of a component defined as lnZ* = μ/kBT and μ is Gibbs chemical po- 
tential relative to the ideal gas at the same T, p. Gibbs energy change, hence Z*, can be obtained by integrating 
the excess pressure loci at constant T, with respect to density. 

( ) ( )d logB id e Bk T p pµ ρ= −∫                            (8) 

For the one-component isomorphism of W-R fluid, pressure is the natural variable so the p* vs. ρ* representa-
tion along isotherms relates directly to experimental results and phase diagrams. We plot the values of the pres-
sure at coexistence vs. ρ* which we plot in Figure 7(b). Itshows that the simplest imaginable continuous Hamil-
tonian model to exhibit liquid-gas coexistence and a critical temperature has a coexistence line at the intersec-
tion percolation loci as observed for square-well and Lennard-Jones model fluids and many real fluids [24]-[28]. 
There is a liquid-gas critical dividing line between 2-phase coexistence and a supercritical mesophase. The liq-
uid state extends to an ideal gas zero density and pressure limit. This raises the question: could there exist a high 
temperature limit of the percolation transition loci in real fluids at very low density in the region of obedience to 
the ideal gas law?  

The evidence suggests this is indeed the case, provided we re-interpret the experimental thermodynamic 
properties of real fluids in the light of our knowledge of percolation transitions. For 80 important gases or liq-
uids, including the simplest real liquid argon, in the NIST “Thermophysical Properties of Fluid Systems” data 
bank [23], equation-of-state p-V-T data with 6-figure accuracies are obtainable. These p(ρ)T supercritical iso-
therms have been formulated, however, using a large number of parameters and an assumption of a supercritical 
continuity of liquid and gas. If there were to be no continuity of liquid and gas, there would need to exist three 
different equations-of-state to describe the gas and liquid phases, bounded by percolation loci, and the meso-
phase region in between. Present findings suggest theory-based equations-of-state with far fewer parameters, 
and with scientifically correct functional forms should eventually replace the NIST equations. Present observa-
tions indicate a virial expansion for the gas phase, perhaps a free-volume expansion for the liquid, and a linear 
combination for the mesophase. 

5. Real Fluids 
Although lacking a molecular-level definition, for any real fluid, for which an exact Hamiltonian is generally 
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unknown, the percolation loci can be defined and obtained phenomenologically along any thermodynamic equi-
librium isotherm by the rigidity inequalities [18]. In the case of real fluids with attractive potentials, the percola-
tion transition bounding the gas phase, i.e. the counterpart of PE for impenetrable spheres, has been designated 
PB, as it is a percolation of bonded clusters. 

Rigidity (ωT) is the work required to isothermally increase the density of a fluid; with dimensions of molar 
energy and is plotted for a range of isotherms for CO2 in Figure 8. The symmetry of the rigidity in both the sub-
critical and supercritical regions is the subject of a recent paper [18]. We note from Figure 8 that the percolation 
loci PB and PA appear to be converging at the Boyle rigidity in the case of CO2. 

The rigidity state function relates directly to the change in Gibbs energy (G) with density at constant T ac-
cording to 

( ) ( )d d d dT T Tw p Gρ ρ ρ= =                              (9) 

The following inequalities (10)-(12) are presently empirical, but do have a molecular-level explanation in 
terms of the number density fluctuations of gas and liquid respectively [18] 

gas PBρ ρ<  ( )d d 0Tω ρ <                           (10) 

meso PB PAρ ρ ρ> >  ( )d d 0Tω ρ =                         (11) 

liquid PAρ ρ>  ( )d d 0Tω ρ >                           (12) 

It is clear from Equation (9) that ω > 0, i.e. rigidity must always be positive: Gibbs energy cannot decrease 
with pressure when T is constant. By these definitions, moreover, not only can there be no “continuity” of gas 
and liquid, but the gas and liquid states are fundamentally different in their thermodynamic description. Rigidity 
is determined by number density fluctuations at the molecular level, which have different density dependencies 
in either phase. The gas phase comprises one large void with many small clusters, which determine fluctuations, 
whereas the liquid phase comprises one large cluster and with many vacant pockets, which determine density 
fluctuations. Since the properties of a hole or an occupied site are statistically equivalent, this give rise to a 
symmetry of supercritical properties between gas and liquid phases [18]. 

Experimental argon isotherms [21]-[23] from the critical temperature (Tc = 151K) to 500K are plotted in Fig-
ure 9. All the isotherms below a temperature around 400K show that there is a flat meso region, i.e. (dω/dρ)T = 
0. In this narrow range, for each supercritical isotherm, to within the uncertainty of the original experimental 
data, the rigidity is constant. A value can be obtained by a linear fit over a finite density range with a linear tren-
dline regression between 0.999999 and 1.0 for all the supercritical isotherms in Figure 9. An accurate equation- 
of-state for the meso region is thus obtained 

( ) 0Tp meso pω ρ= +                                 (13) 

 

 
Figure 8. Supercritical isotherms of carbon dioxide: the rigidity is obtained from NIST ther-
mophysical tables with 4-figure accuracy [23]: loci of PB and PA that bound gas and liquid 
respectively are the dashed lines. The percolation loci appear to be converging at ρ = 0; the 
Boyle temperature for CO2 is 715K corresponding to a rigidity of 5.945 KJ/mol.              
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(a)                                               (b) 

Figure 9. Supercritical isotherms of fluid argon from NIST Thermophysical Property Tables [23]: loci 
of PB and PA are green and blue respectively (a) pressure isotherms; (b) rigidity isotherms.                

 
where ωT is the rigidity along any isotherm T(K) and p0 is a pressure constant. The percolation loci densities can 
be estimated by observing the differences p(gas) − p(meso), and p(liquid)–p(meso), both decrease quadratically 
with density, and interpolate to zero at the percolation loci densities ρPB and ρPA. 

The initial slope of the percolation loci in the pressure plot (Figure 9(a)) corresponds to an intercept temper-
ature obtained from percolation loci in Figure 9(b) at zero density, as ω(ρ → 0) = NkBT for an ideal gas. All 
molecular gases exhibit a characteristic temperature at which the second virial coefficient changes sign. This 
corresponds to a low-density limit of the percolation transition loci that may converge together at or below this 
temperature. The Boyle temperature of argon is 407 K [23] corresponding to a rigidity of 3.38 KJ/mol. 

6. What Defines “Liquid Phase”?  
6.1. Phase Diagram 
The results presented here for the percolation transition loci comparing both real and model fluids reaffirm pre-
vious observations [24]-[28] that there is no critical point singularity on Gibbs density surface for gas-liquid 
condensation. Rather, there is a coexistence boundary line at the critical temperature, above which there exists a 
mesohase between the percolation loci that bound the liquid and gas phases. From the present W-R results, we 
can further infer that partially miscible liquid-liquid mixtures will also show an upper critical consolute temper-
ature with a dividing line separating one- and two-phase regions. Above this critical divide, there will be a me-
sophase bounded by the percolation loci that may extend to the ideal dilute solution limits. Experimental studies 
of liquid-liquid UCST phenomena, however, are limited, being generally at ambient pressures and terminate at 
the boiling temperatures.  

Returning to the question about universality and dimensionality dependence of the description of criticality, 
we observe for d = 2, since PE = PA for all densities (or concentration XB), the phase behavior and criticality 
will be quite different; there can be no mesophase in 2-dimensions. We conjecture, therefore, that the percola-
tion locus intersects the equimolarisopleth with a critical singularity at XB = 0.5 for the d = 2 W-R model. 
Another consequence of the absence of a d = 2 mesophase would be no metastability beyond the first-order 
phase boundaries, and, unlike d = 3, no metastability and hence no spinodals within the subcritical bimodals. 
The existence of a mesophase is a property only of d = 3 systems. This difference in the description of liquid-gas 
criticality between 2 and 3 dimensions vitiates the hypothetical “universality” concept as applied to liquid-gas, 
and binary-liquid, criticality. 

The present results for various percolation loci suggest that all real atomic and molecular fluids will have a 
liquid state that is bounded only by a percolation transition at high temperature and its equilibrium freezing tran-
sition at low temperature along any isotherm. The boundary may be defined phenomenologically by inequality 
(12). The locus of this liquid-state boundary is seen to extend all the way from the liquid critical temperature and 
pressure, to an ideal gas at limiting low density. On the basis of these observations, it is the “gas phase”, i.e. de-
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fined by the inequality (10) that exists in a limited area of the universal T-p plane.  
We note, however, that there can be no zero of density/pressure for a real fluid, as they become logarithmic to 

high vacuum levels. The truly ideal gas cannot exist in reality; the sign of the second virial coefficient deter-
mines the designation “gas” or “liquid”, by the rigidity criterion and in this limit. The liquid area of existence 
extends to infinite pressure and temperature; whereas the gas phase extends to infinite vacuum, but only below a 
certain temperature. It appears the liquid phase will extend upwards in temperature, for all pressures to perhaps 
continuously become plasma (Figure 10). This is contrary to what is hitherto generally believed to be liquid 
state [1]. 

6.2. Ideal Gas Connection 
The symmetry similarity between gas and liquid opens the way to an alternative definition of liquid state, which 
is usually regarded just as the high density portion of the fluid phase below the critical temperature, i.e. defined 
ad hoc as being bound by the critical isotherm, or sometimes the critical isobar. Here we advocate a thermody-
namic definition. A “liquid” phase can be identified as the region at density higher than the available volume 
percolation transition. 

On examination of the loci of two percolation transition densities in real gases at high dilution, we note that 
these lines do not have any thermodynamic signature in the equilibrium properties of the ideal gas. The “ideal 
gas” is a fictitious concept that cannot exist in reality. In any real gas, the density cannot go to zero. It is loga-
rithmic; for all real gases behaving ideally, thermodynamic properties everywhere depend upon a distance scale. 
In the W-R binary-liquid and PCS fluid it is the penetrable sphere diameter. For real gases, the percolation tran-
sitions are present in the low-density region of obedience to the ideal gas law, i.e. when p ~ ρkT and extend to 
the Boyle temperature. Thus, in the low-density limit, the boundary between gas and “liquid” phases according 
the criteria of Equations (10)-(12) becomes the sign of the second virial coefficient (b2), as defined in the expan-
sion of pressure in powers of density along any isotherm 

( ) ( ) ( )( )1
21 n

B np k T b T b Tρ ρ ρ −= + + + +                         (13) 

In the gas region of the phase diagram b2(T) is negative, whereas in a region of a liquid phase it is positive; at 
the Boyle temperature b2 is zero. 

A definition of liquid state based on the existence of percolation lines has implication for the thermodynamics 
of the system for the following reason. When the two supercritical percolation lines that bound the existence of 
liquid and gas phases intersect on the Gibbs density surface the respective phases have the same temperature and 
pressure but different densities, and therefore also the same Gibbs chemical potential, and hence coexist at a 
first-order phase transition. These new results for the percolation transitions of an ideal gas and loci for model 
fluids, are valuable contributions to the literature as they lead to an alternative more plausible interpretation of 
the phase behavior of the W-R model binary liquid and the one-component liquid gas fluid. The possible alter-
native operative description of “liquid” phase is a corollary of these findings. 

 

 
Figure 10. Phase diagram for argon showing the percolation loci that bound the 
liquid and gas states and mesophase: the tiny shaded area is generally referred to as 
“liquid”: the red circle is the critical point on the p-T projection [1].                 
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7. Conclusions  
In Section 2 we have presented a new result for the penetrable sphere available volume percolation transition 
temperature ( PAT ∗ ) of an ideal gas and found that 1.36PA PET T∗ ∗ = . We conclude that the d = 3 ideal gas has three  
regions liquid-like, gas-like, and a meso-region wherein both VE and VA percolate. The connection to the coexis-
tence envelope of a W-R fluid is the ultimate compelling evidence for the absence of any van der Waals singu-
larity on the density surface of liquid-gas equilibrium or on composition surface of the partially miscible binary 
liquid at the critical temperature or pressure. 

In Section 3 we have reported the direct determination of both percolation loci PAT ∗  and PET ∗  along several  
isopleths of the W-R fluid. We find that both percolation loci decrease with composition XB (or XA) and, around 
T* ~ 1, and intersect with two phases then having the same temperature, pressure and minimal chemical potential 
at the known critical temperature. It is wholly consistent with previous results for the intersection of percolation 
loci in the p-T plane at the critical temperatures for model square-well fluids [23], Lennard-Jones fluids [24], 
and real fluids including argon [26] [26] and water [27]. To suggest that percolation transitions are unrelated to 
thermodynamic properties would imply that the intersection of percolation loci at pc-Tc, in all these systems, 
would have to be a series of incredible coincidences. This is quite implausible. 

The phase behavior (Section 4) for the model penetrable sphere fluid obtained by transcription of the W-R 
fluid properties, therefore, is further compelling evidence that there is no critical point on Gibbs density surface 
for liquid-gas equilibria. This simple model liquid-gas Hamiltonian shows a critical dividing line between a 
maximum coexisting gas density and a minimum coexisting liquid density, above which exists a supercritical 
mesophase. 

We have also shown that the thermodynamic state function rigidity, (dp/dρ)T, can define a distinction between 
gas and liquid. For any one-phase system rigidity is everywhere positive; in any two-phase region ω = 0. Rigid-
ity decreases with density for a gas and increases with density for a liquid. For temperatures above critical coex-
istence the rigidity has a constant value in the mesophase that separates the percolation loci, which bound the 
limits of existence of liquid and gas phases in the supercritical region. 

We have compared the results for the ideal gas percolation ratios with the high-temperature, low pressure and 
density, limits of argon. The results from the modern NIST thermophysical property tables [23] indicate that the 
supercritical mesophase, at least in the case of simple fluids, extends all the way to a dilute gas behaving ideally. 
This reopens the debate “What is liquid?” [1]. 

Finally, we have presented results that show there cannot be “universality” in the description of criticality 
between 2- and 3-dimensional systems. The mesophase is a fundamental property of complementary excluded 
and available volume percolation loci only in 3d, which does not exist in 2d. Hence, there can be a critical point 
singularity on the density surface of 2d fluids, whereas it is a critical dividing line for real 3d liquid-gas thermo-
dynamic systems.  
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Abstract 
We study multi-quark systems in lattice QCD. First, we revisit and summarize our accurate mass 
measurements of low-lying 5Q states with J = 1/2 and I = 0 in both positive- and negative-parity 
channels in anisotropic lattice QCD. The lowest positive-parity 5Q state is found to have a large 
mass of about 2.24 GeV after the chiral extrapolation. To single out the compact 5Q state from NK 
scattering states, we use the hybrid boundary condition (HBC), and find no evidence of the com-
pact 5Q state below 1.75 GeV in the negative-parity channel. Second, we study the multi-quark po-
tential in lattice QCD to clarify the inter-quark interaction in multi-quark systems. The 5Q poten-
tial V5Q for the QQ- Q -QQ system is found to be well described by the “OGE Coulomb plus multi-Y 
Ansatz”: The sum of the one-gluon-exchange (OGE) Coulomb term and the multi-Y-type linear term 
based on the flux-tube picture. The 4Q potential V4Q for the QQ- QQ  system is also described by the 
OGE Coulomb plus multi-Y Ansatz, when QQ and QQ  are well separated. The 4Q system is described 
as a “two-meson” state with disconnected flux tubes, when the nearest quark and antiquark pair 
are spatially close. We observe a lattice-QCD evidence for the “flip-flop”, i.e., the fluxtube recombi-
nation between the connected 4Q state and the “two-meson” state. On the confinement mechanism, 
the lattice QCD results indicate the flux-tube-type linear confinement in multi-quark hadrons. Fi-
nally, we propose a proper quark-model Hamiltonian based on the lattice QCD results.  
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1. Introduction 
The Multi-quark physics is one of the new interesting fields in the hadron physics. So far, several new particles 
have been experimentally reported as the candidates of multi-quark hadrons. 

At first, the candidates of pentaquark (5Q) baryons were reported: a narrow peak identified as the ( )1540+Θ  

was found at SPring-8 [1], ITEP, JLab and ELSA [2]-[4]. The ( )1540+Θ  has the baryon number 1B =  and 

the strangeness 1S = + , and hence it is a manifestly exotic baryon and is considered to be a pentaquark ( uudds ) 
in the valence-quark picture. Other pentaquark candidate, the ( )1862−−Ξ  ( ddssu ), was reported at CERN [5],  
and also a charmed pentaquark, the ( )3099cΘ  ( uuddc ), was reported at HERA [6]. However, after high- 
energy experimental groups reported no evidence of the ( )1540+Θ  [7]-[9], these pentaquark candidates are no 
more credible experimentally at present. (For the recent experimental status of the ( )1540+Θ , see, e.g., Refs. 
[10] [11]). Nevertheless, the very ( )1540+Θ  gave an important trigger to open the new area of the multi- 
quark physics. 

As the next important stage, the candidates of tetraquark (4Q) mesons were experimentally observed. The 
X(3872) [12]-[15] was found in the process of ( )B K X 3872 K Jπ π ψ+ + + − +→ + → +  at KEK [12]. The 

X(3872) is much heavier than the J ψ , and its mass is close to the threshold of ( )0D cu  and ( )0*D uc . 
However, its decay width is very narrow as 2.3 MeVΓ <  (90% C.L.). These features indicate the X(3872) to 

be a tetraquark, e.g., a bound state of 0D  and 0*D . Similarly, the ( )sD 2317  [16] [17] is expected to be a 
tetraquark candidate. Also, quite recently, the LHCb experimental group has reported two candidates of the 
charmed pantaquark ( uudcc ), ( )cP 4380+  and ( )cP 4450+  [18], from a careful analysis of the decay product 
in the high-energy process, and this news has activated the multi-quark physics again. In any case, these 
discoveries of multi-quark hadrons are expected to reveal hidden aspects of hadron physics. 

In the theoretical side, the quark model is one of the most popular models to describe hadrons. In the quark 
model, mesons and baryons are usually described as qq  and 3q  composite particles, respectively. In more 
microscopic viewpoint, quantum chromodynamics (QCD) is the fundamental theory to describe the strong 
interaction. In terms of QCD, not only ordinary qq  mesons and 3q  baryons, but also exotic hadrons, such as 
multi-quark hadrons ( , ,qqqq qqqqq  ), hybrid mesons ( ,qqg  ), hybrid baryons ( ,qqqg  ) and glueballs  
( , ,gg ggg  ) are expected to appear. We here aim to study these multi-quark hadrons directly based on QCD. 
Even at present, however, it is rather difficult to deal with the low-energy region analytically in QCD owing to 
its strong-coupling nature. As an alternative way, the lattice QCD Monte Carlo simulation is established as the 
powerful method to treat non-perturbative nature of low-lying hadrons including exotic hadrons. In this paper, 
we perform the following two lattice QCD studies to clarify the properties of multi-quark systems. 

First, we investigate the mass and the parity of the 5Q system in lattice QCD. As for the parity assignment of 
the lowest-lying pentaquark, little agreement is achieved even in the theoretical side: the positive-parity 
assignment is supported by the chiral soliton model [19] and the diquark model [20], while the negative-parity 
assignment is supported by the nonrelativistic quark model [21], the QCD sum rule [22] and so on. For the 
exotic hadrons, most investigations have been done with model calculations, but these models were originally 
constructed only for ordinary hadrons. In fact, it is nontrivial that these models can describe the multi-quark 
system beyond the ordinary hadrons. To get solid information for the multi-quark systems, we study their 
properties directly from QCD by the lattice QCD simulation [23] [24], which is the first-principle calculation 
and model independent. 

Second, we study the inter-quark interaction in multi-quark systems in lattice QCD. The inter-quark force is 
one of the most important elementary quantities in hadron physics. Nevertheless, for instance, no body knows 
the exact form of the confinement force in the multi-quark systems directly from QCD. In fact, some 
hypothetical forms of the inter-quark potential have been used in almost all quark model calculations so far. 
Then, the lattice QCD study of the inter-quark interaction is quite desired for the study of the multi-quark 
systems. It presents the proper Hamiltonian in multi-quark systems and leads to a guideline to construct the 
QCD-based quark model. In this paper, to clarify the inter-quark force in the multi-quark system, we study the 
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static multi-quark potential systematically in lattice QCD using the multi-quark Wilson loop. We investigate the 
three-quark (3Q) potential [25]-[28], which is responsible to baryon properties, and perform the lattice-QCD 
study for the multi-quark potential, the tetraquark (4Q) and the pentaquark (5Q) potentials [29]-[33]. 

We show in Figure 1 our global strategy to understand the hadron properties from QCD. One way is the 
direct lattice QCD calculations for the low-lying hadron masses and simple hadron matrix elements, although 
the wave function is unknown and the practically calculable quantities are severely limited. The other way is to 
construct the quark model from QCD. From the analysis of the inter-quark forces in lattice QCD, we extract the 
quark-model Hamiltonian. Through the quark model calculation, one can obtain the quark wave-function of 
hadrons and more complicated properties of hadrons including properties of excited hadrons. 

This paper is organized as follows. In Section 2, we present an accurate mass calculation of low-lying 5Q 
systems in anisotropic lattice QCD [34] [34]. In Section 3, we perform the systematic study of the inter-quark 
interaction in multi-quark systems [28]-[33]. Section 4 is devoted for the summary and concluding remarks. 

2. Lattice QCD Study for Multi-Quark Hadrons  

There have been many theoretical studies for multi-quark systems in the context of X(3872) and ( )1540+Θ  

[36] [37]. As for the ( )1540+Θ , however, its existence as a low-lying pentaquark resonance is not credible 

experimentally. In fact, high-energy experimental groups reported no evidence of the ( )1540+Θ  [7]-[9]. 
Also in lattice QCD, there is no consensus on the existence and the parity assignment of the lowest-lying 

pentaquark system. Two early works supported the negative-parity state for the ( )1540+Θ  [38] [39], while one 
early work supported the positive-parity state [39]. We and another group indicated no evidence for the 
low-lying pentaquark narrow resonance [34] [41], and one study suggested a negative-parity pentaquark state in 
more highly-excited region around 1.8 GeV [42]. 

In this section, we perform the accurate mass measurement of the 5Q system in anisotropic lattice QCD, and 
apply hybrid boundary condition [34] [43] to distinguish a compact resonance and a scattering state. 

2.1. Strategy for High Precession Measurements in Lattice QCD  
As a difficulty on the lattice study of multi-quarks, even if a compact multi-quark resonance state exists, there 
appears a mixture with several multi-hadron scattering states, even at the quenched level. For instance, in the 
channel of +Θ , several NK scattering states appears. In this paper, we use the term of the +Θ  only for the 
compact 5Q resonance to distinguish it from the NK scattering state. In order to examine whether the low-lying 
5Q state appears as a compact resonance +Θ , we perform the accurate lattice QCD calculations with adopting 
the following three advanced methods [34]. 

 

 
Figure 1. Our global strategy to understand the hadron properties from QCD. One way is the direct lattice QCD calculations 
for the low-lying hadron masses and simple hadron matrix elements, although the wave function is unknown and the 
practically calculable quantities are severely limited. The other way is to construct the quark model from QCD. From the 
analysis of the inter-quark forces in lattice QCD, we extract the quark-model Hamiltonian. Through the quark model 
calculation, one can obtain the quark wave-function of hadrons and more complicated properties of hadrons including 
properties of excited hadrons.                                                                               
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2.1.1. Usage of Anisotropic Lattice QCD 
We use the anisotropic lattice, where the temporal lattice spacing ta  is much finer than the spatial one sa  as 
shown in Figure 2. In lattice QCD, hadron masses are calculated from the asymptotic temporal behavior of the 
hadron correlators. On the anisotropic lattice, we can get the detailed information on the temporal behavior of 
the 5Q correlator, and hence we can perform accurate mass measurements for the low-lying 5Q system. 

2.1.2. Usage of the Non-NK-Type Interpolating Field Operator 
We use a non-NK-type interpolating field to extract the ( )1540+Θ  state. This choice of the interpolating field  
would be important and effective. For instance, in Ref. [41], the authors used the NK-type interpolating field and 
only obtained the NK scattering state instead of the compact 5Q state. However, their null result may be merely 
due to a small amount of the compact 5Q component in the NK-type interpolating field, because their 
calculation suffers from a large contamination of NK scattering states. 

We adopt the non-NK-type interpolating field [22],  

( ) ( ) ( )5 ,T T T
abc ade bfg d e f g cO u C d u Cd Csα α

γ≡                              (1) 

for the 5Q state with spin 1 2J =  and isospin 0I = . Here α  denotes the Dirac index, and roman indices 
a-g are color indices. 4 2C γ γ≡  denotes the charge conjugation matrix. Note that the non-NK-type operator in  
Equation (1) cannot be decomposed into N and K in the nonrelativistic limit and its coupling to the NK state is 
rather weak. Hence, the 5Q resonance state +Θ  can be singled out as much as possible in the present 
calculation, and the results are less biased by the contamination from NK scattering states. 

2.1.3. Application of the Hybrid Boundary Condition Method 
To distinguish compact resonances from scattering states, we have proposed a useful method with the “hybrid 
boundary condition” (HBC) [34] [43] instead of the ordinary periodic boundary condition. In the HBC, we 
impose the it anti-periodic boundary condition for u, d quarks, and the periodic boundary condition for s-quarks, 
as shown in Table 1. By applying the HBC on a finite-volume lattice, the NK threshold is raised up, while the 
mass of a compact 5Q resonance +Θ  is almost unchanged. Therefore, we can distinguish a compact 5Q state 

+Θ  from an NK scattering state by comparing between the HBC and the standard periodic boundary condition. 
In lattice QCD with the finite spatial volume 3L , the spatial momenta are quantized as 2 πi ip n L=  

( in ∈Z ) under the periodic boundary condition and ( )2 1 πi ip n L= +  under the anti-periodic boundary 

condition. In the periodic boundary condition, N and K can have zero momenta min 0=p  in the s-wave NK  
scattering state. The HBC imposes the anti-periodic boundary condition for u and d quarks and periodic 
boundary condition for s quark, while the periodic boundary condition is usually employed for all u, d, s quarks.  
In the HBC, the net boundary conditions of both N(uud,udd) and K( us , ds ) are anti-periodic. Then, under the  
HBC, N and K have minimum momenta 3 πip L=  in a finite box with 3L , and the threshold of the s-wave 

NK scattering state is raised up as 2 2 2 2
N min K minm m+ + +p p . In contrast to N and K, the compact 5Q resonance 

+Θ ( uudds ) contains even number of u and d quarks, and hence its mass does not shift in the HBC (see Table 2). 
 

 
Figure 2. Schematic figures of the isotropic lattice (left) and the anisotropic lattice (right). On the anisotropic lattice, the 
temporal lattice spacing ta  is taken to be smaller than the spatial one sa .                                           
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Table 1. The  hybrid boundary condition (HBC) to distinguish a compact multi-quark resonance and an two-hadron 
scattering state for the uudds  system. The standard boundary condition (BC) is also shown for comparison.                

 u quark d quark s quark 

HBC anti-periodic anti-periodic periodic 

standard BC periodic periodic periodic 

 
Table 2. The net boundary condition for +Θ  ( uudds ), N (uud or udd) and K ( ds  or us ) in the hybrid boundary 
condition (HBC) and in the standard boundary condition (BC).                                                       

 +Θ  ( uudds ) N (uud or udd) K ( ds or us ) 

HBC periodic anti-periodic anti-periodic 

standard BC periodic periodic periodic 

2.2. Lattice QCD Setup for the Pentaquark Mass 
To generate gluon configurations, we use the standard plaquette action on the anisotropic lattice as [34]  

( ){ } ( ){ }G G 4
, 3 , 3G

1 Re Tr 1 Re Tr 1 ,  ij i
s i j s ic c

S P s P s
N N
β β γ

γ < ≤ ≤

= − + −∑ ∑                (2) 

with 22 cN gβ ≡ , the plaquette ( )P sµν  and the bare anisotropy Gγ . 
For the quark part, we adopt the ( )O a -improved Wilson (clover) fermion action on the anisotropic lattice,  

( ) ( ) ( )F
,

, ,
x y

S x K x y yψ ψ≡ ∑                                (3) 

with the quark kernel ( ),K x y  as  

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

†
ˆ ˆ, 4 4 4 44, 4,

†
ˆ ˆ, ,

4 4 , ,
<

ˆ, 1 1 4

ˆ

,

x y t x y x y

s i i i ix i y x i y
i

s E i i x y s B ij ij x y
i i j

K x y U x U x

r U x r U x i

c G r c G

δ κ γ δ γ δ

κ γ δ γ δ

κ σ δ κ σ δ

+ −

+ −

≡ − − + + −

− − + + −

− −

∑

∑ ∑

             (4) 

where sκ  and tκ  denote the spatial and temporal hopping parameters, respectively. Gµν  denotes the field 
strength, which is defined through the standard clover-leaf-type construction. The Wilson parameter r and the 
clover coefficients, Ec  and Bc , are fixed by the tadpole-improved tree-level values as ξ1/=r , ( )21E s tc u u=  

and 31B sC u= , where su  and tu  denote the mean-field values of the spatial and the temporal link-variables, 
respectively. 

For the lattice QCD simulation, we use 5.75β =  and 312 96×  with the renormalized anisotropy 
4s ta a = , which corresponds to G 3.2552γ = . In this calculation, the lattice spacing is found to be 

( ) 10.18 fm 1.1 GeVsa −
   and ( ) 10.045 fm 4.4 GeVta −

  . We adopt four values of the hopping parameter 

as ( )0.1210 0.0010  0.1240κ =  for u and d quarks, and use s-quark 0.1240κ =  for the s quark. We calculate 
typical hadron masses at each κ  as shown in Table 3, and find phys. 0.1261κ   corresponding to the physical 
situation of 0.14 GeVmπ  . 

2.3. Lattice QCD Results for the ( )1540+Θ   
Now, using anisotropic lattice QCD, we perform the accurate mass measurement of the low-lying 5Q states with  
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Table 3. The lattice QCD results for the masses of π , ρ , K and N at each hopping parameter κ  in the physical unit of 
GeV [43]. The phys. 0.1261κ   corresponds to the physical situation of 0.14 GeVmπ  .                                

κ  0.1210 0.1220 0.1230 0.1240 phys.κ  

mπ  1.005 (2) 0.898 (2) 0.784 (2) 0.656 (3) 0.140 

mρ  1.240 (3) 1.161 (3) 1.085 (4) 1.011 (5) 0.850 (7) 

Km  0.845 (2) 0.785 (2) 0.723 (2) 0.656 (3) 0.530 (4) 

Nm  1.878 (5) 1.744 (5) 1.604 (5) 1.460 (6) 1.173 (9) 

 
1 2J =  and 0I =  in both positive- and negative-parity channels from the correlator of the non-NK-type 5Q 

operator with parity projection [34]. 
In Figure 3, we show the lattice QCD results [34] for the masses of lowest positive- and negative-parity 5Q 

states under the standard periodic boundary condition. After the chiral extrapolation, the lowest positive-parity 

5Q state is found to be rather heavy as 5Q
1 2.24 GeV
2

m J π
+ 

=  
 

 , which seems to be too heavy to be 

identified as the ( )1540+Θ . 

On the other hand, we get a lower mass for the negative-parity 5Q state as 5Q
1 1.75 GeV
2

m J π
− 

=  
 

  after 

the chiral extrapolation. This value 5Q 1.75 GeVm   seems to be closer to the experimental result of 
1.54 GeVm +Θ
 . At this stage, however, this lowest negative-parity 5Q state may be merely an NK scattering 

state, although the non-NK-type 5Q operator used in this calculation includes only a small amount of the NK 
component. 

To clarify whether the observed low-lying 5Q state is a compact 5Q resonance +Θ  or an NK scattering state, 
we use the hybrid boundary condition (HBC) method, and compare the lattice results with the HBC and those 
with the standard periodic boundary condition (BC). Recall that, in the HBC, the NK threshold is largely raised 
up, while the mass of the compact 5Q resonance ( uudds ) is to be almost unchanged, as was mentioned in 
Section 2.1.3. 

In Figure 4, we show the mass of the lowest-lying negative-parity 5Q state in lattice QCD with the standard 
periodic BC and the HBC at each κ  [34]. The symbols denote the lattice QCD results for the 5Q state and the 
lines denote the NK threshold at each κ . The left and right figures show the results with the standard periodic 
BC and the hybrid boundary condition (HBC), respectively. Note that the NK threshold is estimated to be raised 
up about 200 - 250 MeV in the HBC. 

As a lattice QCD result, the mass of the 5Q state is largely raised in the HBC in accordance with the NK 
threshold, which indicates that the lowest 5Q state observed on the lattice is merely an s-wave NK scattering 
state. In other words, if there exists a compact 5Q resonance +Θ  below 1.75 GeV, it should be observed in this 
lattice calculation with the non-NK-type operator, and its mass should be almost unchanged also in the HBC. 
However, there is no such a 5Q state observed in the lattice calculation, which means absence of the compact 5Q 
resonance +Θ  below 1.75 GeV. 

To conclude, our lattice QCD calculation at the quenched level indicates absence of the low-lying compact 
5Q resonance +Θ  with 1 2J =  and 0I =  near 1.54 GeV [34]. 

2.4. Discussion on Null Result of ( )1540+Θ  in Lattice QCD  

Now, let us consider the physical consequence of the present null result on the low-lying 5Q resonance +Θ  in 
lattice QCD. One plausible answer is absence of the pentaquark resonance ( )1540+Θ , as was indicated by 
several experiments [7]-[11]. However, there may be some loopholes in the lattice calculation. 

First, the present lattice simulation has been done at the quenched level, where dynamical quark effects are 
suppressed. This quenching effect is not clear and then it may cause the 5Q resonance +Θ  to be heavier as an 
unknown effect. 
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Figure 3. The lowest mass 5Qm  of the positive- and negative-parity 5Q states plotted against 2mπ , taken from Ref. [34]. 
The open symbols denote the direct lattice QCD data for positive-parity (triangles) and negative-parity (circles). The solid 
symbols denote the results of the chiral extrapolation. The dotted lines indicate the NK thresholds for p-wave (upper) and 
s-wave (lower) cases.                                                                                          

 

 
Figure 4. Comparison between the standard periodic boundary condition (Standard BC) and the Hybrid Boundary Condition 
(HBC) for the lowest mass of the negative-parity 5Q system, taken from Ref. [34]. At each κ , the lattice QCD result (the 
solid symbol) is raised up in accordance with the corresponding NK threshold (the solid line). This behavior indicates that 
the low-lying negative-parity 5Q state observed in lattice QCD is an NK scattering state rather than a compact 5Q resonance 

+Θ .                                                                                                   
 

Second, we investigated the 5Q state with spin 1 2J =  and isoscalar 0I =  in this paper. However, the 

( )1540+Θ  may have other quantum numbers [44]-[46], e.g., spin 3 2J = , isovector 1I =  or isotensor 
2I = . Considering such a possibility, our group investigated the 5Q system with higher spin 3 2J =  in lattice 

QCD, and found no low-lying pentaquark also in this channel [43]. 
Third, we have used a localized 5Q interpolating field in this lattice QCD calculation. However, the actual 
( )1540+Θ  may have more complicated structure beyond the localized interpolating field. Such a possibility 

has been pointed out in the theoretical side. For instance, Karliner and Lipkin [47] proposed the diquark-triquark 
( -qq qqq ) picture for the Θ , and Bicudo et al. [48] pointed out the possibility of the heptaquark picture, where  

the +Θ  is described as a bound state of π , K and N. If the ( )1540+Θ  has such a complicated structure, we 
have to use the corresponding nonlocal interpolating field to get its proper information. 

2.5. Necessity of the Wave Function of Multi-Quarks  
So far, we have performed the direct mass measurement of 5Q states in lattice QCD, where the path integral 
over arbitrary states is numerically calculated on a supercomputer. In the path-integral formalism, however, it is 
rather difficult to extract the state information, such as the wave-function of the multi-quark state, and therefore 
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only limited simple information can be obtained in the direct lattice-QCD calculation. 
Actually, to distinguish the compact 5Q resonance +Θ  from NK scattering states was rather difficult in 

lattice QCD, and hence we had to develop a new method with the hybrid boundary condition (HBC). In this 
respect, if the wave function is obtained, one easily finds out whether it is a compact resonance state +Θ  or 
not. 

Indeed, to get the wave function is very important to clarify the further various properties of the multi-quark 
state such as the underlying structure and the decay width, which cannot be obtained practically only with the 
direct lattice-QCD calculation. 

Then, apart from the direct lattice-QCD calculation, we have to seek the way to obtain the proper wave 
function of the multi-quark state. To do so, we need a proper Hamiltonian for the multi-quark system based on 
QCD. One possible way in this direction is to construct the quark model from QCD, as was mentioned in 
Section 1. In the next section, we study the inter-quark interaction in multi-quark systems directly from QCD, 
and aim to construct the QCD-based quark-model Hamiltonian. 

3. Inter-Quark Interaction in Multi-Quark Systems in Lattice QCD  
In this section, we study the inter-quark interaction in multi-quark systems using lattice QCD [29]-[33], and seek 
for the QCD-based quark-model Hamiltonian to describe multi-quark hadrons. The quark-model Hamiltonian 
consists of the kinetic term and the potential term, which is not known form QCD in multi-quark systems. 

As for the potential at short distances, the perturbative one-gluon-exchange (OGE) potential would be 
appropriate, due to the asymptotic nature of QCD. For the long-range part, however, there appears the 
confinement potential as a typical non-perturbative property of QCD, and its form is highly nontrivial in the 
multi-quark system. 

In fact, to clarify the confinement force in multi-quark systems is one of the essential points for the 
construction of the QCD-based quark-model Hamiltonian. Then, in this paper, we investigate the multi-quark 
potential in lattice QCD, with paying attention to the confinement force in multi-quark hadrons. 

3.1. The Three-Quark Potential in Lattice QCD  

So far, only for the simplest case of static QQ  systems, detailed lattice QCD studies have been done, and the 
QQ  potential QQV  is known to be well described by the Coulomb plus linear potential as [23]-[26] [49]  

( ) QQ
QQ QQ QQ

A
V r r C

r
σ= − + +                                (5) 

with r being the inter-quark distance. 
To begin with, we study three-quark (3Q) systems in lattice QCD to understand the structure of baryons at the 

quark-gluon level. Similar to the derivation of the QQ  potential from the Wilson loop, we calculate the 3Q 
potential 3QV  from the 3Q Wilson loop 3QW  in SU(3) lattice QCD with ( 5.7β = , 312 24× ), ( 5.8β = , 

316 32× ), ( 6.0β = , 316 32× ) and ( 6.2β = , 424 ) at the quenched level. For more than 300 different patterns 
of spatially-fixed 3Q systems, we perform accurate and detailed calculations for the 3Q potential [25]-[28] [31] 
[33], and find that the lattice QCD data of the 3Q potential 3QV  are well described by the Coulomb plus Y-type 
linear potential, i.e., Y-Ansatz,  

3Q
3Q 3Q 3Q min 3Q

1 ,
i j i j

V A L Cσ
<

= − + +
−

∑ r r
                           (6) 

within 1%-level deviation [25]-[28] [31] [33]. Here, 3Q
minL  is the minimal total length of the color flux tube, 

which is Y-shaped for the 3Q system. 
To demonstrate the validity of the Y-Ansatz, we show in Figure 5 the lattice QCD data of the 3Q confine- 

ment potential conf
3QV , i.e., 3Q potential subtracted by the Coulomb part, plotted against Y-shaped flux-tube 

length 3Q
minL  [30]. For each β , clear linear correspondence is found between 3Q confinement potential conf

3QV   
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Figure 5. The lattice QCD result for the 3Q confinement potential conf

3QV , i.e., the 3Q potential subtracted by its Coulomb 

part, plotted against Y-shaped flux-tube length 3Q
minL  at 5.8β = , 6.0 and 6.2 in the lattice unit, taken from Ref. [30]. The 

clear linear correspondence between 3Q confinement potential conf
3QV  and 3Q

minL  indicates the Y-Ansatz for the 3Q potential.   

 
and 3Q

minL , which indicates the Y-Ansatz for the 3Q potential [30] [31] [33]. 
Here, we consider the physical meaning of the Y-Ansatz. Apart from an irrelevant constant, the Y-Ansatz, 

Equation (6), consists of the Coulomb term and the Y-type linear potential, which play the dominant role at 
short and long distances, respectively. The Coulomb term would originate from the one-gluon-exchange (OGE) 
process. In fact, at short distances, perturbative QCD is applicable, and therefore the inter-quark potential is 
expressed as the sum of the two-body one-gluon-exchange (OGE) Coulomb potential. 

The appearance of the Y-type linear potential supports the flux-tube picture [50]-[53] at long distances, where 
there appears the color flux tube linking quarks inside hadrons with its length minimized. In particular, the 
confinement force in baryons corresponds to the Y-shaped flux tube, which implies existence of the three-body 
interaction in baryons. 

In usual many-body systems, the main interaction is described by a two-body interaction and the three-body 
interaction is a higher-order contribution. In contrast, as is clarified by our lattice-QCD study, the quark 
confinement force in baryons is a genuinely three-body interaction [25] [26], which is one of significant features 
of QCD. In fact, the appearance of the Y-type junction and the three-body confinement force reflect the SU(3) 
group structure in QCD, e.g., the number of color, 3cN = , and is peculiar to QCD [25] [26]. In this sense, the 
study of the 3Q system is very important to get a deeper insight of the QCD physics. 

In lattice QCD, a clear Y-type flux-tube formation is actually observed for spatially-fixed 3Q systems [31] [33] 
[54]. Thus, together with several other analytical and numerical studies [55]-[57], the Y-Ansatz seems to be 
confirmed as the correct functional form of the static 3Q potential. This result indicates the color-flux-tube 
picture for baryons. 

3.2. The OGE Coulomb Plus Multi-Y Ansatz  
Now, we proceed to multi-quark systems. We first consider the theoretical form of the multi-quark potential, 
since we will have to analyze the lattice QCD data by comparing them with some theoretical Ansatz. 

By generalizing the lattice QCD result of the Y-Ansatz for the three-quark potential, we propose the 
one-gluon-exchange (OGE) Coulomb plus multi-Y Ansatz [29]-[33],  

2

min ,
4π

a a
i j

i j i j

T TgV L Cσ
<

= + +
−

∑ r r
                               (7) 

for the potential form of the multi-quark system. Here, the confinement potential is proportional to the minimal 
total length minL  of the color flux tube linking the quarks, which is multi-Y shaped in most cases. 

In the following, we study the inter-quark interaction in multi-quark systems in lattice QCD, and compare the 
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lattice QCD data with the theoretical form in Equation (7). Note here that the lattice QCD data are meaningful as 
primary data on the multi-quark system directly based on QCD, and do not depend on any theoretical Ansatz. 

3.3. Formalism of the Multi-Quark Wilson Loop  
Next, we formulate the multi-quark Wilson loop to obtain the multi-quark potential in lattice QCD [29]-[33]. 

Similar to the derivation of the QQ  potential from the Wilson loop, the static multi-quark potential can be 
derived from the corresponding multi-quark Wilson loop. We construct the tetraquark Wilson loop 4QW  [30] 
and the pentaquark Wilson loop 5QW  [29] in a gauge invariant manner as shown in Figure 6(a) and Figure 
6(b), respectively. 

The tetraquark Wilson loop 4QW  and the pentaquark Wilson loop 5QW  are defined by  

( )

( ) ( )

4Q 1 12 2 12

5Q 3 12 4 3 12 4

1 tr ,
3

1 ,
3!

bb ccabc a b c aa

W M R M L

W M R R R L L L
′ ′′ ′ ′ ′

≡

≡

   

      

                      (8) 

where M , iM , jL  and jR  (i = 1, 2, j = 1, 2, 3, 4) are given by  

( ){ } ( )c, , ,
, , , exp d SU 3 .

i j j
i j j M M R L

M M R L P ig x A xµ
µ≡ ∈∫                      (9) 

Here, 12R  and 12L  are defined by  

12 1 2 12 1 2
1 1, .
2 2

a a abc a b c bb cc a a abc a b c bb ccR R R L L L′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′≡ ≡                        (10) 

The multi-quark Wilson loop physically means that a gauge-invariant multi-quark state is generated at 0t =  
and annihilated at t T=  with quarks being spatially fixed in 3R  for 0 t T< < . 

The multi-quark potential is obtained from the vacuum expectation value of the multi-quark Wilson loop:  

4Q 4Q 5Q 5Q
1 1lim ln , lim ln .

T T
V W V W

T T→∞ →∞
= − = −                     (11) 

3.4. Lattice QCD Setup for the Multi-Quark Potential  
Here, we briefly summarize the lattice QCD setup in this calculation. For the study of the multi-quark potential, 
the SU(3) lattice QCD simulation is done with the standard plaquette action at 6.0β =  on the 316 32×  lattice 
at the quenched level. (The calculation for large-size multi-quark configurations are performed by identifying 

316 32×  as the spatial size.) 
 

 
(a)                                            (b) 

Figure 6. (a) The tetraquark Wilson loop 4QW  [30]. (b) The pentaquark Wilson loop 5QW  [29]. The contours 

( ), , , 1,2, 3,4i j jM M R L i j= =  are line-like and ( ), 1,2j jR L j =  are staple-like. The multi-quark Wilson loop physically 

means that a gauge-invariant multi-quark state is generated at 0t =  and annihilated at t T=  with quarks being spatially 
fixed in 3R  for 0 t T< < .                                                                                  
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In this calculation, the lattice spacing a is estimated as 0.104 fma  , which leads to the string tension 

( )2
QQ 427 MeVσ =  in the QQ  potential [31]. We use 150 gauge configurations for the 5Q potential  

simulation and 300 gauge configurations for the 4Q potential simulation. The smearing method is used for the 
enhancement of the ground-state component. We here adopt 2.3α =  and the iteration number smr 40N = , 
which lead to a large enhancement of the ground-state component [29]-[33]. 

3.5. Lattice QCD Result of the Pentaquark Potential  

We study the pentaquark potential 5QV  in lattice QCD for 56 different patterns of QQ- Q -QQ type pentaquark 
configurations, as shown in Figure 7. As the conclusion, the lattice QCD data of 5QV  are found to be well  
described by the OGE Coulomb plus multi-Y Ansatz, i.e., the sum of the OGE Coulomb term and the multi- 
Y-type linear term based on the flux-tube picture [29] [31]-[33]. 

We show in Figure 8 the lattice QCD results of the 5Q potential 5QV  [29] for symmetric planar 5Q 

configurations as shown in Figure 7, where each 5Q system is labeled by 1 2Q Q 2d ≡  and 1 3Q Qh ≡ . 
In Figure 8, we add the theoretical curves of the OGE Coulomb plus multi-Y Ansatz, where the coefficients 

( )5Q 5Q,A σ  are set to be ( )3Q 3Q,A σ  obtained from the 3Q potential [26]. (Note that there is no adjustable  

parameter in the theoretical Ansatz apart from an irrelevant constant.) In Figure 8, one finds a good agreement 
between the lattice QCD data of 5QV  and the theoretical curves of the OGE Coulomb plus multi-Y Ansatz. 

In this way, the pentaquark potential 5QV  is found to be well described by the OGE Coulomb plus multi-Y 
Ansatz as [29] [31]-[33].  

 

 
Figure 7. A QQ- Q -QQ type pentaquark configuration [29]. In the 5Q system, ( )1 2,Q Q  and ( )3 4,Q Q  form 3 repre- 

sentation of SU(3) color, respectively. The lattice QCD results indicate the multi-Y-shaped flux-tube formation in the QQ- Q
-QQ system.                                                                                             

 

 
(a)                                                  (b) 

Figure 8. Lattice QCD results of the pentaquark potential 5QV  for symmetric planar 5Q configurations in the lattice unit: (a) 

5QV  v.s. ( ),d h  and (b) 5QV  v.s. 5Q
minL , taken from Ref. [29]. The symbols denote the lattice QCD data, and the curves the 

theoretical form of the OGE plus multi-Y Ansatz.                                                                
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5Q
5Q 5Q 5Q min 5Q

12 34 15 25 35 45 13 14 23 24

1 1 1 1 1 1 1 1 1 1 1 1 ,
2 4

V A L C
r r r r r r r r r r

σ
       = − + + + + + + + + + + +      
       

      (12) 

where ijr  is the distance between Qi  and Q j . Here, 5Q
minL  is the minimal total length of the flux tube, which 

is multi-Y-shaped as shown in Figure 7. This lattice result supports the flux-tube picture for the 5Q system. 

3.6. Tetraquark Potential and Flip-Flop in Lattice QCD  

We study the tetraquark potential 4QV  in lattice QCD for about 200 different patterns of QQ- QQ  configu- 
rations, and find the following results [30]-[32]. 

1. When QQ and QQ  are well separated, the 4Q potential 4QV  is well described by the OGE Coulomb plus 
multi-Y Ansatz, which indicates the multi-Y-shaped flux-tube formation as shown in Figure 9(a).  

2. When the nearest quark and antiquark pair is spatially close, the 4Q potential 4QV  is well described by the 

sum of two QQ  potentials, which indicates a “two-meson” state as shown in Figure 9(b). 
We show in Figure 10 the lattice QCD results of the 4Q potential 4QV  [30] for symmetric planar 4Q 

configurations as shown in Figure 9, where each 4Q system is labeled by 1 2Q Q 2d ≡  and 1 3Q Qh ≡ . 
For large value of h compared with d, the lattice data seem to coincide with the solid curve of the OGE 

Coulomb plus multi-Y Ansatz,  

4Q
4Q 4Q 4Q min 4Q

12 34 13 14 23 24

1 1 1 1 1 1 1 ,
2

V A L C
r r r r r r

σ
     = − + + + + + + +    
     

 

 

 
        (a)                                      (b) 

Figure 9. (a) A connected tetraquark (QQ- QQ ) configuration and (b) A “two-meson” configuration [30]. The lattice QCD 
results indicate the multi-Y-shaped flux-tube formation for the connected 4Q system.                                    

 

 
(a)                                                   (b) 

Figure 10. Lattice QCD results of the tetraquark potential V4Q for symmetric planar 4Q configurations in the lattice unit, 
taken from Ref. [30]. The symbols denote the lattice QCD data. The solid curve denotes the OGE plus multi-Y Ansatz, and 
the dotted-dashed curve the two-meson Ansatz.                                                                
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where 4Q
minL  is the minimal total length of the flux tube, which is multi-Y-shaped as shown in Figure 9(a). Here, 

the coefficients ( )4Q 4Q,A σ  are set to be ( )3Q 3Q,A σ  obtained from the 3Q potential [26]. 
For small h, the lattice data tend to agree with the dotted-dashed curve of the “two-meson” Ansatz, where the 

4Q potential is described by the sum of two QQ  potentials as ( ) ( ) ( )13 24QQ QQ QQ2V r V r V h+ = . 

Thus, the tetraquark potential 4QV  is found to take the smaller energy of the connected 4Q state or the  
two-meson state. In other words, we observe a clear lattice QCD evidence of the “flip-flop”, i.e., the flux-tube 
recombination between the connected 4Q state and the two-meson state. This lattice result also supports the 
flux-tube picture for the 4Q system. 

3.7. Proper Quark-Model Hamiltonian for Multi-Quarks  
From a series of our lattice QCD studies [25]-[33] on the inter-quark potentials, the inter-quark potential is 
clarified to consist of the one-gluon-exchange (OGE) Coulomb part and the flux-tube-type linear confinement 
part in QQ -mesons, 3Q-baryons and multi-quark (4Q, 5Q) hadrons. 

Furthermore, from the comparison among the QQ , 3Q, 4Q and 5Q potentials in lattice QCD, we find the 
universality of the string tension σ ,  

3Q 4Q 5QQQ ,σ σ σ σ                                    (13) 

and the OGE result of the Coulomb coefficient A as  

3Q 4Q 5QQQ
1
2

A A A A                                    (14) 

in Equations (5), (6), (12) and (13). 
Here, the OGE Coulomb term is considered to originate from the OGE process, which plays the dominant role 

at short distances, where perturbative QCD is applicable. The flux-tube-type linear confinement would be 
physically interpreted by the flux-tube picture, where quarks and antiquarks are linked by the one-dimensional 
squeezed color-electric flux tube with the string tension σ . 

To conclude, the inter-quark interaction would be generally described by the sum of the short-distance 
two-body OGE part and the long-distance flux-tube-type linear confinement part with the universal string 
tension 0.89 GeV fmσ  . 

Thus, based on the lattice QCD results, we propose the proper quark-model Hamiltonian Ĥ  for multi-quark 
hadrons as  

2 2
OGE min

ˆ ˆ ,ij
i i

i i j
H M V Lσ

<

= + + +∑ ∑p                          (15) 

where minL  is the minimal total length of the flux tube linking quarks. OGE
ijV  denotes the OGE potential 

between ith and jth quarks, which becomes the OGE Coulomb potential in Equation (7) in the static case. iM  
denotes the constituent quark mass. The semi-relativistic treatment would be necessary for light quark systems. 

It is desired to investigate various properties of multi-quark hadrons with this QCD-based quark model 
Hamiltonian Ĥ . 

4. Summary and Concluding Remarks  
We have studied tetraquark and pentaquark systems in lattice QCD Monte Carlo simulations, motivated by the 
experimental discoveries of multi-quark candidates. 

First, we have performed accurate mass calculations of low-lying 5Q states with 1 2J =  and 0I =  in both 
positive- and negative-parity channels in anisotropic lattice QCD. We have found that the lowest positive-parity 
5Q state has a large mass of about 2.24 GeV after the chiral extrapolation. To single out the compact 5Q state 
from NK scattering states, we have used the hybrid boundary condition (HBC) method, and have found no 
evidence of the compact 5Q state below 1.75 GeV in the negative-parity channel. 

Second, we have studied the multi-quark potential in lattice QCD to clarify the inter-quark interaction in 
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multi-quark systems. We have found that the 5Q potential 5QV  for the QQ- Q -QQ system is well described by 
the “OGE Coulomb plus multi-Y Ansatz”: the sum of the one-gluon-exchange (OGE) Coulomb term and the 
multi-Y-type linear term based on the flux-tube picture. The 4Q potential 4QV  for the QQ- QQ  system is also  
described by the OGE Coulomb plus multi-Y Ansatz, when QQ and QQ  are well separated. On the other hand, 
the 4Q system is described as a “two-meson” state with disconnected flux tubes, when the nearest quark and 
antiquark pair is spatially close. We have observed a lattice-QCD evidence for the “flip-flop”, i.e., the flux-tube 
recombination between the connected 4Q state and the “two-meson” state. On the confinement mechanism, we 
have clarified the flux-tube-type linear confinement in multi-quark hadrons. Finally, we have proposed the 
proper quark-model Hamiltonian based on the lattice QCD results. 
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Abstract 
As a topic of “quantum color dynamics”, we study various mass generation of colored particles and 
gluonic dressing effect in a non-perturbative manner, using the Schwinger-Dyson (SD) formalism 
in (scalar) QCD. First, we review dynamical quark-mass generation in QCD in the SD approach as a 
typical fermion-mass generation via spontaneous chiral-symmetry breaking. Second, using the SD 
formalism for scalar QCD, we investigate the scalar diquark, a bound-state-like object of two 
quarks, and its mass generation, which is clearly non-chiral-origin. Here, the scalar diquark is 
treated as an extended colored scalar field, like a meson in effective hadron models, and its effec-
tive size R is introduced as a form factor. As a diagrammatical difference, the SD equation for the 
scalar diquark has an additional 4-point interaction term, in comparison with the single quark 
case. The diquark size R is taken to be smaller than a hadron, R ~ 1 fm, and larger than a constitu-
ent quark, R ~ 0.3 fm. We find that the compact diquark with R ~ 0.3 fm has a large effective mass 
of about 900 MeV, and therefore such a compact diquark is not acceptable in effective models for 
hadrons. We also consider the artificial removal of 3- and 4-point interaction, respectively, to see 
the role of each term, and find that the 4-point interaction plays the dominant role of the diquark 
self-energy. From the above two different cases, quarks and diquarks, we guess that the mass gen-
eration of colored particles is a general result of non-perturbative gluonic dressing effect. 
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Dynamical Mass Generation, Diquarks, Schwinger-Dyson Formalism, QCD 

 
 

1. Introduction 
Quantum chromodynamics (QCD) is the fundamental gauge theory of the strong interaction, and it is a long 
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important problem to describe hadron structure and properties based on QCD. Quarks and gluons, the basic 
ingredients of QCD, strongly interact with each other in an infrared region, and they are confined in hadrons. 
Then, due to their non-perturbative properties, it is fairly difficult to describe hadrons directly from QCD. Also, 
the non-perturbative dynamics in QCD directly relates to the other important physical subject of “mass 
generation.” 

The origin of mass is one of the most fundamental issues in physics. One famous category of mass generation 
is the Yukawa interaction with the Higgs field. However, even besides the dark sector, the Higgs-origin mass is 
only about 1% of the total mass in our universe, where dominant massive particles are nuclei (u,d quarks) and 
electrons. Actually, the Higgs interaction only gives the electron mass (about 0.5MeV) and a small current quark 
mass (a few MeV) for u,d quarks [1]. In contrast, about 99% of mass of matter in our universe are created by the  
strong interaction, apart from the dark sector. In fact, a large constituent quark mass of ( )300 - 400 MeVqM =  
arises from non-perturbative dynamics in QCD. Thus, QCD gives another category of mass generation. 

Such a dynamical fermion-mass generation in the strong interaction was first pointed out by Y. Nambu et al. 
[2] in 1961 in the context of spontaneous chiral-symmetry breaking. The QCD-based quantitative analysis of 
dynamical fermion mass generation was performed by Higashijima and Miransky in 1980’s [3] [4] using the 
Schwinger-Dyson formalism. Thus, light u,d-quarks are considered to acquire a large constituent quark mass of 
about 300 - 400 MeV, in accordance with spontaneous chiral-symmetry breaking. 

Even without chiral symmetry breaking, however, it is likely that QCD has several dynamical mass 
generation mechanism. For example, while the charm quark has no chiral symmetry, some difference seems to  
appear between current and constituent masses for charm quarks: the current mass is 1.2cm   GeV at renor- 
malization point 2 GeVµ =  [1], and the constituent charm quark mass is 1.6 GeVcM   in the quark model.  
The gluon is more drastic case. While the gluon mass is zero in perturbation QCD, the non-perturbative effect of 
the self-interaction of gluons seems to generate a large effective mass of 0.6 GeV [5]-[7], and the lowest 
glueball mass is about 1.6GeV [8] [9]. Furthermore, the dynamical mass generation for scalar-quark have been 
studied in the lattice scalar-QCD calculation [10]. Thus, we deduce that “quantum color dynamics” generally 
accompanies a large mass generation, due to the strong interaction. 

Next, let us consider compositeness of hadrons in terms of quarks. As an infrared effective theory, the 
constituent quark model has been successful for the description of the hadron spectroscopy. The constituent  
quark belongs to the fundamental representation c3  in the ( )SU 3  color group, and many hadrons can be  
classified as the color-singlet ( c1 ) bound states of some quarks and antiquarks. In this picture, ordinary mesons 
and baryons are identified as quark-antiquark and three-quark systems, respectively. However, besides the 
ordinary baryons and mesons, QCD allows the existence of other color-singlet states, such as glueballs, hybrids 
and multi-quark states, called exotic hadrons. Recent experiments have reported the candidates for these exotic 
states [1]. The heavy hadrons, which includes one or more heavy (anti)quarks, are also recent hot topics in 
hadron physics [1] [11] [12]. For example, very recently, LHCb has reported the discovery of two charmed 
pentaquarks, Pc

+  (4380) and Pc
+  (4450), from a careful analysis of the decay product in the high-energy 

process, and this report seems to activate the multi-quark physics again [13]. 
In the theoretical study of these states, the diquark picture [14] [15] has been discussed as an important 

effective degree of freedom. The diquark is composed of two quarks with strong correlation, where the  
one-gluon-exchange interaction between two quarks is attractive in the color anti-triplet c3  channel [16] [17], 
of which color is the same as an anti-quark. In ( )SU 3  flavor case, the flavor-antisymmetric and spin-singlet  
with even parity is the most attractive channel in diquark, which is called scalar diquark. If the diquark 
correlation is developed in a hadron, this scalar diquark channel would be favored. The diquark correlation in a 
hadron is discussed in various situations, such as tetra-quarks, heavy baryons and other exotic states [18] [19]. 
The tetra-quark states as the bound state of the diquark/antidiquark is suggested in early day [20], and X(3872) 
[21] and X(1576) [22] are considered as tetra-quark states. Light flavor mesons as tetra-quark [23]-[32] and 
mixing with qq  state [33]-[35] are discussed. There are various studies the heavy baryons focused on diquark 
[36]-[40], e.g., single heavy quark/light diquark ( Qqq ) picture [41]-[45]. The other exotic states including heavy 
quark(s) are studied [46]-[52]. The ordinary baryon properties focused on the diquarks have been also discussed 
[53]-[57]. The diquark correlation is found in the lattice QCD simulation [58]-[61]. It is also considered that the 
diquark condensation is occurred in an extremely high density system, called the color superconductivity [62]. 
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We note that diquark properties strongly depend on the color number cN . If we consider the two-color QCD, 
the diquarks compose the color singlet (baryons). The strength of correlation between two quarks is same as 
quark/antiquark channel, and the (diquark-)baryons correspond to the mesons. This fact is known as the Pauli-  
Gürsey symmetry. The quark-hadron matter in two-color system is investigated [63]-[69]. For the 4cN =  case, 
the diquarks belong to c6  or c10 . As an interesting fact for the case, the diquark contents must be different 
between baryons and tetra-quarks. In fact, the diquark qq  in an 4cN =  baryon qqqq  belongs to c6 , which 
is self-adjoint. On the other hand, the diquark in a tetra-quark qqqq  belongs to c10 . From this viewpoint, the 

3cN =  case is rather special, because the diquarks belong to the same color c3  in both cases of baryon qqq  
and tetra-quark qqqq . 

The properties of diquarks such as the mass and size are not understood well, although the diquarks have been 
discussed as important object of hadron physics. While the diquark is made by two quarks with gluonic 
interaction, it still strongly interacts with gluons additionally because of its non-zero color charge. Therefore, 
such dressing effect of gluons for diquark should be considered in a non-perturbative way. The dynamics of 
diquark and gluons may affect the structure of hadrons. In the quark-hadron physics, the Schwinger-Dyson (SD) 
formalism is often used to evaluate the non-perturbative effect based on QCD [3] [4] [70]-[78]. In this paper, we 
apply the SD formalism to scalar diquark to investigate the effective mass of scalar diquark, which reflects a 
non-perturbative dressing effect by gluons. The scalar diquark is treated as an extended field like a meson in 
effective hadron models, and interacts with the gluons [10] [42]. 

For the argument of the scalar diquark, it would be important to consider its effective size. For, point scalar 
particles generally have large radiative corrections even in the perturbation theory [79] [80]. As an example, in 
the framework of the grand unified theory (GUT), the Higgs scalar field suffers from a large radiative correction 
of the GUT energy scale, and therefore severe “fine-tuning” is inevitably required to realize the low-lying Higgs 
mass of about 126 GeV [81], which leads to the notorious hierarchy problem [79] [80]. The Higgs propagator 
with radiative correction has been investigated by setting the mass renormalization condition to reproduce 126 
GeV [82]-[84]. A similar large radiative correction also appears for point-like scalar-quarks, which correspond 
to compact scalar diquarks, in scalar lattice QCD calculations [10]. In fact, the point-like scalar-quark  
interacting with gluons acquires a large extra mass of about 1.5 GeV at the cutoff 1 1 GeVa−

 , where a is the  
lattice spacing. Such a large-mass acquirement would be problematic in describing hadrons with scalar diquarks. 
However, since it is a bound-state-like object inside a hadron, the diquark must have an effective size. This 
effect gives a natural UV cutoff of the theory, and reduces the large radiative correction. Then, we take account 
of the effective size and investigate the mass of the scalar diquark inside a hadron within the SD formalism. 

This paper is organized as follows. In Section 2, we review the SD formalism for the light quark, as the 
typical fermion mass generation in QCD. In Section 3, we investigate the SD equation for the scalar diquark, 
where a simple form factor is introduced for the possible size of diquark. In Section 4, we present the numerical 
result of the diquark self-energy with the dependence of the bare mass and size of diquark, and briefly discuss 
the dynamical mass generation for the scalar diquark in the SD formalism. Section 5 is devoted to conclusion 
and discussion. 

2. Dynamical Mass Generation of Quarks in QCD  
The chiral symmetry is a fundamental symmetry in the light-quark sector of QCD, and it is an exact global 
symmetry in the chiral limit. In the low-energy region of QCD, spontaneous chiral-symmetry breaking takes 
place, which generates a large effective mass of light quarks. Actually, in the theoretical analysis with the 
Schwinger-Dyson (SD) formalism in QCD, a large self-energy generation of quarks is demonstrated in an 
infrared region, which breaks the chiral symmetry in the physically stable vacuum [3] [4]. In this section, as the 
standard fermionic mass generation in QCD, we briefly review the quark mass generation in the SD formalism 
for QCD in the Landau gauge, which is frequently used. This review part gives a important basis for the 
non-perturbative QCD physics, and is also useful to set up the formalism for the scalar diquark case in Section 3. 

As a merit of the Lorentz-covariant gauge like the Landau gauge, the dressed quark propagator is generally 

described as ( ) ( ) ( )( ) 12 2 2= qS p iZ p p p
−

− Σ/  with the wave function renormalization ( )2Z p  and the 
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self-energy of quark ( )2
q pΣ . The general and exact SD equation for the quark propagation is diagrammatically  

expressed in Figure 1. In principle, the quark propagator is exactly obtained by solving this equation, if the 
exact form of the gluon propagator and the quark-gluon vertex are given. Here, the kernel in the SD equation  
depicted in Figure 1 is expressed by the product of the quark-gluon vertex ( ),a p kµΓ  and the gluon dressing 

function ( )( )2
gZ p k−  [85],  

( )( ) ( )
2

2 , ,
4π g a b
g Z p k T p kµ νγ− Γ                                 (1) 

where aT  ( 21, 2, , 1ca N= − ) denotes the generator of the SU(Nc) color group. 
In the most SD studies for quarks, one takes the rainbow-ladder approximation with the renormalization- 

group improvement of the quark-gluon vertex at the one-loop level. Note that, owing to the iterative structure of 
the SD equation, a simplified full-order treatment on the coupling sα  can be achieved, even with the use of the 
one-loop level vertex and so on. In actual, by the diagrammatical expansion, one can easily confirm the 
inclusion of infinite order of the coupling sα , and the non-perturbative effect of gluons is thus included in this 
formalism. Recall that any nontrivial vacuum cannot be expressed by the perturbation theory. 

Here, we briefly mention the treatment of quark confinement in the SD approach. In most works of the SD 
approach, the confinement effect is ignored, which seems problematic for the study of QCD. On this point, 
several recent studies, both analytical works [86] and lattice QCD simulations [87], have suggested that chiral 
symmetry breaking and quark confinement are not directly correlated in QCD. If this is the case, even without 
confinement, one may be able to discuss chiral symmetry breaking in QCD, as is the SD approach. 

At the one-loop level of renormalization-group improvement, the SD kernel is approximated as  

( )( ) ( ) ( )( )
2

2 2, ,
4π g a b s a b
g Z p k T p k p k T Tµ ν µ νγ α γ γ− Γ → −                    (2) 

and the Landau-gauge gluon propagator is given as  

( )2
2 2
1 .ab abp p

D p g
p p

µ ν
µν µν δ

 −
= − 

 
                            (3) 

Then, by taking Dirac trace or the trace after multiplying p/ , the SD equation for the quark is expressed by 
the coupled integral equations:  

( )
( )

( ) ( )( ) ( ) ( )
( )( ) ( )

2 2 22
2 4

3 22 2 2 2

3
d ,

4π
s qq

q
q

p k Z k kp iC
m k

Z p k k p k

α − ΣΣ
= +

− Σ −
∫

3
                  (4) 

( )
( ) ( )( ) ( )

( ) ( )
( )
( ) ( )

2 2 2 2 2
2 4
3 2 2 4 42 2 2 2

21 3 21 d ,
4π

s

q

p k Z kiC p kp k p kk
pZ p k k p k p k p k

α −  ⋅⋅ = + + −
 − Σ − − − 

∫
3

          (5) 

with the bare quark mass qm  and the Casimir operator ( ) 8
2 1 4 3a a

aC T T
=

= =∑3  in the SU(3) color case.  
We use one-loop level renormalization-group-improved coupling in the case of 3cN =  and 3fN = ,  

 

 

Figure 1. The Schwinger-Dyson equation for the quark field. The shaded blob denotes the self-energy of the quark ( )2
q pΣ , 

the black dot the bare quark-gluon vertex, the shaded triangle the dressed vertex ( ),a p kµΓ , the solid line the quark 
propagator and the curly line the gluon propagator.                                                              
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( ) ( ) ( ) ( )

( ) ( )

2 2
IR2 22 2

QCD2

2 2
IR2 2

IR QCD

1
ln12π ,

14π 11 2
ln

E
EE

s E
c f

E

p p
pg p

p
N N p p

p

α

 ≥ Λ= = −  ≤
 Λ

                 (6) 

with an infrared regularization of a simple cut at IR 640 MeVp   which leads to ( )2 2
IR QCDln 1 2p Λ = , and the 

QCD scale parameter QCD 500 MeVΛ =  [4] [73] [77]. The subscript E, such as Ep , denotes the value in 
Euclidean space. The infrared regularization has been introduced to avoid the divergent pole at QCDp = Λ . The 
behavior of the coupling is shown in Figure 2 in the Euclidean space. All the figures for the numerical results 
will be in the Euclidean space. 

The Higashijima-Miransky approximation is to take the larger value of the argument (Euclidean momenta) in 
the coupling as ( )( ) ( )( )2 2 2max ,s E E s E Ep k p kα α− ≈ , and this approximation is also frequently used in the SD 

approach for quarks, because ( )2 1EZ p =  is analytically obtained in the Landau gauge and the computation 

becomes quite simplified for the quark self-energy ( )2
q EpΣ :  

( ) ( ) ( )
( )

( ) ( )
( )

UV
2 3 2 2 2

2
2 2 2 2 2 2 20

2 2d d ,
ππ

E

E

ps E E q E E s E q E
q E q E Ep

E E q E E q E

p k k k k k
p m k k

p k p k k

α αΛΣ Σ
Σ = + +

+ Σ + Σ∫ ∫            (7) 

where the Wick rotation has been taken. (For the detail, see, e.g., Appendix in Ref. [73].) The result of the SD 
equation is shown in Figure 3 in the chiral limit 0qm = . There is a small cusp structure at IRp  due to the 

coupling behavior Equation (6). The ultraviolet cutoff UVΛ  is taken as 5 GeV. The self-energy ( )2
q EpΣ  is  

 

 

Figure 2. The behavior of the running coupling of our model ( )2
s pα  as a function of the momentum p in the Euclidean 

space. The thin line is the one-loop renormalization group improved running coupling. We introduce a simple cut at IRp  as 
an infrared regularization.                                                                                    

 

 

Figure 3. The quark self-energy ( )2
q pΣ  as a function of the momentum p in the chiral limit. The self-energy is large in 

the low momentum region and goes to zero monotonously with the momentum.                                           
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unchanged even the cutoff is taken 10 GeV. The quark mass is large at the infrared region and monotonously 
goes to zero with the momentum, which reflects spontaneous chiral-symmetry breaking [2]-[4] [88].  

The scale parameter QCDΛ  is chosen to reproduce chiral properties for quarks in the SD formalism with the 
Higashijima-Miransky approximation in the Landau gauge, while the ordinary QCD scale parameter is around 

QCD ~ 200 - 300 MeVΛ . The self-energy leads to the pion decay constant with the Pagels-Stokar approximation 
[89]:  

( )
( )

( ) ( )
3 2

2 2 2
2 20 2 2 2

dd ,
4 d2π

E q Ec E
E q E q E

EE q E

k kN kf k k k
kk k

π
∞ Σ  

= Σ − Σ 
   + Σ 

∫                 (8) 

and the (unrenormalized) chiral condensate:  

( )
( )

UV

UV

3 2

2 2 2 20
d .

2π
E q Ec

E
E q E

k kNqq k
k k

Λ

Λ

Σ
= −

+ Σ∫                           (9) 

Since the pion decay constant is a physical value, its renormalization is not required and it does not depend on 
the ultraviolet cutoff UVΛ . Hence, the upper limit of the integration has been taken as UVΛ →∞ . On the other 
hand, the chiral condensate depends on the renormalization point. We adopt a standard renormalization point  

2 GeVµ =  [1], and consider the chiral condensate 
2 GeVqq

µ=
 according to the renormalization-group 

formula [73] [74] [77]:  

( )
( )

( )2
2

0

UV

3
2 16π

2 GeV 2
,

cC N

s

s

qq qq
β

µ

α

α µ= Λ

 Λ
 =
 
 

                        (10) 

with 
( )2
2

0

3
4 9

16π
cC N

β
=  and 0 2

11 2
48π
c fN N

β
−

=  corresponding to the lowest coefficient of the β  function of 

the renormalization group. Taking the scale parameter QCDΛ  as 500 MeV and the ultraviolet cutoff UVΛ  as 5 

GeV, the pion decay constant and the chiral condensate are fixed as 90 MeVfπ   and 1 3

2 GeV 242 MeVqq
µ=

− 
,  

respectively. We have numerically checked that they are stable against the variation of the ultraviolet cutoff 
UVΛ . The SD formalism with the approximations in the Landau gauge reproduces these chiral properties well. 

3. The Schwinger-Dyson Equation for the Scalar Diquark  
In this section, we investigate the scalar diquark, i.e., an extended colored scalar object, and its mass generation, 
using the Schwinger-Dyson (SD) formalism. 

Diquark is a bound-state-like object of two quarks and decomposed into color anti-triplet c3  and sextet c6  
and flavor anti-triplet f3  and sextet f6  in SU(3) flavor case. The most attractive channel for diquark is the 

color and flavor anti-triplet ,c f3  and spin singlet with even parity 0+  by one gluon exchange [16] [17] and by 
instanton interactions [90] [91], which is called scalar diquark. If the diquark correlation is developed in a 
hadron such as a heavy baryon ( Qqq ), this scalar diquark channel would be favored. We consider the scalar  
diquark as an effective degree of freedom with a peculiar size, assuming it to be an extended scalar field ( )xφ  
[10] [42] like a meson in the effective hadron models. The scalar diquark is composed of two quarks with the 
gluonic interaction, and still affected by non-perturbative gluonic effects since it has non-zero color charge as 
shown Figure 4. The dynamics of the scalar diquark field φ  is expected to be described by the gauge-invariant 
scalar-QCD-type Lagrangian:  

( ) ( )† 2a b
a bigA T igA T mµ µ

µ µ φφ φ   = ∂ + ∂ + −    † ,φ φ                       (11) 

where the bare diquark mass mφ  and the gauge field aAµ  (gluon) with the generator aT  have been introduc- 
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(a)                                     (b) 

Figure 4. The two types of gluonic interaction for a diquark: (a) inter-two-quarks gluonic interaction 
to form a diquark and (b) gluonic dressing for the diquark due to its non-zero color charge. The single 
line denotes a quark, the double line a diquark and the curly line a gluon.                            

 
ed. We note that the scalar diquark has the 4-point interaction term of 2 2Aφ  type, which is different from the 
quark. In general, such gauged scalar fields accompany the 4-point interaction [79] [82]-[84] [92].  

Since the diquark is a bound-state-like object confined in a hadron, it must have an effective size and its size 
should be smaller than the hadron. In order to include the size effect of diquark, we introduce a simple “form 
factor” in the four-dimensional Euclidean space as  

( )
2

2
2 2 ,E
E

f p
p

ν

Λ

 Λ
=  + Λ 

                                (12) 

where the momentum cutoff Λ  corresponds to the inverse of the diquark size R. In this paper, we set 1R −≡ Λ . 
Since the radiative correction for the scalar particle is generally large, this form factor has also a role of the 
convergence factor. As for the form factor ( )2

Ef pΛ , it has the roles of introducing an effective size and 

convergence of the SD equation, so one can use arbitrary function such as the step function ( )2 2
Epθ Λ − , the 

exponential function ( )2 2exp Ep− Λ  and so on. In this study, we take Equation (12) with 2ν =  to simple 
analysis and the convergence of the SD equation. The size effect of the diquark can be included in the vertex as 

( ) ( ) ( )2 2 2
s sp p f pα α Λ→ . 

While the scalar QCD Lagrangian (11) is renormalizable, this theory is an effective cutoff theory with an UV 
cutoff parameter Λ , which corresponds to the inverse size of the scalar diquark. Here, the scalar diquark cannot 
be observed as an isolated object, and has no characteristic symmetry, such as the chiral symmetry, so that it is 
difficult to set the renormalization condition. Instead, we introduce an effective size 1R −= Λ  of the diquark, 
which leads to a natural UV cutoff in the theory. As we will see later, the effective size of diquark will play an 
important role for the convergent of loop integrations, and therefore we will not take the limit of Λ →∞  
( 0R → ). In fact, the extended diquark is treated as the effective degrees of freedom appearing in the QCD 
system of quarks and gluons, and hence, also for the scalar diquark, we basically use the same framework as the  
single quark case, presented in the previous section. For instance, we will use the same running coupling ( )2

s Epα  in 
Equation (6) for the argument of diquarks. 

We now describe the SD equation for the scalar diquark, as shown in Figure 5. For the self-energy diagram, 
we include the first order of the coupling sα  at the one-loop level, like the improved ladder QCD [3] [4] [73] 
[74]. Note however that, due to the iterative calculation, this formalism includes infinite order of the coupling 

sα  and describes non-perturbative effects. It is also notable that the same form of the running coupling for the 
quark/gluon coupling can be used even for the scalar diquark/gluon [93] [94]. (In particular, in the heavy mass 
limit of colored particles, the QCD interaction depends only on their color.) Since the scalar diquark corresponds 
to an antiquark in terms of the color representation, we may use the same form of the running coupling even for 
the scalar diquark case. Then, the SD equation for the scalar diquark is diagrammatically expressed as Figure 5 
and is written by  

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )
( )

( )
( )

UV

UV

2 2
22 2 2 4

3 20

2 2 22 2
2 4

3 42 2 20

3
d

2π

d .
π

s E E
E E

E

s E E E E E E E E
E

E E E E

k f kC
p m k

k

p k f p kC p k p k
k

k k p k

φ

α

α

Λ Λ

ΛΛ

Σ = +

− − − ⋅
−

+ Σ −

∫

∫

3

3
           (13) 
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Figure 5. The Schwinger-Dyson equation for the scalar diquark. The shaded blob is the self-energy ( )2pΣ , 

the dashed line denotes the scalar diquark propagator and the curly line the gluon propagator. The last term 
arisig from 4-point interaction is the peculiar term in gauged scalar theories, and it does not appear in the 
single quark case in QCD.                                                                         

 
In the right-hand side of Equation (13), the second term arises from the 4-point vertex and the third term is 

lead from the 3-point vertex, as shown in Figure 5. Here, we do not consider the wave functional renor- 
malization, as is often assumed for the quark field in the Landau gauge. Similarly in the single quark case, we 
adopt the Higashijima-Miransky approximation ( )( ) ( )( )2 2 2max ,s E E s E Ep k p kα α− ≈  for the 3-point vertex, 

and finally obtain the SD equation for the self-energy ( )2 2
EpΣ  of the scalar diquark:  

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

UV

UV

2 2 5
2 2 2 2 2

2 2 2 20 0

2 22

2 2 2

24 d d
π π

2 d .
π

E

E

ps E E E
E E E s E E E

E E E

s E E EE
Ep

E E

p f p kp m k k k f k k
p k k

k f k kp k
k k

φ

α
α

α

Λ Λ
Λ

Λ Λ

Σ = + −
+ Σ

−
+ Σ

∫ ∫

∫

        (14) 

4. Numerical Results and Discussion 
4.1. The Parameter Setting  
The bare mass mφ  and cutoff Λ  (inverse of the size R) are free parameters of the diquark theory. In this 
subsection, we consider the possible range of these parameters from the physical viewpoint. 

The diquark is originally made of two consistent quarks, and the color-Coulomb interaction is one of the main 
attractive forces. We here estimate the color-Coulomb interaction between the two massive quarks from the  
three-quark (3Q) potential [99], or generally from the mult-quark potential such as 4Q( QQQQ ) and 5Q( 4QQ ) 
potentials [100]. In SU(3) lattice QCD, the 3Q potential among the three quarks located at ( )1, 2,3ir i =  is well 
reproduced by  

3Q
3Q min ,

i j i j

A
V Lσ

<

= − +
−

∑ r r
                                 (15) 

with the color-Coulomb coefficient ( )3Q QQ 2 0.12 1A A  , the string tension 0.89 GeV fmσ   and the 

minimal flux-tube length minL  [99]. Since the color-Coulomb potential energy between two quarks is 3QA R  
for the inter-quark distance R, the potential energy is estimated as 3Q 24 - 80 MeVA R   for the typical range 
of 0.3 -1 fmR = , and its value is not so large in comparison with the two-quark mass of about 600 MeV. [Note 
also that similar estimation also leads to a small value of the diquark-diquark interaction, which gives a reason 

of the absence of ( )2†φ φ  in the diquark Lagrangian (11).] The same result can be obtained from the 
multi-quark potential [100], because the color-Coulomb coefficient is the same for two quarks in the diquark, 
i.e., ( )Q QQ 2 0.12 1nA A   for n = 3, 4, 5. Therefore, the bare mass of diquark is expected to be simply 
considered as the twice of the quark mass. 

In this paper, we consider two cases of the bare diquark mass. One is twice of constituent quark mass, i.e., 
600 MeVmφ = . The other is twice of the running quark self-energy, i.e., ( ) ( )2 22E q Em p pφ = Σ , where ( )2

q EpΣ   

is determined by the SD equation for single quark Equation (7). This means that the diquark is constructed by 
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the two dressing quarks. The constant bare mass case is based on the constituent quark model like picture and 
the running bare mass case is the SD formalism with omitting the effect of the gluonic attraction force between 
two quarks. The diquark should be dressed by gluon furthermore because of its non-zero color charge. 

The cutoff Λ  corresponds to the diquark size in a hadron, R, i.e., 1R−Λ ≡ , so the diquark should be smaller 
than the hadron. We also consider two cases of the size. One is the typical size of a baryon, 1 fmR = , i.e., 

200 MeVΛ = , which gives the upper limit of the size (the lower limit of the cutoff). The diquark covers the 
baryon in this case. The second is the typical size of a constituent quark, 0.3 fmR  , i.e., 600 MeVΛ = , 
which gives the lower limit of the size (the upper limit of the cutoff). 

4.2. The Constant Bare Mass Case 

We first show in Figure 6 the case of the constant bare mass 600 MeVmφ =  with dependence on the cutoff 

Λ . The diquark self-energy ( )2pΣ  is always larger than the bare mass mφ  and almost constant except for a 
small bump structure in an infrared region. The value of the self-energy is strongly depends on the cutoff Λ , 
e.g., the “compact diquark” with 0.3 fmR   has a large mass.  

The scalar QCD includes both 3-point and 4-point interactions, and the existence of 4-point interaction is 
diagrammatically different from the ordinary QCD. To see the role of each interaction, we consider the 
calculation of the artificial removal of 3-point interaction and 4-point interaction, respectively. In fact, we 
investigate the two cases: (a) removal of 4-point interaction and (b) removal of 3-point interaction. The result is 
shown in Figure 7 in the case of 200 MeVΛ = . The bump structure appears in the case without the 4-point 
interaction term as shown in Figure 7(a). Although the diagrammatic expression of the SD equation for the scalar  

 

 
(a)                                            (b) 

Figure 6. The scalar diquark self-energy ( )2pΣ  as a function of the momentum p in the constant bare mass case of 

600 MeVmφ =  with (a) 200 MeVΛ = , i.e., 1 fmR =  and (b) 600 MeVΛ = , i.e., 0.3 fmR  . In both cases, there 

appears a small bump structure, which is displayed in the small window. In the left figure, the original bare mass mφ  is 
plotted for comparison.                                                                                    

 

 
(a)                                            (b) 

Figure 7. The self-energy ( )2pΣ  in the case of (a) without 4-point interaction and (b) without 3-point interaction as the 

function of the momentum p. Here, 200 MeVΛ =  is taken. In the right figure, the original bare mass mφ  is plotted for 
comparison.                                                                                             
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diquark without 4-point interaction term is analogous to the quark SD equation, the behavior is completely  
different from the quark case. The diquark self-energy ( )2

EpΣ  starts from the bare mass 600 MeVmφ =  at zero 
momentum, then decreases at low momentum and rises up to the original value 600 MeV. On the other hand, the 
quark self-energy ( )2

q EpΣ  starts from a large value and goes to zero monotonously with the momentum. The  

SD equation without 3-point interaction just rises the self-energy and keeps constant. The strong dependence of 
the cutoff Λ  (or the size R) mainly comes from the 4-point interaction term.  

4.3. The Running Bare Mass Case  

We show in Figure 8 the case of the running bare mass ( ) ( )2 22E q Em p pφ = Σ  with dependence on the cutoff 

Λ . The diquark self-energy ( )2
EpΣ  also strongly depends on the cutoff Λ . In the low-momentum region, the 

behavior of ( )2
EpΣ  reflects the running property of the bare mass, especially in the 200 MeVΛ =  case, the 

gluonic effect seems to be small, because of ( ) ( )2 22E q Ep pΣ ≈ Σ . In the high-momentum region, the diquark 

self-energy keeps a large value, while the bare mass ( )2
Em pφ  goes to zero. This suggests the mass generation 

of the scalar diquark by gluonic radiative correction.  

4.4. Discussion on the Scalar Diquark Property  
In this subsection, we discuss the mass and the size of the scalar diquark, with comparing to the chiral quark. 
One of the most important properties of single quark SD equation (7) is the existence of the trivial solution 

0qΣ =  in the chiral limit 0qm → . In fact, the quark mass remains to be zero due to the chiral symmetry in the 
perturbative treatment, and the quark mass generation, i.e., chiral symmetry breaking, is realized by the 
non-perturbative gluonic interaction [3] [4]. Such arguments can be done even in the limit of UVΛ →∞ , which 
is consistent with the point quark as an elementary particle. 

On the other hand, the SD equation (13) for scalar diquark has no trivial solution and is a highly non-linear 
equation, even in the zero bare mass limit 0mφ → . For example, the 4-point interaction term gives a strong 
dependence of the UV cutoff Λ . This is similar to the framework of GUT, where the Higgs scalar field suffers 
from a large radiative correction of the GUT energy scale. 

Actually, the scalar diquark self-energy ( )2pΣ  strongly depends on the diquark size 1R −≡ Λ  in both cases 
of the bare mass. In an extreme case of the point-like limit 0R → , i.e., Λ →∞ , the diquark effective mass 
diverges. This suggests that the simple treatment of point-like diquarks is somehow dangerous in hadron models 
and the diquark must have an effective size. 

As a quantitative argument, our calculations show that the “compact diquark” with 0.3 fmR   has a large 
effective mass in both cases, and does not seem to be acceptable in effective models for hadrons. In fact, the 
appropriate diquark is not so compact as 0.3 fmR   but is fairly extended as ~ 1 fmR . 

 

 
(a)                                           (b) 

Figure 8. The scalar diquark self-energy ( )2pΣ  as a function of the momentum p in the running bare mass case with (a) 

200 MeVΛ =  ( 1 fmR = ) and (b) 600 MeVΛ =  ( 0.3 fmR  ). The bare mass ( ) ( )2 qm p pφ = Σ  is also plotted with the 
dotted line for comparison.                                                                                   
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4.5. Mass Generation for Colored Scalar Particle 

Finally, we consider the zero bare-mass case of diquark, 0mφ ≡ . Even for a finite mass of quark, the bare mass 
of diquark can be zero, if the attraction between two quarks extremely strong. The result is shown in Figure 9 
for the two cases: (a) 200 MeVΛ =  and (b) 600 MeVΛ =  on the cutoff. The self-energy ( )2

EpΣ  is always  

finite and takes a large value even for 0mφ ≡ . The mass generation mechanism in QCD is usually considered in 
the context of spontaneous chiral-symmetry breaking. On the other hand, our scalar diquark theory is composed  
of an effective scalar diquark field ( )xφ  and does not have the chiral symmetry explicitly, although the  
original diquark is constructed by two chiral quarks. Nevertheless, the effective mass of diquark emerges by the 
non-perturbative gluonic effect. In fact, the mechanism of dynamical mass generation seems to work in the  
scalar diquark theory, even without chiral symmetry breaking. If we take 1 GeVΛ = , the diquark self-energy is 

~ 950 MeVΣ . This result seems to be consistent with the lattice QCD result on the colored scalar particle [10]. 

5. Conclusion and Discussion  
We have studied various mass generation of colored particles and gluonic dressing effect in a non-perturbative 
manner, using the Schwinger-Dyson (SD) formalism in QCD. First, we have briefly reviewed dynamical 
quark-mass generation in QCD in the SD approach as a typical fermion-mass generation via spontaneous 
chiral-symmetry breaking. Second, using the SD formalism for scalar QCD, we have investigated the scalar 
diquark, a bound-state-like object of two quarks, and its mass generation, which is clearly non-chiral-origin. 
Considering the possible size of the diquark inside a hadron, the effect of diquark size R is introduced as a cutoff  
parameter 1R−Λ =  in the form factor, as is used in effective theories. 

The basic technology of scalar SD formalism is imported from the single quark case, such as the running 
coupling, the approximations and so on. Since the diquark is located in and construct of a hadron, the size 
should be smaller than the hadron ( ~ 1 fmR ) and larger than the constituent quark ( ~ 0.3 fmR ). The size 
(cutoff) dependence of self-energy have been investigated. We have considered the two cases of the constant  
bare mass 600 MeVmφ =  and the running bare mass ( ) ( )2 22E q Em p pφ = Σ . The diquark self-energy strongly 

depends on the size 1R −= Λ  in both cases, especially the small diquark ( 0.3 fmR  ) has a large effective 
mass by the gluonic dressing effect. 

We find that the effective diquark mass is finite and large even for the zero bare-mass case, and the value 
strongly depends on the size R, which is an example of dynamical mass generation by the gluonic effect, without 
chiral symmetry breaking. The mass difference between current and constituent charm quark mass and the large 
glueball mass are also examples of this type of mass generation. In this sense, spontaneous chiral-symmetry 
breaking may be a special case of massless (or small mass) fermion. As was conjectured in Ref. [10], it would 
be a general property of strong interacting theory that all colored particles acquire a large effective mass by the 
dressing effect, as shown in Figure 10.  

 

 
(a)                                                (b) 

Figure 9. The scalar diquark self-energy ( )2pΣ  as a function of the momentum p in the massless case of 0mφ = : (a) 

200 MeVΛ =  ( 1 fmR = ) and (b) 600 MeVΛ =  ( 0.3 fmR  ). The self-energy ( )2pΣ  is finite in both cases.                    
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Figure 10. The schematic picture for dynamical mass generation of the colored particle. The colored particle 
(solid line) interacting with the gluons (curly line). The effective mass emerges by the non-perturbative 
interaction even without the chiral symmetry.                                                           

 
In this study, we have mainly investigated the diquark properties, and have not calculated physical quantities. 

It is however desired to describe the color-singlet states such as heavy baryon Qqq  based on the scalar theory. 
One of description of diquark based on QCD is the Bethe-Salpeter (BS) formalism for two quarks [95]-[98]. 
However, the treatment of the scalar diquark as an explicit degree of freedom ( )xφ  is a good approximation 
for the structure of the heavy baryons. The constituent scalar-quark(diquark)/quark picture in the scalar lattice 
QCD [10] and the structure of hΛ  ( , ,h s c b=  quarks) with explicit diquark degree of freedom using QCD 
sum rule [42] have been discussed. The description of the heavy baryon as heavy quark/diquark ( Qφ ) using the 
BS equation will be investigated as our future work. 

The tetra-quark states qqqq  may include diquark/antidiquark components. Although the two mesons 
molecular states may dominate in the tetra-quark due to the strong correlation between quark and antiquark, the 
diquark/antidiquark would be also important components [21]-[25]. The tetra-quark states would be described as 
the linear combination of two mesons and diquark/antidiquark states based on the BS formalism. The structure 
of sigma meson (light scalar mesons) is also applicable subject. The sigma meson is considered as a chiral 
partner of the pion in the context of the chiral symmetry, which structure is quark/antiquark bound state. The 
possibility of the light scalar mesons as four-quark states have been discussed [20] [23]-[35]. The structure of 
the sigma meson (light scalar mesons) can be described as the linear combination of quark/antiquark, 
diquark/antidiquark and two mesons in the context of the BS formalism. 
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Abstract 
The observation of an electroscalar signal during the eclipse of the Sun by the Moon in 2008 was a 
starting point for the development and creation of the electroscalar field theory. This observation 
shows that such radiation has a long wavelength, and is longitudinal and extremely penetrating. 
The properties of the electroscalar and electromagnetic dynamics of a massive charged particle 
have been studied. An analogy between the linear theory of elasticity and Maxwell electrodynam-
ics is made. The observed spectrum of radiation clarifying peculiar properties. Real sources of 
electroscalar radiation are determined. In accordance with the principle of least action, the La-
grangian of the electroscalar field and the field force acting on the particle are defined. The spec-
tral expansion of the electroscalar field allowed us to establish that the field is longitudinal and 
aligned with the wave vector. At the heart of the electroscalar theory, which is compliant with the 
experimental data, is the four-dimensional scalar potential that describes radial vibrations of the 
electroscalar field source. The four-vector Maxwell electromagnetic potential and four-scalar po-
tential neither form a single object in the Minkowski space nor interfere and, as a consequence, 
prove to be independent and unrelated differential relations. Moreover, a strong correlation be-
tween the spatial position of the particle and the field components allows and demonstrates a new 
degree of freedom in the electrodynamics of charged particles. 

 
Keywords 
Four-Scalar Potential of Electroscalar Field, Solar Electroscalar Field, Transport of Coulomb Field 

 
 

1. Introduction 
Registration of electroscalar radiation was made with a system of spherical electro-sensors (four copper spheres) 
placed in a metallic box during an eclipse of the Sun by the Moon which took place on 1 August 2008. The 
centers of the four spheres were connected to each other with a copper wire [1]. Data taking was done by an 
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amplitude-digital analyser. In the proposed theory, physical fields are of two types: vortex electric and magnetic 
as well as potential electric and three-scalar [2] [3]. The fields of the first type can propagate in vacuum as 
transverse electromagnetic waves, and the fields of the second type as longitudinal electroscalar waves where 
the electric field vector vibrates along the propagation direction. It is precisely the longitudinal electroscalar 
mode that performs relativistic transport of the Coulomb field which is absent in the classical Maxwell theory. 
The absence of wave transport of the Coulomb field brings about certain obstacles in the canonical quantization 
of the Maxwell theory [4]-[9] and the violation of the causality principle. In frames of the vector formalism the 
presence of the longitudinal wave mode leads to the loss of gauge invariance in the theory and to the observabi- 
lity of electrodynamic potentials [10]-[14]. The loss of gauge invariance, in its turn, entails problems related to 
electric charge conservation. An analogy between the theory of elasticity and electrodynamics is made. The 
longitudinal electroscalar mode in the proposed theory is a consequence of continuum compressibility, while the 
Maxwell theory describes the wave dynamics of absolutely incompressible continuum. The electroscalar 
radiation has a long wavelength, is extremely penetrating, and propagates as a plane wave. In the electroscalar 
field, the particle energy assumes a negative value to the mechanical energy of the particle. The equation of the 
electromagnetic field contains displacement current, and the electroscalar field contains displacement charge. 
The electroscalar field has an ability to convey energy and information in any medium. Constructively, this 
hypothesis is expressed through the introduction of a four-scalar potential along with the four-vector one. These 
two four-dimensional fields are not connected with each other by any differential or any other correlations. The 
above circumstance permits to preserve gauge invariance for transverse fields and avoid difficulties pertaining to 
the law of electric charge conservation. The experimental proofs of the longitudinal electroscalar mode contain 
evidence for its presence [15]-[17].  

2. An Analogy with the Theory of Elasticity  
It should be pointed out that the elastic continuum supports propagation of both longitudinal and transverse 
waves; therefore, an analogy with the elasticity theory will give us a constructive indication of how the 
equations of generalized electrodynamics should look like. The basic equation of the linear elasticity theory is 
the Love equation which takes the following form in the absence of any outside forces [18] [19]: 

2 2div 0,l tc c− + ∇ − =u u rotrotu  

where the vector u  represents the vector of displacements in an elastic medium; lc  and tc  are the velocities 
of propagation of the longitudinal and transverse waves, correspondingly. The displacement vector is the main 
variable in the linear elasticity theory although not directly observable. Physically observable quantities in this  
theory are first-order derivatives of u , i.e. u  is the velocity of elastic displacements and div 2ij ijuσ χ µ= +u  

is the stress tensor, where χ  and µ  are the elastic constants of the medium and ( )1 2ij i j j iu u x u x= ∂ ∂ + ∂ ∂  
is the elastic deformation tensor. With these variables the Love equation looks as follows: 

2

2 0,i ik

k

u
xt
σ∂ ∂

− + =
∂∂

 

but here the wave processes are not arranged into transverse and longitudinal elastic waves. In order to separate 
the wave processes explicitly, the following designations are introduced [20]:  

, , W div ,t lc c= − = =E u H rotu u                            (1) 

In this case, the Love equation takes the form: 

W 0.l tc c+ ∇ − =E rotH  

Now, let us apply the rotor and divergence operations to the vector E : 
1 ,

tc
= − = − 

rotE rotu H  

1div div W.
lc

= − = − 

E u  
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Thus, the following system of equations can be obtained from the Love equation for the introduced field 
denotations: 

0,l tc W c+ ∇ − =E rotH


 

                                   (2) 

1 0,

1 W div 0,

div 0,

t

l

c

c

+ =

+ =

=





H rotE

E

H

                                    (3) 

which, in the event of W div 0lc= =u  corresponding to the incompressible elastic continuum, coincides with 
the system of Maxwell equations in vacuum: 

0,tc− =E rotH                                     (4) 

1 0.
tc

+ =H rotE                                     (5) 

If the continuous medium does not support rotating motion, for which 0=rotu  (e.g. liquid or gas), then 
compressible system takes the form: 

W 0,lc+ ∇ =E                                    (6) 

1 W div 0.
lc

+ = E                                    (7) 

This system describes the propagation of longitudinal waves in a continuous medium. Because the transverse 
and longitudinal waves propagate in the elastic continuum with different velocities, tc  for the transverse and 

lc  for the longitudinal waves, the fields ⊥E  and ||E  can be deemed as independent. Eventually, the follow- 
ing field definitions are introduced: 

||

1 ,

1, W ,

c t

c t

ϕ

λλ

⊥
∂

= −∇ − =
∂

∂
= ∇ = −

∂

AE H rotA

E

                             (8) 

where ϕ  and A  are the time and space parts of the electromagnetic four-potential. It should be noted that by 
their definitions the fields ||E  and W  are the components of a four-vector in the Minkowski space-time. 
Definitions (8) permit to obtain from Equations (5) and (7) two systems of equations, one for the fields ⊥E  and 
H  

1 0,

1 0,

div 0,

c t

c t

⊥

⊥

∂
− + =

∂

∂
+ =

∂

=

E rotH

H rotE

H

                                 (9) 

and another for the fields ||E  and W : 

||

||

||

1 W 0,

1 W div 0,

0.

c t

c t

∂
+ ∇ =

∂

∂
+ =

∂

=

E

E

rotE

                                 (10) 
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In that event, system (9) describes the propagation of strictly transverse waves, and system (10), of longitu- 
dinal waves. Now, let us consider the solution of this system in the form of plane waves ( )|| 0 exp i tω= +  E E kr , 

( )0W W exp i tω= +  kr , where 0E  and 0W  are the amplitudes, and k  is the wave vector which deter- 
mines the direction of propagation of a wave with the frequency ω . Then, from ( 10) the following is obtained: 

( )0 0 0 0 0W 0, W 0, 0,
c c
ω ω

+ = + = × =E k kE k E  

i.e. the vector of the electric field vibrates along the direction of wave propagation. The dispersion relation for 
this wave has the form kcω = . 

3. Sources of the Electroscalar Wavefield 
The electroscalar field is produced by the time-dependent, inhomogeneous density of an electric charge or part 
of the transfer current density with non-zero divergence. This source can be well illustrated by the radial 
oscillations of electron gas in a spherically symmetric metallic particle. 

In Figure 1, the arrows correspond to the radial currents in the electron gas (electron convection current); the 
left part reflects the process of expansion of the electron gas, while the right part demonstrates compression. Due 
to the spherical symmetry, the magnetic field of the fluctuating radial transfer current equals zero; therefore, the 
electromagnetic flux is absent. Thus, the radiation losses in this system may be realized at the expense of the 
longitudinal electroscalar wave radiation. Let us consider the radial motions in the electron gas which are 
excited by light in a metallic nanoparticle. Here radial motions are such macroscopic motions of the electron gas 
for which divergence of the transfer current is non-zero and the electron density determines the drift velocity. 
An example of radial motions in conductive media are plasmons which, from the macroscopic viewpoint, 
present a collective wave process, i.e. compression and expansion waves in the electron gas which are accom-  
panied by the irrotational vector potential A ( )0H rotA= = . The electroscalar waves can be also produced as 
electrically charged particles slow down in matter (braking electroscalar radiation). The scheme of such a source 
is given in the following Figure 2. 

 

 
Figure 1. Radial currents in a spherical particle.                         

 

 
Figure 2. A source of braking electroscalar radiation.                    
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In the case we consider, the charged particles of a pulsed beam (a high-current electron beam or focused ion 
beam) stopping in metallic foil 1 serve as a source of braking electromagnetic and electroscalar radiation. The 
electromagnetic radiation is absorbed by foil 2 (the thickness of foil 2 must exceed the respective thickness of 
the skin-layer for the braking electromagnetic radiation), and the electroscalar radiation can be registered, due to 
its greater penetrating power, behind foil 2 in which partial absorption of the electroscalar waves will certainly 
occur. 

4. The Scalar Field in Presence of Charges and Currents 
Let us consider the interaction of fields with charges and currents supposing that the time component of the 
four-potential 0A ϕ=  equals zero, and the three-vector A  satisfies the Coulomb condition div 0=A . Then, 
the Maxwell electric field becomes a vortex one:  

1 0,1,2,3.i
i i

c t
⊥

⊥

∂
= − =

∂
A

E  

The vacuum equations for the potentials are: 
2

2 2

2

2 2

1 0,

1 0.

c t

c t
λ λ

∂
− + ∆ =

∂

∂
− + ∆ =

∂

A A
                                  (11) 

In order to derive potential equations for the case with presence of charges, the Lagrangian formalism will be 
used. Three-dimensional Lagrangians corresponding to (11) have the form: 

( )
22 2

2

22 2
|| 2

1 1 1 ,
8π 8π 8π

W 1 1 1 ( ) .
8π 8π 8π

EH

EW

L
c t

L
c t

λ λ

⊥ − ∂ = = − ∂ 

− ∂ = = − ∇ ∂ 

E H A rotA

E
                         (12) 

If we introduce the interactions ( ) cAj  for EHL  and ρλ  for EWL : 

( )
22 2

21 1 1 1 ,
8π 8π 8πEHL

c t c
⊥ − ∂ = = − + ∂ 

E H A rotA Aj  

( )
22 2

2||W 1 1 1 ,
8π 8π 8πEWL

c t
λ λ ρλ

− ∂ = = − ∇ + ∂ 

E
 

then system (11) takes the form: 
2

2 2
1 4π ,

cc t
∂

− + ∆ = −
∂

A A j                                 (13) 

2

2 2
1 4π ,
c t

λ λ ρ∂
− + ∆ = −

∂
                                 (14) 

where ρ  and j  are the charge and current densities. Since the vector potential A  satisfies the Coulomb 
condition, only the vortex part of the transport current will be included, i.e. div 0=j . Thus, the continuity 
equation 

div 0
t
ρ∂
+ =

∂
j                                      (15) 

does not impose any constraints on the potentials A  and λ . Substitution in (9) of the definitions of the fields 
(8) gives: 



O. A. Zaimidoroga 
 

 
811 

1 4π ,

1 0,

div 0,

c t c

c t

⊥

⊥

∂
− + =

∂

∂
+ =

∂

=

E rotH j

H rotE

H

                                 (16) 

and  

||

||

||

1 W 0,

1 W div 4π ,

0.

c t

c t
ρ

∂
+∇ =

∂

∂
+ = −

∂

=

E

E

rotE

                                 (17) 

It is seen from the above equation that the electrostatics equation, ||div 4πρ= −E , follows from system (17) 
and the magnetostatics equation, 4π c=rotH j , from (16). These two systems of Equations (16) and (17) can 
be rewritten in the form of wave equations for the fields: 

2

2 2 2

2

2 2 2

1 4π , div 0,

1 4π , div 0;

tc t c

c t c

⊥
⊥ ⊥

⊥

∂ ∂
− + ∆ = =

∂∂

∂
− + ∆ = − =

∂

E jE E

H H rotj H

                        (18) 

and 
2

||
|| ||2 2

1 4π , 0,
c t

ρ
∂

− + ∆ = − ∇ =
∂

E
E rotE                         (19) 

2

2 2
1 W 4πW .

c tc t
ρ∂ ∂

− + ∆ =
∂∂

                               (20) 

The identity div∆ ≡ − +∇rotrot  was used while deriving these equations. It is seen from these equations  
that the time-varying current with a rotor different from zero is the source of transverse waves, while the time- 
dependent non-uniform charge density serves as the source of longitudinal waves. Here, taking into account 
continuity Equation (15) the later Equation (19) can be presented in the form: 

2

2 2
1 W 4πW div .

cc t
∂

− + ∆ = −
∂

j  

It is obvious from (17) and (19) that longitudinal electroscalar waves respond to the transport of the Coulomb 
field. 

The energy conservation laws for (16) and (17) have the form: 

( )d d d ,EH EHV V
t

σ ⊥
∂

+ = −
∂ ∫ ∫ ∫

 s jE                            (21) 

( )d d W d ,EW EWV c V
t

σ ρ∂
+ = −

∂ ∫ ∫ ∫

 s                            (22) 

where EW  and EWs  are the energy density and the flow vector of the electroscalar field, respectively. The 
electromagnetic energy density EH  and the flux vector EHs  have the form: 

2 2
||

||

W
, W,

8π 4πEW EW
c+

= =
E

s E                             (23) 
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[ ]
2

, .
8π 4πEH EH

c⊥
⊥

+
= = ×

E H s E H  

The quantities on the right sides of 21 and (22) determine the energy dissipation of the fields per unit time as 
they interact with charges and currents. Of particular interest is the integrand Wρ  in the right side of (22). 
Using the definition ( )W ctλ= −∂ ∂  and continuity Equation (15) this expression can be brought to the 
following form: 

1 1 1 1 1 1W div .
c t t c c t t c c c

λ ρρ ρ λρ λ λρ λ λ∂ ∂ ∂ ∂     = − = − + = − − + ∇     ∂ ∂ ∂ ∂     
j j              (24) 

Owing to the field definition || λ= ∇E , (22) can be represented as: 

( ) ( ) ( )||d d d .EW EWV V
t

ρλ λ σ∂
− + − = −

∂ ∫ ∫ ∫

 s j jE                     (25) 

The first integral is the total energy of the system of fields ||E  and W  interacting with charges. The 
summand λ j  is added to the surface integral and can be interpreted as energy transfer at the expense of the 
motion of charges. Now, taking into account that ρ=j v , one obtains ( ) .λ ρλ=j v  In other words, the total  
flux consists of two components. The first one is responsible for the energy transfer by means of electroscalar 
radiation and the other, for the (mechanical) reemission of charges from the area limited by the integration 
surface. 

5. The Continuity Equation of the Electroscalar Field 
The equation of continuity determines the variation in the quantity of charges in a volume per unit time both 
leaving and entering this volume through the surface that limits such volume during the propagation of the 
electroscalar field. From the equation for the electroscalar field it follows that: 

|| ||
1 Wdiv 4π .
c t

ρ ∂
= − −

∂
E  

The electroscalar field is determined both by charged particles and variation of the scalar charge in time: 

|| || 0
1 1 ,

4π c
ρ ρ= +  

where 0
W
t

ρ∂
=

∂
 is the charge displacement owing to: 

|| ||div 4π .= − E  

It should be noted that the displacement of scalar charge has a wave nature and, therefore, this term should be 
averaged in time. Thus, the total number of charges in a volume which pass through the surface S limiting such 
volume is || dv S : 

( )|| || 0d 4π d .
b

a S

V v v S
t

ρ ρ∂
= − +

∂ ∫ ∫  

Further, using the generalized Gauss theorem the continuity equation of the electroscalar field acquires the 
form: 

( )||d 4πdivj divy d ,
b b

a a

V V
t
∂

= − +
∂ ∫ ∫  

where the second term is the wave component at the expense of charge displacement. Finally: 

|| 4πdivj divy.
t

∂
= − −

∂

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Note that in the absence of charged currents in vacuum the scalar term (of charge displacement) does not 
vanish and allows the electroscalar waves to travel in vacuum due to the reproduction of the charges and their 
fields during the propagation. 

6. The Superposition Principle of the Electroscalar Field 
The longitudinality of the wave imposes certain requirements on the action of the field, particularly, on such a 
property of the field as the superposition principle. The equations for the electromagnetic field (Maxwell 
equations) contain only the equations for the full charge conservation (equations of continuity) but not the 
equations of motion for the field producing charges. In the case of the electromagnetic field, the distribution and 
motion of charges can be specified arbitrarily provided that the full charge is conserved. The character of the 
charges' distribution is determined then by solving the Maxwell equations using the field produced by the 
charges. As experience shows, the electromagnetic field obeys this principle which implies that if a charge 
produces a field, and another charge produces another field, then the total field is a result of superposition of 
these fields. Such a superposition principle will be referred to as the method of transverse summation of fields. 
The equations of motion of the electroscalar field contain not only the equations of continuity and full charge 
conservation, which cannot be determined arbitrarily. But the field itself and the charges' motion must be 
determined concurrently with the field of the produced charges’ field. The principle of superposition of the 
electroscalar field is longitudinal as summation of the fields’ charges occurs only for those located along the line 
between the charges. This means that the strengths of the resultant electroscalar fields at each point are equal to 
a sum of the strengths of all the longitudinal fields at this point. Any solution of equations for these fields is a 
field that can be realized in nature and, consequently, must obey the electroscalar field equations. In the 
electroscalar field the distribution of charges and their motion must be defined by solving field equations with 
given initial conditions for the longitudinal superposition of charges. Thus, while radiation is propagating, both 
the charges and their fields are reproduced in compliance with the electroscalar field laws, and the field 
potentials and strengths are enhanced due to the linear law of summation of the charges’ fields. We will now 
consider how an electroscalar wave propagates between two charges (for example, of electrons). In this case, the 
field's electrical component is responsible for the local deviation of the electron density from the equilibrium 
one, whereas compression of the electric vacuum takes place under the action of the field's scalar component. 
The passage of the electroscalar radiation through two charges leads to a standing wave with a knot at the charge. 
Further, the wave passes in this manner all the charges located along the line of its propagation. The increased 
amplitude of the charges’ density and field strength gives rise to a chain of compression and expansion waves up 
to the arrival at the target. The photo displays the structure of the compression and expansion zones in an 
electroscalar wave in the atmosphere [21] presents on Figure 3. 

 

 
Figure 3. Expansion and compression zones in the atmosphere.                                            
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7. An Observation of Solar Electroscalar Radiation 
The most favourable conditions for the registration of longitudinal electroscalar waves are realized during a 
solar eclipse. During the eclipse, the Moon shields most of the flux of the transverse electromagnetic solar 
waves, while the longitudinal electroscalar waves having a greater penetration power do reach the Earth's 
surface. The incident solar radiation may lead to self-excited radial oscillations of the valence electrons in matter 
which are, in their turn, a source of electroscalar radiation. With this in view, metallic spheres were used to 
register such radiation. The result of measurements is displayed in Figure 4. 

The horizontal axis shows the eclipse time with the start at 1p.m. on 1 August 2008. Along the vertical axis, 
the volt value of the detected signal is plotted. The results of measurements indicate the absence of transverse 
polarization of the incident solar radiation which passed through the Moon, the independence of the radiation 
amplitude from the position of the registration system outside or inside the copper box, as well as the large 
penetration ability of the electroscalar radiation (the thickness of the copper box walls was 5 mm). The maximal 
signal was registered at 2.38 p.m. and amounted to 1.04 DC volt. The peak obtained in the measurements 
apparently attests that in this experiment one more signal was detected in addition to the electroscalar one. This 
can be explained by the following: in the case of a purely electroscalar signal one can expect a dip in the curve 
instead of a peak because the dip in the curve should depend on the depth of absorption of the electroscalar 
waves by the Moon. The most reasonable explanation for the registered peak is that scalar gravitational waves 
were detected together with the electroscalar waves. This assumption is grounded on the fact that the tidal 
gravitational forces from the Moon and the Sun during a solar eclipse are summed together, with the resulting 
force reaching its maximum. So, it is the unified electroscalar and scalar-gravitational field that was detected in 
this experiment. If the hypothesis for the existence of a unified field is confirmed, new perspectives will open up 
for the measurement of gravitational effects. 

The above conclusion is substantiated by another example of using the unified electroscalar and scalar- 
gravitational interaction. The large amplification of the unified signal is expected during the regular motion of 
the Moon in its neomenia phase when the Moon is between the Earth and the Sun. Figure 5 shows the signal 
values versus the time of the New Moon. 

The amplitude of the signal was 0.45 volt and its duration was 10 - 13 hours. The motion of any body 
equipped with an electroscalar field detector will produce an electric signal due to the combined fields of the 
Sun and the Moon.  

The four copper spheres placed in a metallic screen were used to collect data on the solar radiation. The 
centers of the four spheres were connected to each other with a copper wire. The detector had a splitter for  

 

 
Figure 4. The detected signal from the sun.                                 
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Figure 5. The unified signal during the New Moon.                 

 
signals and a system of amplitude-digital analyzers. This detector was able to register only electroscalar ra- 
diation. The electroscalar radiation is produced by the structures of solar plasma providing a spectrum having a 
discrete character with a sign-alternating amplitude of order of 20 millivolt and a frequency (by Fourier) up to 
500 Hertz. The averaged value of the spectrum is negative and equals minus 2 - 5 millivolt, with a positive- 
amplitude signal coming on every millisecond and a negative-amplitude signal following after an interval. The 
frequency analysis of the spectrum shows that this radiation has a long wavelength and a practically constant 
amplitude. A single radiation signal has an exceedingly small value of raising time of electrical signal of front 
and drop of the order of fractions of a picosecond. 

The spectrum of the solar electroscalar radiation is shown in Figure 6. 

8. Spectral Expansion of the Electroscalar Field 
The electroscalar field produced by charges may be expanded into a Fourier integral. If we present the 
electroscalar field as a superposition of plane waves, then the “frequency” of these waves will have a zero value 
and this field will not be time dependent while the wave vectors will be distinct from zero. The potential of this 
field is determined using the equation: 

|| 0
1 14π .
4π c

λ ρ ρ ∆ = − + 
 

 

We will now expand the electroscalar field potential λ  into the Fourier space integral: 

( ) 3exp d .kikr kλ λ
+∞

−∞

= ∫  

We find next the Laplacian for the left-hand side: 

( )2 3exp d ,kk ikr kλ λ
+∞

−∞

∆ = − ∫  

and the Fourier k-component is: 2
k kkλ λ∆ = − . By defining the Fourier component from the right-hand side, we 

get: 

||2 0
2 3 .

2π 2πk k
c

ρ ρλ
 

∆ = − + 
 
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Figure 6. Spectrum of the solar electroscalar radiaton.                                

 
Then, we obtain by comparing both sides: 

|| 0
2 3 .

2π 2πk c
ρ ρλ = +  

Similarly to the field potential, the electroscalar field strength may be expanded as follows: 

( ) 3
|| exp d .kikr kλ

+∞

−∞

= ∇ ∫E  

We now insert kλ  and have: 

|| 0
|| 2 3 .

2π 2π
i

c
ρ ρ 

= + 
 

 

E k  

One may see from this expression that the electroscalar field is directed along the wave vector and its waves 
are longitudinal. 

9. The Degree of Freedom of a Charged Particle 
A peculiarity of the electrodynamics of electromagnetic and electroscalar fields is that the different 
characteristics are caused by changing in the behavior of a heavy charged particle. Due to this a strong 
correlation between the spatial position of the particle and the electric components of the fields can be possible 
[22]. It is known that the function of Lagrange remains invariant when the total derivative of any function is  

added [23]. Thus, we have: 1 2 0L L+ =  and [ ]2
d d
d

eL s
c t

λ= ∫ , where 2d d is x= −  and 1, 2,3, 4i = . 

So, we obtain for the action: 

d d d 0.
b

i i
a

e emc s A x s
c c

λ = − + − = 
 

S  

In the case when the upper limit is not equal zero, therefore the variation in action becomes: 

d d d d d 0.i i i i i i
e e e emcu x A x A x s s
c c c c

δ δ δ δ δ δλ λδ = + + − − = 
 ∫S                  (26) 

Let us integrate the first, second and fifth terms by parts: finally we have following : 

21 0,
b

i i
a

e emcu A
cmc

λ  + + =  
  

                             (27) 
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d .
d

i
k k

u e eu u
s c c
= − +ik ikZ F                                (28) 

where the equation for the particles’ motion content the second-order tensor ikZ  of the electroscalar field and 
the ikF  electromagnetic tensor of second-order. 

So, the electroscalar and electromagnetic tensors are: 

k i
i k

u u
x x
λ λ ∂ ∂

= − ∂ ∂ 
ikZ  

i k

k i

A A
x x

 ∂ ∂
= − ∂ ∂ 

ikF  

Note that the electroscalar force has a negative sign with respect to the electromagnetic one. The Lagranges' 
method allows one to establish a strong correlation between the spatial position of the particle and the field 
components. The trajectories of propagation of the electromagnetic photon and electroscalar “scaphon” radiation 
may be different.This correlation directly points to a new degree of freedom in the electrodynamics of the 
charged particle, it providing uncontroversial proof that the electroscalar dynamics exists alongside with the 
electromagnetic one. It should be noted that in the course of transformations of the electromagnetic field into the 
electroscalar one and vice versa the particle may travel considerable distances and its trajectories may be spaced 
apart. The transformation of the electromagnetic field into the electroscalar one can also take place in the 
spheres and cavities of solid bodies that are different in type. 

10. Conclusions 
As follows from the theoretical and experimental studies, the electroscalar radiation has a long wavelength, is 
longitudinal and extremely penetrating. Basically, the following conclusions can be made: 

1. The detection of the electroscalar radiation from the Sun was done using spherical electroreceptors in an 
eclipse of the Sun and during the regular motion of the Moon. 

2. An analogy with the elasticity equation was made, and due to this the equation for the Maxwell electro- 
magnetic field was derived from the transcendental component of the displacement vector, and an equation for 
the electroscalar field, from the longitudinal component of the displacement vector. 

3. The longitudinal electroscalar wave performs transport of the Coulomb field, which is absent in the 
electromagnetic field. 

4. The registered spectrum of the electroscalar radiation can be described by the law of propagation of the 
plane wave. The ratio of both components and their directionality are dependent on the type of medium. In 
vacuum both vectors are directed along the Pointing vector, while in the solid state the electric vector is directed 
against the motion, and the scalar one, along the wave motion. 

5. The continuity equation of the electromagnetic field contains displacement of current, and the electroscalar 
field contains displacement of charge. 

6. The spectral expansion of the electroscalar field testifies that the field is longitudinal since the electric 
vector is collinear to the vector of propagation. 

7. The transfer of energy and information can take place either in vacuum or in any medium. 
8. The degree of freedom of a massive charged particle due to the correlation between the space position of 

the particle and the field component gives the transformation of the electromagnetic field into the electroscalar 
field (and backwards) which occurs at the expense of the rotation of the transcendental electric vector round the 
magnetic field vector. 

9. In the equation for the particle motion in the electroscalar field, the particle mass changes at the expense of 
the field energy, and the particle energy in the electroscalar field assumes a negative value to the sign of 
mechanical energy of motion. 

10. An electrically charged particle displays dual properties which are revealed in its behavior as a wave and 
as a particle. The electromagnetic field of the particle shows wave properties during the interaction, and the 
electroscalar field acts as a particle due to the large value of the longitudinal force. 

One remarkable characteristic of the electrodynamics of electroscalar and electromagnetic fields is the 
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manifestation of different properties by a charged particle. This points to a possibility that the changes entailed 
by the new electroscalar dynamics are of profound nature and do not come into contradiction with those 
properties of electromagnetic dynamics which make it convincing and, consequently, such properties can be 
included into the electrodynamics as a second dynamics of charge motion. 
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Abstract 
Purpose: To optimize contrast to noise ratio (CNR) in magnetic resonance imaging (MRI) of pros-
tate cancer using at 3T. Methods: CNR was expressed as a difference in MR signals of two samples. 
Amulti-echo spin-echo (MESE) pulse sequence was used. The theoretical value of the maximum 
CNR was obtained using the derivative of CNR with echo time (TE) as a variable. The T1 relaxation 
time was ignored as repetition time (TR) was assumed to be very long (TR >> T1). The theoretical 
calculations were confirmed with in vitro and in vivo experiments. For in vitro experiments we 
used samples with different T2 values using various concentrations of super paramagnetic iron 
oxide (SPIO) and for in vivo experiments we used an animal model of prostate cancer. Results: CNR 
was maximized by selecting the optimum TE for a multi-echo spin-echo (MESE) pulse sequence 
based on theoretical predictions. MR images of prostate cancer at 3T were obtained and showed 
maximum CNR at the predicted TE. Conclusions: It was possible to maximize CNR of prostate tu-
mour by selecting the optimal TE based on simple theoretical calculations. The proposed method 
can be applied to other pulse sequences and tissues. It can be applied to any MRI system at any 
magnetic field. However the method requires knowledge of T2 relaxation times. 

 
Keywords 
MRI, Tissue Contrast, Prostate Cancer, Spin Echo  

 
 

1. Introduction 
Magnetic Resonance Imaging (MRI) has high spatial resolution and the best soft tissue contrast among in vivo 
imaging modalities [1], [2]. However, contrast to noise ratio (CNR) of some cancerous tissues is still often in-
sufficient for accurate diagnosis [3]. Normal and diseased tissues are difficult to differentiate in standard T1 or 
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T2-weighted MRI, [4] in particular when tissues have similar relaxation times, such as prostate tumours and 
surrounding tissue [1], [5]. This poor differentiation between healthy and malignant tissue often leads to over-
treatment degrading future quality of life of cancer patients [6]. To rectify this problem, contrast agents are used. 
However their multiple application can lead to unwanted side effects [7]. Therefore, the purpose of this work 
was to find out the optimal echo time (TE) that provides the maximum CNR using a spin-echo pulse sequence 
for MRI of prostate cancer at 3T.  

MR signal of a tissue is a function of its spin density and relaxation times [8]. It can be controlled by the pulse 
sequence parameters, such as echo time (TE), repetition time (TR) or flip angle of a radiofrequency (rf) pulse. 
As the contrast depends on a difference in signals generated by two samples it can be maximized by selecting 
optimum parameters of the pulse sequence.  

Optimization of MRI pulse sequence parameters has been a field of interest since the beginning of MRI 
[9]-[11]. The presented solution is different from previous methods by providing a simplistic but effective solu-
tion to obtain the maximum CNR between tissues, specifically for prostate cancer. An early study used a method 
known as Eigen image Filtering to optimize MRI protocols and pulse sequence parameters. This study was able 
to reduce imaging time for eigen image filtering of brain studies by up to 75% however approximation of tissue 
parameters from literature was needed, otherwise further tissue parametrization would be needed [9]. Another 
study used sequence simulations to predict optimal parameters for imaging, however simulated images failed to 
match the corresponding measured image in areas where tissues or substances moved during the course of mea-
surement. The phenomena of flow could not be feasibly incorporated into the equations [10]. A study in 1987 
compared the ability if different T1, T2 and proton density (PD) weighted imaging would increase or decrease 
CNR for hepatic lesions among patients. They concluded that although short-TE T1-weighted pulse sequences 
with multiple excitations has the best signal to noise ratio and anatomic resolution at 0.6T, their described tech-
nique is limited by relatively inferior contrast discrimination and artifact suppression at 1.5T resulting in a ne-
cessary change in imaging strategy when performing hepatic MR imaging at 1.5T [11]. Specifically, for prostate 
cancer, many studies have incorporated the use of diffusion weighted imaging (DWI) and apparent diffusion 
coefficient maps (ADC) to increase detection of prostate cancer. However, these methods are only viable with 
MRI above 1.5T as lower fields do not have the SNR required to create quality DWI and ADC maps [4], [12]. 
These studies have increased the differentiability of prostate cancer from healthy prostate tissue but require more 
intensive image processing. Our work follows a similar derivation proposed in [8] but used a solution for spin 
echo imaging instead of gradient echo and we have optimized CNR for tissues with small differences in T2. 
Furthermore, the method does not require absolute values of proton density. Instead we worked with relative 
values of proton densities between tissues with a method suggested by [13]. A similar method using derivatives 
is used to determine the concentration of contrast agent needed to optimize the Ernst angle in T1-weighted 
spoiled gradient echo imaging [14] and optimal TE to determine maximum SNRefficiency for MR-guided interven-
tional procedures [15]. 

The solution presented in this work maximizes CNR by optimizing TE in the spin-echo pulse sequence. Using 
a formula for MR signal obtained with the spin-echo pulse sequence and knowing T2s of the samples we calcu-
lated TEmax that provided the maximum CNR for in vitro phantoms and in vivo for prostate and surrounding tis-
sues at 3T.  

2. Methods 
For the calculations of CNR we used an equation providing a relationship between CNR and pulse parameters. 
We have assumed T2 relaxation times are known and T1relaxation can be neglected. Nine samples with different 
T2 relaxation times were made using different water concentrations of superparamagnetic iron oxide (SPIO). 
CNR as a function of TE was calculated for all sample pairs. The theoretical results were compared to the MRI 
experiments in vitro and in vivo using the animal model of prostate cancer at 3T.  

2.1. Theory 
Contrast in MR imaging can be defined as the difference in signals from two samples [8], [16], [17]. 

1 2CNR SNR SNR= −                                    (1) 

where SNR1 and SNR2 are the signal to noise ratios of two samples. 
The MR signals from two samples (S1 and S2) using spin-echo pulse sequence can be described as: [8], [16] 
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1 1
1 2

TR TE

1 1 1 1 e eT TS κ ρ
   
   − −   
   

 
 = − 
  

                                (2) 

2 2
1 2

TR TE

2 2 2 1 e eT TS κ ρ
   
   − −   
   

 
 = − 
  

                               (3) 

where κ1, κ2 are the proportionality constants, ρ1, ρ2 are the spin densities, 1
1T , 2

1T  and 1
2T , 2

2T  are the longi- 
tudinal and transversal relaxation times of the sample 1 and 2 respectively; TR is the repetition time and TE is 
the echo time. Each signal for samples is divided by the standard deviation, σ, in the image to obtain SNR. 

Subtracting (2) from (3) we obtain CNR for the samples 1 and 2: 

( )
1 1 2 2
1 2 1 2

TR TE TR TE

1 1 2 2CNR TE 1 e e 1 e eT T T Tκ ρ σ κ ρ σ
       
       − − − −       
       

   
   = − − −   
      

                (4) 

Assuming TR is sufficiently long ( 1TR T ), and taking the derivative of Equation (4) with respect to TE, the 
maximum for CNR can be obtained at:  

1 2 2
max 2 2 1 1 2

2 1 1
2 22 2 2

TE lnT T T
T T T

κ ρ
κ ρ
 

=  −  
                              (5) 

As seen from Equation (5), TEmax depends only on the T2 relaxation times of the samples thus it can be calcu-
lated to provide the maximum CNR if only T2s are known. 

The results of the calculation for different samples pairs are presented in Table 2 where each sample has a T2 
value and each sample pair has a corresponding TEmax. 

2.2. In Vitro Experiments 
2.2.1. Sample Preparation in Vitro 
Molday ION Rhodamine Carboxyl, a commonly used SPIO, (MIRB, Cat #: CL-50Q02-6C-50, BioPAL, Inc, 
Worcester, MA, USA) was diluted in de-ionized water to prepare nine samples (0.0019, 0.0022, 0.0029, 0.0042, 
0.0061, 0.0071, 0.0083, 0.0121, and 0.0263 μg/μL).The samples were placed in standard 5-mm NMR tubes 
(Wilmad NMR tubes, Cat#: Z566411-5EA, Sigma Aldrich, St. Louis, MO, USA) and arranged in a grid pattern 
to allow simultaneous imaging of all samples.  

2.2.2. MR Imaging and T2 Calculations 
MR imaging was performed using a 3T MRI scanner (Achieva, Philips, The Netherlands). Data was acquired 
using an 8-channel head RF coil. The spin echo pulse sequence with the following parameters was used: 32 
echoes, ΔTE = 20 ms, TR = 5000 ms, FOV = 100 mm × 100 mm, 3 mm slice thickness, 224 × 224 matrix size, 
NEX = 4. The images were transferred to an external workstation and processed with custom MATLAB scripts 
(MATLAB and Statistics Toolbox Release R2012a, The MathWorks, Inc., Natick, Massachusetts, United 
States). A region of interest (ROI) was automatically selected for each sample as a circular area within the sam-
ple for in vitro data. The ROI was determined by a mask with a pre-determined threshold in order to make ROIs 
determination quick and without human error.Single exponential fitting of the echo train was used to calculate 
TTs according to the formula: 

( ) 2TETE e T
zM A B −= +                                 (6) 

where Mz is the signal intensity at the echo time TE; A, B and T2 are the fitting parameters.8 

2.3. In Vitro Experiments 
2.3.1. Animal Model 
To induce prostate tumours, 5 × 106 LNcaP cells suspended in 100 μL of PBS were subcutaneously injected in 
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the flank of 8 male athymic nude mice (Charles River, Wilmington, MA, USA). The mice were anesthetized 
with isoflurane (Baxter International Inc., Deerfield, IL, USA) during MR imaging and euthanized immediately 
after.MR imaging of mice was performed once tumours reached a diameter of 5mmusing calipers according to 
our approved protocol (Lakehead University Animal Care Committee). 

2.3.2. MR Imaging and T2 Calculations 
Data was acquired using the MESE pulse sequence with an 8-channel wrist RF coil with the following parame-
ters: 30 echoes, ΔTE = 8 ms, TR = 1396 ms, FOV = 240 mm × 240 mm, slice thickness = 3 mm, 156 × 156 ma-
trix, NEX = 4. Processing was performed similarly to in vitro experiments but ROIs were manually determined 
for the tumour, muscle, and kidney.  

2.4. CNR Calculations 
CNR was calculated from the MESE image sets for various echo times. Signal intensity of each sample was 
normalized to the signal intensity of the first echo for each sample for in vitro data and we assumed κ1ρ1 = κ2ρ2. 
For CNR calculations in vivo, ρ and κ constants were found using the method described by Tofts et al. [13] 
where the values of each κ, ρ for each sample were extrapolated putting TE = 0 in Equation (2) and (3) for 
MESE images. The method used yields a relative κ, ρ for each tissue compared to other tissues. This is then used 
to find the ratio of κ, ρ between samples which is then used in Equation (5). 

A series of CNR curves as a function of TE were calculated and drawn for all the sample pairs using Equation 
(5) and cross correlation was used to determine the similarity between the theoretical and the experimental CNR 
curves. 

In order to compare the theoretical and the experimental results of CNR, two parameters were defined. The 
first parameter thexTE∆  described deviation between theoretical and experimental echo time for maximum 
CNR and was defined as 

Exp Th
thex

Exp

TE TE
TE 100%

TE
−

∆ = ×                              (7) 

where TEExp is the experimental TE value at which the maximum CNR occurred and TETh is the theoretical TE 
value at which the maximum CNR was predicted to occur.  

The second parameter thexCNR∆  indicated differences in predictions from theoretical and experimental re-
sults of measured CNR 

( ) [ ]
( )

Exp Exp Th
thex

Exp

Max CNR CNR TE
CNR 100%

Max CNR

−
∆ = ×                   (8) 

where ( )ExpMax CNR  is the maximum CNR observed experimentally. TETh is the theoretical calculated value 
of TE (Equation 6) at which CNR is maximum.  

3. Results 
3.1. In Vitro 
T2-weighted MR image of the 9 samples used for analysis is shown in Figure 1. Their calculated T2 values are 
shown in Table 1. 

The calculated TE values providing maximum CNR for each sample pair are shown in Table 2. 
Figure 2 shows four examples of CNR as a function of TE for different sample pairs; T2 = 96 and 26 ms, 193 

and 53 ms, 193 and 123 ms, and 679 and 86 ms. The corresponding TEmax values are 46.6, 60.2, 133.4 and 146.6 
ms respectively.  

The theoretical curves for these samples are superimposed on the experimental results. The mean cross corre-
lation value between the experimental and theoretical curves was r = 0.98 ± 0.02. 

The mean percent difference between the theoretical and experimental TEs at which the maximum ( thexΔTE ) 
occurred was 5.1% ± 5.3%. The mean percent difference for maximum CNR ( thexΔCNR ) was.32% ± 0.71%. 
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Figure 1. T2-weighted (TE = 40 ms) in vitro MR image. Longest T2 is at the top left and the shortest T2 is at the bottom right.                                                                                                  

 

 
(a)                                   (b) 

 
(c)                                   (d) 

Figure 2. CNR as a function of TE based on theoretical calculations and experimental data: (a) sample 6 (T2 = 96 ms) vs 
sample 9 (T2 = 26 ms); (b) sample 4 (T2 = 193 ms) vs sample 8 (T2 = 53 ms); (c) sample 4 (T2 = 193 ms) vs sample 5 (T2 = 
123 ms); and (d) sample 1 (T2 = 679 ms) vs sample 7 (T2 = 86 ms).                                                  

 
Table 1. T2 values of in vitro samples.                                                                        

Sample Table column subhead 

1 
2 
3 
4 
5 
6 
7 
8 
9 

679 ± 32 
363 ± 28 
268 ± 23 
193 ± 10 
123 ± 6 
96 ± 4 
86 ± 5 
53 ± 3 
26 ± 1 
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Table 2. TE values providing maximum CNR for two samples. The top row and the left columns indicate the T2 values of 
the sample pair. For example: maximum CNR for a sample pair with T2 123 ms and 53 ms is obtained at a TE of 51.2 ms.      

T2 (ms) of Samples 
Predicted TE value at which maximum CNR would occur for samples 

679 363 268 193 123 96 86 53 

363 488.4 411.6 339.2 256.6 218.7 203.5 146.6 88.2 

268  310.7 260.3 201.3 173.6 162.3 119.4 73.8 

193   226.4 177.1 153.6 143.9 107.1 67.2 

123    152.8 133.4 125.4 94.4 60.2 

96     108.4 102.3 78.4 51.2 

86      90.8 70.3 46.6 

53       66.9 44.6 

26        36.3 

3.2. In Vivo 
Figure 3 shows sagittal MR images of the mouse torso at TE values of 56 ms and 96 ms. T2 of the tumor and 
normal tissue was found to be 55.8 ± 8.8 ms and 32.9 ± 2.4 ms for all 8 mice respectively. Based on the calcula-
tions maximum CNR between muscle and tumour tissue was found to occur at 55.2 ms. Typical T2-weighted 
images of human prostate cancer use an echo time of around 96 ms [12]. The images at TE = 56 ms (Figure 
3(b)) showed CNR increase of 125% compared to an image at TE = 96 ms (Figure 3(a)). Mean correlation val-
ues, thexΔTE  and thexΔCNR  were 0.94 ± 0.01, 21.2% ± 19.4% and 7.83% ± 7.45% respectively. 

Figure 4 shows CNR as a function of TE for muscle, kidney and tumour tissue. A visible CNR maximum 
appears between tumour and muscle at TE of 56 ms. In vivo experimental curves had high cross correlation val-
ues of r = 0.98 ± 0.01 and were able to attain maximum CNR based on predictions showing good agreement 
between the theory and the experiment. 

4. Discussion 
The results have shown that it was possible to maximize CNR by selecting the proper TE for SE pulse sequences 
when T2 relaxation times of the samples are known. The experiments showed that the theory indeed provides the 
parameters allowing maximum CNR. The cross correlation function showed the theoretical values closely emu-
lated experimental data. 

For in vitro calculations we assumed 2 2 1 1κ ρ κ ρ= . This is only valid if we consider the proton density to be 
the same for each sample. In these experiments it was deemed valid since all the samples were contained distill-
ed water with only negligible amounts of MIRB added. 

As it can be seen in Figure 4 the predicted maximum of CNR between the cancerous tissue and the kidney is 
at TE = 131.6 ms. However, higher CNR values are also observed for TEs shorter than ~50 ms. This may be 
caused by differences in proton densities or differences in short T2 component. In this case where tissues have 
large differences in proton densities, acquiring a proton density image at short TE could result in an image of 
higher CNR. This may require the use of very short TE which may not be feasible with some current MRI 
hardware [17]. 

One deficiency of Equation (5) is the possibility of resulting in a negative value of the optimal TE. In some 
cases, where T2 values are close and there are large differences in proton density, assuming κ is the same, the 
equation results in a negative TE value. For example, if the T2 values are 32.9 and 55.8 ms for tumour and mus-
cle tissue respectively, and ρ1 is half of ρ2, the resulting optimal TEmax is −13.2 ms. This result has no physical 
meaning so for these cases choosing the smallest TE value possible should result in the best possible CNR. 

The experimental values showed CNR can be maximized between prostate cancer and muscle tissues when 
their T2 values differed by about 15 ms. However, in clinical practice, the difference in MRI parameters between 
malignant prostate cancer and healthy prostate tissue is much lower [4]. Therefore although the proposed me- 
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(a)                                       (b) 

Figure 3. In vivo MR images of a mouse at (a) TE = 96 ms and (b) TE = 56 ms. Region of interests 
used for CNR calculations tumour, muscle, and kidney as red (—), blue (--) and green (…) 
respectively. By using predicted TEmax; (b) has an 125% CNR compared to (a).                                  

 

 
Figure 4. In vivo experimental and theoretical CNRas a function of TE comapring tumour with muscle 
and kidney.                                                                            

 
thod has the ability to maximize CNR between healthy and malignant tissue, further work with patients is 
needed to investigate the differentiation of healthy prostate tissue from malignant tissue in humans and compare 
with biopsy [5].  

The results have implication in many areas of MRI. Throughout the last few decades, numerous papers have 
been published regarding advances in MRI. Most of those involve some form of contrast enhancement [18]. The 
work presented here shows a simple method to obtain the maximum contrast between two samples or tissues. In 
practice, this method can be applied to other sequences within MR imaging to further improve CNR between 
desired tissues.  

Further work will include performing similar experiments at different magnetic field strengths. The theoreti-
cal derivation shown exemplifies the spin echo sequence CNR optimization for T2 weighted images.  

5. Conclusion 
The work presented showed it is possible to maximize the CNR by selecting proper TE in a SE pulse sequence. 
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This was validated by in vivo experiments in prostate cancer tumours. The work derived here has wide implica-
tions as the ability to increase CNR and differentiate between tissues is essential in many aspects of MR imaging. 
Our future work will incorporate T1-weighted images, including TR values, into the CNR equation thus making 
it a partial derivative to obtain the maximum CNR. We will also compare CNR at different field strengths in or-
der to show the potential of low field MRI to have an equal or even greater CNR compared to higher field 
strengths. Our end goal is to develop a robust program which can be used to calculate optimal TE, TR and other 
user defined MRI parameters in order to obtain an MR image with the highest CNR between two tissues of in-
terest based on intrinsic parameters. 
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Abstract 
Quantum aspects of the Joule-Lenz law for the transmission of energy allowed us to calculate the 
time rate of energy transitions between the quantum states of the hydrogen atom in a fully non- 
probabilistic way. The calculation has been extended to all transitions between p and s states 
having main quantum numbers not exceeding 6. An evident similarity between the intensity pat-
tern obtained from the Joule-Lenz law and the corresponding quantum-mechanical transition pro- 
babilities has been shown.  

 
Keywords 
Time Intervals for the Electron Transitions in the Hydrogen Atom, Non-Probabilistic Theory  
of Energy Emission in the Atom, Comparison of the Emission Intensities with the  
Quantum-Mechanical Transition Probabilities 

 
 

1. Introduction 
Since the very beginning of quantum theory the transition rate of energy connected with the occupation change 
of quantum states has been considered on a combined probabilistic-and-statistical footing [1]-[3]. Another 
formal probabilistic calculations of the rate of energy emitted in course of the electron transitions could be done 
on the basis of quantum mechanics; see e.g. [4] [5]. Experimentally a roughly precise measurement of the time 
of a single transition between two quantum levels seems to be hardly possible because of an extremely short 
interval of time expected to be associated with the transition phenomenon. In reality any experiment has its 
finite duration, so beyond of a short time of transition a whole electron population of transitions should be 
considered before the time of a single transition can be derived and estimated. 

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2016.78076
http://dx.doi.org/10.4236/jmp.2016.78076
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/
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However, the problem could obtain a new approach if the quantum background coupled with the Joule--Lenz 
law of the energy emission is taken into account. In this case the quantum aspects of that law discovered 
recently [6] [7] allowed us to make a step towards an understanding of the radiation theory which is much 
different in its character than a search for transition probabilities between the quantum states. 

In effect we can calculate the transition time of a single electron particle between two quantum states. Further 
connection of such time with the energy rate of radiation becomes a simple task. An auxiliary component of this 
theory is the fact that it can be compared with the quantum-mechanical calculations giving a rather satisfactory 
assessment for the new, i.e. non-probabilistic, results. 

This is so because the ratio of the intensities of two spectroscopic lines gives in fact the ratio of transition 
probabilities [8]. In emission spectra, the simplest conditions of excitation are those in which the excited states 
of the atoms are approximately in thermal equilibrium and the number of atoms in any given state is 
proportional to the Boltzmann factor. Usually in considering the ratio of intensities of two lines without 
specifying conditions, one practically assumes the temperature equilibrium at infinite temperature so that the 
Boltzmann factor is equal to unity. This assumption is realized especially well when the transitions originate 
from levels whose energies differ little from one another. Experimentally in flames and in certain parts of 
electric arcs the excitation corresponds approximately to thermal equilibrium, on the other hand in glow 
discharges the conditions of excitation are more complicated and it is not always possible to connect observed 
intensities with transition probabilities. However, if two lines have a common upper level their intensities will 
always be in the ratio of their transition probabilities [8]. 

In the present calculations of the changes of quantum states only the energy and time are involved. Therefore 
there is no reference to the selection rules of transitions given by such parameters like, for example, the orbital 
angular momentum. 

2. Time Intervals Considered instead of Transition Probabilities   
A characteristic step of a later Bohr’s approach to the atomic spectra was a poposal of the Fourier analysis of the 
displacement vector associated with the position change of the particle submitted to transition [9]. This analysis 
was expected to give the probabilities of transitions between quantum states. But in our opinion a much more 
practical step than the displacement analysis is to examine the balance of time necessary to perform a transition. 
In fact this balance can be represented with the aid of the transition energy, too, because the components enter- 
ing the balance of time can be defined with aid of the components of the transition energy. A complementary 
relation between energy and time becomes here especially of use if we note that the energy intervals are much 
more easy to calculate than the intervals of time. 

In effect, because any elementary interval of energy has its corresponding interval of time, these elementary 
time intervals can be added together into full intervals necessary to be considered in description of a given 
quantum process. In result the rate of the electron transitions between rather distant quantum levels could be 
calculated as a function of the elementary intervals of energy. In the present paper we do such time analysis and 
apply it in calculating the rate of electron transitions in the hydrogen atom. Before we do that, the elementary 
properties of both energy and time entering the transitions will be represented. 

3. Elementary and Combined Transitions and Their Properties   
Elementary transition is that between two neighbouring quantum levels, say 1n +  and n. Beginning with 

1n =  we obtain  

2 1 1

3 2 2

4 3 3

,
,
, ,

E E E
E E E
E E E

− = ∆
− = ∆

− = ∆ 

                                   (1) 

in general  

1 .n n nE E E+ − = ∆  

But any transition energy 1E∆  takes place in course of time 1t∆ , the transition of 2E∆  is done in course of 

2t∆ , the 3E∆  is obtained in course of 3t∆ , etc. So there are  
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2 1 1

3 2 2

4 3 3

,
,
,

t t t
t t t
t t t

− = ∆
− = ∆

− = ∆

                                       (2) 

etc., in general  

1 .n n nt t t+ − = ∆                                       (2a) 

Because a complementarity relation deduced from the Joule-Lenz law does exist between the elementary 
energy interval and transition time interval we have  

1 1 2 2 3 3 .n nE t E t E t E t h∆ ∆ = ∆ ∆ = ∆ ∆ = = ∆ ∆ =                        (3) 

Evidently the 1 2 3, , ,t t t   entering (2) with a minus sign are the beginning times of successive intervals, and 

2 3 4, , ,t t t   entering with a plus sign are the end times of these intervals. In the emission process we have 

1 2 3, , , 0E E E∆ ∆ ∆ > , the same property concerns by definition also the intervals 1 2 3, , ,t t t∆ ∆ ∆   
But still another kind of relations—similar to that introduced by Kramers and Heisenberg [10]—concerns 
E∆  and t∆ . We have  

( )2
11

1 1
1

,
EEa E

t h
∆∆

∆ = =
∆

                                 (4) 

( )2
22

2 2
2

,
EEa E

t h
∆∆

∆ = =
∆

                               (4a) 

( )2
33

3 3
3

,
EEa E

t h
∆∆

∆ = =
∆

                               (4b) 

( )2
44

4 4
4

,
EEa E

t h
∆∆

∆ = =
∆

                               (4c) 

Here 1 2 3, , ,a a a   denote the transition coefficients between states 2 and 1, 3 and 2, 4 and 3, etc., 
respectively. The coefficients lead to the emission rate represented in the last step of any formula in (4), (4a), 
(4b), (4c)... This step is due to application of the complementarity relation in (3). 

Certainly the same relation can represent it∆  giving  
1 .i

i

E
t h

∆
=

∆
                                     (5) 

From the formulae in (4) it is evident that any transition coefficient ia  satisfies the formula  
1 .i

i

a
t

=
∆

                                      (6) 

Simple properties of ia  are ready to calculate. By dividing Formula (4) by (4a), (4a) by (4b), (4b) by (4c), 
etc., we obtain  

( )
( )

2
11 1 1 1

2
2 2 2 22

,
Ea E a E

a E a EE
∆∆ ∆

= → =
∆ ∆∆

                              (7) 

( )
( )

2
22 2 2 2

2
3 3 3 33

,
Ea E a E

a E a EE
∆∆ ∆

= → =
∆ ∆∆

                             (7a) 

( )
( )

2
33 3 3 3

2
4 4 4 44

,
Ea E a E

a E a EE
∆∆ ∆

= → =
∆ ∆∆

                             (7b) 

etc. In effect  
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( )
( )

22
11 1 1 2 1

2 2
2 2 3 22 2

,
Ea E t I

E t Ia E
−

−

∆ ∆ ∆
= = =

∆ ∆∆
                              (8) 

( )
( )

22
2 3 22 2 2

2 2
3 3 4 33 3

,
E Ia E t

E t Ia E
−

−

∆ ∆ ∆
= = =

∆ ∆∆
                             (8a) 

( )
( )

22
33 3 3 4 3

2 2
3 4 5 44 4

,
Ea E t I

E t Ia E
−

−

∆ ∆ ∆
= = =

∆ ∆∆
                             (8a) 

etc., where  

2 1 3 2 4 3 5 4, , , ,I I I I− − − −                                    (9) 

are respectively the intensities, or energy rates, of transitions from level 2 to 1, from 3 to 2, from 4 to 3, from 5 
to 4, etc. 

We see that the ratios of the coefficient squares are equal to the ratios of intensities.  

4. Intensities in the Hydrogen Atom 
The emitted energy intensity of transition between a paricular pair of quantum states is sometimes called a 
component of the spectral line [11]. When expressed in energy units (ergs) per second the intensity of such line 
is  

( ) ( ),a bI N a h A a bν− =                                (10) 

where ( )N a  is the number of atoms in state a, hν  is the energy obtained in a single electron transition, and 

( ),A a b  is the emission probability. In fact an accurate ( )N a  is hardly possible to be estimated, ( ),A a b  is 
obtainable from rather tedious quantum mechanical calculations. 

The aim of the present paper is to join, as far as possible, the calculations of the emission rate of single 
transitions given by the present theory with the former theory of the line spectra, or obtained from experiment. 
Since it is difficult to make an absolute comparison between the theory, or theories, or experiment, the 
calculations are referred mainly to the relative intensities of the spectral lines. 

In fact we shall demonstrate that the Bohr energies of electron transitions in the hydrogen atom applied in the 
present theory can give a rather satisfactory approximation for the ratios of the transition probabilities between 
the atomic states given by the quantum-mechanical theory. To this purpose the transitions from the atomic states 

( )pn p  where  

( ) 2,3, 4,5,6,pn =                                  (11) 

to the states n(s)s where  

( ) 1, 2,3, 4 and 5sn =                                (12) 

are considered because all results of calculations can be compared with the quantum-mechanical data listed in 
[11]. 

In examining the intensities due to the present framework we take into account the ratios  

n p n s

n p n s

I
I

α α

β β

′ ′′

′ ′′

−

−

                                    (13) 

where  
n nα α′ ′′>                                    (14) 

and  
.n nβ β′ ′′>                                    (15) 

Both the numerator (labelled by α ) and denominator (labelled by β ) entering (13) are expressed in terms 
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of the Bohr energy differences  
( ) ( ) ,p sE E Eα α α′ ′′∆ = −                                (16) 

( ) ( ) ,p sE E Eβ β β′ ′′∆ = −                                (17) 

which are positive quantities, first in view of (14) and (15), second because of the energy components equal to  

( )
4

2 2
1 ,

2
p em eE

nα
α

′
′

= −


                               (18) 

( )
4

2 2
1 ,

2
s em eE

nα
α

′′
′′

= −


                               (19) 

( )
4

2 2
1 ,

2
p em eE

nβ
β

′
′

= −


                               (20) 

( )
4

2 2
1 .

2
s em eE

nβ
β

′′
′′

= −


                               (21) 

But the intensities entering (13) are represented by the formulae  

( ) ( )

( ) ( )

( )

p s
n n

n p n s s
n n

E E
I

t t
α α

α α

α α

′ ′′

′ ′′

′ ′′

−

−
=

−
                             (22) 

and  

( ) ( )

( ) ( )

( )

p s
n n

n p n s s
n n

E E
I

t t
β β

β β

β β

′ ′′

′ ′′

′ ′′

−

−
=

−
                              (23) 

which contain in general the time intervals different than the elementary intervals presented in (2). For example 
we can have  

5 1n nt t t t
α α′ ′′
− = −                                  (24) 

or  

6 3.n nt t t t
β β′ ′′
− = −                                  (25) 

However such intervals can be decomposed into elementary ones, so we obtain  

5 1 4 3 2 1

5 4 4 3 3 2 2 1

4 3 2 1

,

t t t t t t
t t t t t t t t

h h h h
E E E E

− = ∆ + ∆ + ∆ + ∆

= − + − + − + −

= + + +
∆ ∆ ∆ ∆

                        (26) 

or  

6 3 5 4 3

6 5 5 4 4 3

5 4 3

.

t t t t t
t t t t t t

h h h
E E E

− = ∆ + ∆ + ∆

= − + − + −

= + +
∆ ∆ ∆

                           (27) 

The last steps in the Formulaes (26) and (27) come from (3). Evidently any term entering (16) and (17) can be 
decomposed into iE∆ , for example  

( ) ( )
5 1 5 4 4 3 3 2 2 1

4 3 2 1

p sE E E E E E E E E E
E E E E

− = − + − + − + −

= ∆ + ∆ + ∆ + ∆
                     (28) 
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and  
( ) ( )
6 3 6 5 5 4 4 3

5 4 3.

p sE E E E E E E E
E E E

− = − + − + −

= ∆ + ∆ + ∆
                       (29) 

On the right of (28) and (29) the indices s and p could be omitted because of the lack of dependence of the 
right-hand side of the formulae in (18)-(21) on s ( )0l =  and p ( )1l = . 

It should be noted that for transitions between levels 2n +  and n, say 3 and 1, we arrive at a very simple 
intensity formula similar to those given in (4)-(4c):  

( )
3 1 2 1 2 1 2 1 1 2

1 2
3 1 2 1 1 2

2 1

.E E E E E E E E EE Eh ht t t h E E h
E E

−

−

∆ ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆ ∆
= = = ∆ ∆ =

∆ ∆ + ∆ ∆ + ∆+
∆ ∆

         (30) 

A time ago Einstein has remarked that the time of transitions between deep-lying quantum states should be 
very small [12]. The present approach does confirm this view. For example the time between 2p and 1s 
is-because of the result obtained before [6] [7] that the transition time between two neighbouring quantum levels 
approaches approximately the time period of the lower lying quantum state-equal to  

3

1 1 4
2π .

e

t T
m e

∆ = =
                                   (31) 

This is the time period of the first quantum state in the hydrogen atom [13]. In fact the Formula (3) gives 1t∆  
rather close to 1T :  

3
16

1 4
1

16π 4 10  sec.
3 e

ht
E m e

−∆ = = ≅ ×
∆

                      (31a) 

For large quantum numbers n and m there is evident the formula [see (6)]:  

( )

( )
( )
( )
( )
( )

2 2
1

1
2 2

2 2

2 2 4 3

2 4 32

2 2

1 1
1

1 1
1

1
1 2 ,

21
1

m n m m m

n m n n n

mma t E E E
a t E E E

nn

m m
m m m m n

n n mn n
n n

+

+

− +
+∆ ∆ −

= = = =
∆ ∆ − − +

+

+ −

+
= ≅ =

+ −

+

                    (32) 

whereas the ratio of the time periods of the hydrogen atom is also:  
43 3 3

4 3 3 3
2π .

2π
n e

m e

T m en n
T m e m m

= ⋅ =




                           (32a) 

Evidently the values of n nt T∆ ≈  increase rapidly with increase of n. 

5. Quantum-Mechanical Counterpart of the Intensity Calculations   

The Formulaes (8)-(9) indicate a reference between the coefficients squares 2
na  and 2

1na +  to the intensity ratios 
between 1nI +  and nI  in the sense that the ratio of the squares is equal to the ratio of intensities. This result has 
obtained its quantum-mechanical counterpart on the basis of the data collected in [11]. 

In fact we find that there exists an evident correspondence between the ratios of the quantum-mechanical 
transition probabilities  

( )
( )

,
,

A n p n s
A n p n s

α α

β β

′ ′′

′ ′′

                                   (33) 
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calculated for different pairs of transitions given by the n p′  and n s′′  states ( )n n′ ′′> , and the intensity ratios  

n p n s

n p n s

I
I

α α

β β

′ ′′

′ ′′

−

−

                                    (13a) 

calculated with the aid of the present method. In Table 1 we present the formulae and intensity ratio (13) [or 
(13a)] obtained for each of the considered pair of transitions. In Table 2 the quantum-mechanical ratios of 
probabilities (33) calculated for each transition pair are compared with the ratios calculated in Table 1. Table 3 
provides us with the abbreviated expressions for the energy intervals applied in the computations of Table 1. 

In fact the ratio of two intensities obtained with the present theory referred to the corresponding ratio of the 
quantum-mechanical probabilities rather seldom exceeds number 2, although the ratios entering the calculations 
vary between the numbers being evidently smaller than unity [cases (61), (65), (86), (91)] to the numbers equal 
to several thousands [cases (13) and (14)]. 

The ratio equal to 2 is exceeded by the cases (6), (10), (31), (35), (56), (65), (86) and (91) where respectively 
there is obtained  

semiclassical ratio 43 90 1.48 2.08: 2.3; 2.8; 2.3; 2.7;
quantum-mechanical ratio 18.4 32 0.65 1.13

1.08 0.38 0.175 0.0812.2; 2.5; 2.1; 2.1,
0.49 0.154 0.082 0.038

= = = =

= = = =
      (34) 

but only in the case (99)  

quantum-mechanical ratio 92.9: 2.2
semiclassical ratio 41.9

=                       (34a) 

exceeds 2. 
A time ago Ornstein and Burger [16] considered three intensity ratios presented in Table 1 and Table 2. 

These are:   

( ) ( ) ( ) ( ) ( ) ( )4 2 : 4 3 , 5 2 : 5 3 and 6 2 : 6 3 ;p s p s p s p s p s p s− − − − − −               (35) 

see items (51), (78) and (100) in Table 1 and Table 2. 
They have found respectively the following quantum-mechanical ratios for the transition probabilities:  

3.55, 3.4 and 3.2.                                (36) 

The experimental ratios of the intensities were found equal to [16]  
2.6, 2.5 and 2.0;                                (37) 

see also [11]. The data of the present theory are [see e.g. Table 1, items (51), (78) and (100)]  
2.86, 2.66 and 2.54,                              (38) 

so they are closer to the experimental data in (37) than the data given in (36). 

6. Lifetime of the Excited States   
The intensity p qI −  of the electron transition from a state p to a lower state q of the hydrogen atom is coupled 
with the quanta of energy p qE −∆  and time p qt −∆  of the transition by the formula  

.p q
p q p q p q

p q

E
I a E

t
−

− − −
−

∆
= = ∆
∆

                           (39) 

The term p qa −  plays the role of transition probability from p to q; see e.g. [10]. 
Evidently on the basis of (39) we have  

1 .p q
p q

a
t −

−

=
∆

                                  (40) 
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Table 1. Intensity ratios of electron transitions between the p and s states in the hydrogen atom calculated by the present 
method. The applied intervals of energy are listed in Table 3. A comparison of the results of the present Table with the ratios 
of quantum-mechanical transition probabilities is done in Table 2.                                                   

No Case  Formula for the intensity ratio and the value of that ratio
 

(1) 
2 1
3 1

p s
p s
−
−

 →  ( )2

1 1

1 2 2

5.4
E E

E E E
∆ ∆

= =
∆ ∆ ∆

, 

(2) 
2 1
3 2

p s
p s
−
−

 →  ( )
( )

2

1
2

2

29.2
E
E

∆
=

∆
, 

(3) 
2 1
4 1

p s
p s
−
−

 →  ( )2

1

4 1 1 2 3

1 1 1 17.1
E
E E E E−

∆  
+ + = ∆ ∆ ∆ ∆ 

, 

(4) 
2 1
4 2

p s
p s
−
−

 →  ( )2

1

2 3

83.3
E

E E
∆

=
∆ ∆

, 

(5) 
2 1
4 3

p s
p s
−
−

 →  ( )
( )

2

1
2

3

238
E
E

∆
=

∆
, 

(6) 
2 1
5 1

p s
p s
−
−

 →  ( )2

1

5 1 1 2 3 4

1 1 1 1 43
E
E E E E E−

∆  
+ + + = ∆ ∆ ∆ ∆ ∆ 

, 

(7) 
2 1
5 2

p s
p s
−
−

 →  ( )2

1

5 2 2 3 4

1 1 1 193
E
E E E E−

∆  
+ + = ∆ ∆ ∆ ∆ 

, 

(8) 
2 1
5 3

p s
p s
−
−

 →  ( )2

1

3 4

514
E

E E
∆

=
∆ ∆

, 

(9) 
2 1
5 4

p s
p s
−
−

 →  ( )
( )

2

1
2

4

1110
E
E

∆
=

∆
, 

(10) 
2 1
6 1

p s
p s
−
−

 →  ( )2

1

6 1 1 2 3 4 5

1 1 1 1 1 90
E
E E E E E E−

∆  
+ + + + = ∆ ∆ ∆ ∆ ∆ ∆ 

, 

(11) 
2 1
6 2

p s
p s
−
−

 →  ( )2

1

6 2 2 3 4 5

1 1 1 1 390
E
E E E E E−

∆  
+ + + = ∆ ∆ ∆ ∆ ∆ 

, 

(12) 
2 1
6 3

p s
p s
−
−

 →  ( )2

1

6 3 3 4 5

1 1 1 987
E
E E E E−

∆  
+ + = ∆ ∆ ∆ ∆ 

, 

(13) 
2 1
6 4

p s
p s
−
−

 →  ( )2

1

4 5

2045
E

E E
∆

=
∆ ∆

, 

(14) 
2 1
6 5

p s
p s
−
−

 →  ( )
( )

2

1
2

5

= 3765
E
E

∆

∆
, 

(15) 
3 1
3 2

p s
p s
−
−

 →  
( )

1 2 1
2

22

5.4E E E
EE

∆ ∆ ∆
= =
∆∆

, 

(16) 
3 1
4 1

p s
p s
−
−

 →  1 2

4 1 1 2 3

1 1 1 3.23E E
E E E E−

 ∆ ∆
+ + = ∆ ∆ ∆ ∆ 

, 

(17) 
3 1
4 2

p s
p s
−
−

 →  1 2 1

2 3 3

15.4E E E
E E E

∆ ∆ ∆
= =

∆ ∆ ∆
, 
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Continued 

(18) 
3 1
4 3

p s
p s
−
−

 →  
( )

1 2
2

3

44.1E E
E

∆ ∆
=

∆
, 

(19) 
3 1
5 1

p s
p s
−
−

 →  1 2

5 1 1 2 3 4

1 1 1 1 7.98E E
E E E E E−

 ∆ ∆
+ + + = ∆ ∆ ∆ ∆ ∆ 

, 

(20) 
3 1
5 2

p s
p s
−
−

 →  1 2

5 2 2 3 4

1 1 1 35.8E E
E E E E−

 ∆ ∆
+ + = ∆ ∆ ∆ ∆ 

, 

(21) 
3 1
5 3

p s
p s
−
−

 →  1 2

3 4

95.4E E
E E

∆ ∆
=

∆ ∆
, 

(22) 
3 1
5 4

p s
p s
−
−

 →  
( )

1 2
2

4

205.8E E
E

∆ ∆
=

∆
, 

(23) 
3 1
6 1

p s
p s
−
−

 →  1 2

6 1 1 2 3 4 5

1 1 1 1 1 16.6E E
E E E E E E−

 ∆ ∆
+ + + + = ∆ ∆ ∆ ∆ ∆ ∆ 

, 

(24) 
3 1
6 2

p s
p s
−
−

 →  1 2

6 2 2 3 4 5

1 1 1 1 72.2E E
E E E E E−

 ∆ ∆
+ + + = ∆ ∆ ∆ ∆ ∆ 

, 

(25) 
3 1
6 3

p s
p s
−
−

 →  1 2

6 3 3 4 5

1 1 1 184E E
E E E E−

 ∆ ∆
+ + = ∆ ∆ ∆ ∆ 

, 

(26) 
3 1
6 4

p s
p s
−
−

 →  1 2

4 5

379E E
E E

∆ ∆
=

∆ ∆
, 

(27) 
3 1
6 5

p s
p s
−
−

 →  
( )

1 2
2

5

697E E
E

∆ ∆
=

∆
, 

(28) 
3 2
4 1

p s
p s
−
−

 →  ( )2

2

4 1 1 2 3

1 1 1 0.60
E
E E E E−

∆  
+ + = ∆ ∆ ∆ ∆ 

, 

(29) 
3 2
4 2

p s
p s
−
−

 →  ( )2

2

2 3

2.86
E

E E
∆

=
∆ ∆

, 

(30) 
3 2
4 3

p s
p s
−
−

 →  ( )
( )

2

2
2

3

8.16
E
E

∆
=

∆
, 

(31) 
3 2
5 1

p s
p s
−
−

 →  ( )2

2

5 1 1 2 3 4

1 1 1 1 1.48
E
E E E E E−

∆  
+ + + = ∆ ∆ ∆ ∆ ∆ 

, 

(32) 
3 2
5 2

p s
p s
−
−

 →  ( )2

2

5 2 2 3 4

1 1 1 6.63
E
E E E E−

∆  
+ + = ∆ ∆ ∆ ∆ 

, 

(33) 
3 2
5 3

p s
p s
−
−

 →  ( )2

2

3 4

17.6
E

E E
∆

=
∆ ∆

, 

(34) 
3 2
5 4

p s
p s
−
−

 →  ( )
( )

2

2
2

4

38.1
E
E

∆
=

∆
, 

(35) 
3 2
6 1

p s
p s
−
−

 →  ( )2

2

6 1 1 2 3 4 5

1 1 1 1 1 3.08
E
E E E E E E−

∆  
+ + + + = ∆ ∆ ∆ ∆ ∆ ∆ 

, 
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Continued 

(36) 
3 2
6 2

p s
p s
−
−

 →  ( )2

2

6 2 2 3 4 5

1 1 1 1 13.4
E
E E E E E−

∆  
+ + + = ∆ ∆ ∆ ∆ ∆ 

, 

(37) 
3 2
6 3

p s
p s
−
−

 →  ( )2

2

6 3 3 4 5

1 1 1 33.9
E
E E E E−

∆  
+ + = ∆ ∆ ∆ ∆ 

, 

(38) 
3 2
6 4

p s
p s
−
−

 →  ( )2

2

4 5

70.1
E

E E
∆

=
∆ ∆

, 

(39) 
3 2
6 5

p s
p s
−
−

 →  ( )
( )

2

2
2

5

129
E
E

∆
=

∆
, 

(40) 
4 1
4 2

p s
p s
−
−

 →  
4 1

2 3

1 2 3

1 4.761 1 1
E

E E
E E E

−∆
⋅ =
∆ ∆+ +

∆ ∆ ∆

, 

(41) 
4 1
4 3

p s
p s
−
−

 →  ( )
4 1

2

3

1 2 3

1 13.71 1 1
E

E
E E E

−∆
⋅ =
∆+ +

∆ ∆ ∆

, 

(42) 
4 1
5 1

p s
p s
−
−

 →  1 2 3 44 1

5 1

1 2 3

1 1 1 1

2.471 1 1
E E E EE

E
E E E

−

−

+ + +
∆ ∆ ∆ ∆∆
⋅ =

∆+ +
∆ ∆ ∆

, 

(43) 
4 1
5 2

p s
p s
−
−

 →  2 3 44 1

5 2

1 2 3

1 1 1

11.11 1 1
E E EE

E
E E E

−

−

+ +
∆ ∆ ∆∆
⋅ =

∆+ +
∆ ∆ ∆

, 

(44) 
4 1
5 3

p s
p s
−
−

 →  
4 1

3 4

1 2 3

1 29.51 1 1
E

E E
E E E

−∆
⋅ =
∆ ∆+ +

∆ ∆ ∆

, 

(45) 
4 1
5 4

p s
p s
−
−

 →  ( )
4 1

2

4

1 2 3

1 63.61 1 1
E

E
E E E

−∆
⋅ =
∆+ +

∆ ∆ ∆

, 

(46) 
4 1
6 1

p s
p s
−
−

 →  1 2 3 4 54 1

6 1

1 2 3

1 1 1 1 1

5.141 1 1
E E E E EE

E
E E E

−

−

+ + + +
∆ ∆ ∆ ∆ ∆∆
⋅ =

∆ + +
∆ ∆ ∆

, 

(47) 
4 1
6 2

p s
p s
−
−

 →  2 3 4 54 1

6 2

1 2 3

1 1 1 1

22.31 1 1
E E E EE

E
E E E

−

−

+ + +
∆ ∆ ∆ ∆∆
⋅ =

∆ + +
∆ ∆ ∆

, 

(48) 
4 1
6 3

p s
p s
−
−

 →  3 4 54 1

6 3

1 2 3

1 1 1

56.81 1 1
E E EE

E
E E E

−

−

+ +
∆ ∆ ∆∆
⋅ =

∆ + +
∆ ∆ ∆

, 

(49) 
4 1
6 4

p s
p s
−
−

 →  
4 1

4 5

1 2 3

1 1171 1 1
E

E E
E E E

−∆
⋅ =

∆ ∆ + +
∆ ∆ ∆

, 
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(50) 
4 1
6 5

p s
p s
−
−

 →  ( )
4 1

2

5

1 2 3

1 2161 1 1
E
E

E E E

−∆
⋅ =

∆ + +
∆ ∆ ∆

, 

(51) 
4 2
4 3

p s
p s
−
−

 →  
( )

2 3 2
2

33

2.86E E E
EE

∆ ∆ ∆
= =
∆∆

, 

(52) 
4 2
5 1

p s
p s
−
−

 →  2 3

5 1 1 2 3 4

1 1 1 1 0.52E E
E E E E E−

 ∆ ∆
+ + + = ∆ ∆ ∆ ∆ ∆ 

, 

(53) 
4 2
5 2

p s
p s
−
−

 →  2 3

5 2 2 3 4

1 1 1 2.32E E
E E E E−

 ∆ ∆
+ + = ∆ ∆ ∆ ∆ 

, 

(54) 
4 2
5 3

p s
p s
−
−

 →  2 3 2

3 4 4

6.17E E E
E E E

∆ ∆ ∆
= =

∆ ∆ ∆
, 

(55) 
4 2
5 4

p s
p s
−
−

 →  
( )

2 3
2

4

13.2E E
E

∆ ∆
=

∆
, 

(56) 
4 2
6 1

p s
p s
−
−

 →  2 3

6 1 1 2 3 4 5

1 1 1 1 1 1.08E E
E E E E E E−

 ∆ ∆
+ + + + = ∆ ∆ ∆ ∆ ∆ ∆ 

, 

(57) 
4 2
6 2

p s
p s
−
−

 →  2 3

6 2 2 3 4 5

1 1 1 1 4.68E E
E E E E E−

 ∆ ∆
+ + + = ∆ ∆ ∆ ∆ ∆ 

, 

(58) 
4 2
6 3

p s
p s
−
−

 →  2 3

6 3 3 4 5

1 1 1 11.9E E
E E E E−

 ∆ ∆
+ + = ∆ ∆ ∆ ∆ 

, 

(59) 
4 2
6 4

p s
p s
−
−

 →  2 3

4 5

24.6E E
E E

∆ ∆
=

∆ ∆
, 

(60) 
4 2
6 5

p s
p s
−
−

 →  
( )

2 5
2

5

45.2E E
E

∆ ∆
=

∆
, 

(61) 
4 3
5 1

p s
p s
−
−

 →  ( )2

3

5 1 1 2 3 4

1 1 1 1 0.18
E
E E E E E−

∆  
+ + + = ∆ ∆ ∆ ∆ ∆ 

, 

(62) 
4 3
5 2

p s
p s
−
−

 →  ( )2

3

5 2 2 3 4

1 1 1 0.81
E
E E E E−

∆  
+ + = ∆ ∆ ∆ ∆ 

, 

(63) 
4 3
5 3

p s
p s
−
−

 →  ( )2

3 3

3 4 4

2.16
E E

E E E
∆ ∆

= =
∆ ∆ ∆

, 

(64) 
4 3
5 4

p s
p s
−
−

 →  ( )
( )

2

3
2

4

4.67
E
E

∆
=

∆
, 

(65) 
4 3
6 1

p s
p s
−
−

 →  ( )2

3

6 1 1 2 3 4 5

1 1 1 1 1 0.38
E
E E E E E E−

∆  
+ + + + = ∆ ∆ ∆ ∆ ∆ ∆ 

, 

(66) 
4 3
6 2

p s
p s
−
−

 →  ( )2

3

6 2 2 3 4 5

1 1 1 1 1.64
E
E E E E E−

∆  
+ + + = ∆ ∆ ∆ ∆ ∆ 

, 

(67) 
4 3
6 3

p s
p s
−
−

 →  ( )2

3

6 3 3 4 5

1 1 1 4.16
E
E E E E−

∆  
+ + = ∆ ∆ ∆ ∆ 

, 
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(68) 
4 3
6 4

p s
p s
−
−

 →  ( )2

3

4 5

8.59
E

E E
∆

=
∆ ∆

, 

(69) 
4 3
6 5

p s
p s
−
−

 →  ( )
( )

2

3
2

5

15.8
E
E

∆
=

∆
, 

(70) 
5 1
5 2

p s
p s
−
−

 →  
5 1

5 2 2 3 4

1 2 3 4

1 1 1 1 4.491 1 1 1
E

E E E E
E E E E

−

−

 ∆
⋅ + + = ∆ ∆ ∆ ∆ + + +

∆ ∆ ∆ ∆

, 

(71) 
5 1
5 3

p s
p s
−
−

 →  
5 1

3 4

1 2 3 4

1 11.91 1 1 1
E

E E
E E E E

−∆
⋅ =
∆ ∆+ + +

∆ ∆ ∆ ∆

, 

(72) 
5 1
5 4

p s
p s
−
−

 →  ( )
5 1

2

4

1 2 3 4

1 25.81 1 1 1
E

E
E E E E

−∆
⋅ =
∆+ + +

∆ ∆ ∆ ∆

, 

(73) 
5 1
6 1

p s
p s
−
−

 →  
5 1

6 1 1 2 3 4 5

1 2 3 4

1 1 1 1 1 1 2.091 1 1 1
E

E E E E E E
E E E E

−

−

 ∆
⋅ + + + + = ∆ ∆ ∆ ∆ ∆ ∆ + + +

∆ ∆ ∆ ∆

, 

(74) 
5 1
6 2

p s
p s
−
−

 →  
5 1

6 2 2 3 4 5

1 2 3 4

1 1 1 1 1 9.051 1 1 1
E

E E E E E
E E E E

−

−

 ∆
⋅ + + + = ∆ ∆ ∆ ∆ ∆ + + +

∆ ∆ ∆ ∆

, 

(75) 
5 1
6 3

p s
p s
−
−

 →  
5 1

6 3 3 4 5

1 2 3 4

1 1 1 1 23.01 1 1 1
E

E E E E
E E E E

−

−

 ∆
⋅ + + = ∆ ∆ ∆ ∆ + + +

∆ ∆ ∆ ∆

, 

(76) 
5 1
6 4

p s
p s
−
−

 →  
5 1

4 5

1 2 3 4

1 48.41 1 1 1
E

E E
E E E E

−∆
⋅ =
∆ ∆+ + +

∆ ∆ ∆ ∆

, 

(77) 
5 1
6 5

p s
p s
−
−

 →  ( )
5 1

2

5

1 2 3 4

1 87.41 1 1 1
E

E
E E E E

−∆
⋅ =
∆+ + +

∆ ∆ ∆ ∆

, 

(78) 
5 2
5 3

p s
p s
−
−

 →  
5 2

3 4

2 3 4

1 2.661 1 1
E

E E
E E E

−∆
⋅ =
∆ ∆+ +

∆ ∆ ∆

, 

(79) 
5 2
5 4

p s
p s
−
−

 →  ( )
5 2

2

4

2 3 4

1 5.741 1 1
E

E
E E E

−∆
⋅ =
∆+ +

∆ ∆ ∆

, 

(80) 
5 2
6 1

p s
p s
−
−

 →  
5 2

6 1 1 2 3 4 5

2 3 4

1 1 1 1 1 1 0.461 1 1
E

E E E E E E
E E E

−

−

 ∆
⋅ + + + + = ∆ ∆ ∆ ∆ ∆ ∆ + +

∆ ∆ ∆

, 

(81) 
5 2
6 2

p s
p s
−
−

 →  
5 2

6 2 2 3 4 5

2 3 4

1 1 1 1 1 2.021 1 1
E

E E E E E
E E E

−

−

 ∆
⋅ + + + = ∆ ∆ ∆ ∆ ∆ + +

∆ ∆ ∆

, 
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(82) 
5 2
6 3

p s
p s
−
−

 →  
5 2

6 3 3 4 5

2 3 4

1 1 1 1 5.121 1 1
E

E E E E
E E E

−

−

 ∆
⋅ + + = ∆ ∆ ∆ ∆ + +

∆ ∆ ∆

, 

(83) 
5 2
6 4

p s
p s
−
−

 →  
5 2

4 5

2 3 4

1 10.61 1 1
E

E E
E E E

−∆
⋅ =
∆ ∆+ +

∆ ∆ ∆

, 

(84) 
5 2
6 5

p s
p s
−
−

 →  ( )
5 2

2

5

2 3 4

1 19.51 1 1
E

E
E E E

−∆
⋅ =
∆+ +

∆ ∆ ∆

, 

(85) 
5 3
5 4

p s
p s
−
−

 →  
( )

3 4 3
2

44

2.16E E E
EE

∆ ∆ ∆
= =
∆∆

, 

(86) 
5 3
6 1

p s
p s
−
−

 →  3 4

6 1 1 2 3 4 5

1 1 1 1 1 0.175E E
E E E E E E−

 ∆ ∆
+ + + + = ∆ ∆ ∆ ∆ ∆ ∆ 

, 

(87) 
5 3
6 2

p s
p s
−
−

 →  3 4

6 2 2 3 4 5

1 1 1 1 0.76E E
E E E E E−

 ∆ ∆
+ + + = ∆ ∆ ∆ ∆ ∆ 

, 

(88) 
5 3
6 3

p s
p s
−
−

 →  3 4

6 3 3 4 5

1 1 1 1.93E E
E E E E−

 ∆ ∆
+ + = ∆ ∆ ∆ ∆ 

, 

(89) 
5 3
6 4

p s
p s
−
−

 →  3 4 3

4 5 5

3.98E E E
E E E

∆ ∆ ∆
= =

∆ ∆ ∆
, 

(90) 
5 3
6 5

p s
p s
−
−

 →  
( )

3 4
2

5

7.32E E
E

∆ ∆
=

∆
, 

(91) 
5 4
6 1

p s
p s
−
−

 →  ( )2

4

6 1 1 2 3 4 5

1 1 1 1 1 0.081
E
E E E E E E−

∆  
+ + + + = ∆ ∆ ∆ ∆ ∆ ∆ 

, 

(92) 
5 4
6 2

p s
p s
−
−

 →  ( )2

4

6 2 2 3 4 5

1 1 1 1 0.35
E
E E E E E−

∆  
+ + + = ∆ ∆ ∆ ∆ ∆ 

, 

(93) 
5 4
6 3

p s
p s
−
−

 →  ( )2

4

6 3 3 4 5

1 1 1 0.89
E
E E E E−

∆  
+ + = ∆ ∆ ∆ ∆ 

, 

(94) 
5 4
6 4

p s
p s
−
−

 →  ( )2

4 4

4 5 5

1.84
E E

E E E
∆ ∆

= =
∆ ∆ ∆

, 

(95) 
5 4
6 5

p s
p s
−
−

 →  ( )
( )

2

4
2

5

3.39
E
E

∆
=

∆
, 

(96) 
6 1
6 2

p s
p s
−
−

 →  6 1 2 3 4 5

6 2

1 2 3 4 5

1 1 1 1

4.341 1 1 1 1
E E E E E

E
E E E E E

−

−

+ + +
∆ ∆ ∆ ∆ ∆

⋅ =
∆+ + + +

∆ ∆ ∆ ∆ ∆

, 

(97) 
6 1
6 3

p s
p s
−
−

 →  6 1 3 4 5

6 3

1 2 3 4 5

1 1 1

11.021 1 1 1 1
E E E E

E
E E E E E

−

−

+ +
∆ ∆ ∆ ∆

⋅ =
∆+ + + +

∆ ∆ ∆ ∆ ∆

, 
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(98) 
6 1
6 4

p s
p s
−
−

 →  
6 1

4 5

1 2 3 4 5

1 22.81 1 1 1 1
E

E E
E E E E E

−∆
⋅ =
∆ ∆+ + + +

∆ ∆ ∆ ∆ ∆

, 

(99) 
6 1
6 5

p s
p s
−
−

 →  ( )
6 1

2

5

1 2 3 4 5

1 41.91 1 1 1 1
E

E
E E E E E

−∆
⋅ =
∆+ + + +

∆ ∆ ∆ ∆ ∆

, 

(100) 
6 2
6 3

p s
p s
−
−

 →  6 2 3 4 5

6 3

2 3 4 5

1 1 1

2.541 1 1 1
E E E E

E
E E E E

−

−

+ +
∆ ∆ ∆ ∆

⋅ =
∆+ + +

∆ ∆ ∆ ∆

, 

(101) 
6 2
6 4

p s
p s
−
−

 →  
6 2

4 5

2 3 4 5

1 5.251 1 1 1
E

E E
E E E E

−∆
⋅ =
∆ ∆+ + +

∆ ∆ ∆ ∆

, 

(102) 
6 2
6 5

p s
p s
−
−

 →  ( )
6 2

2

5

2 3 4 5

1 9.661 1 1 1
E

E
E E E E

−∆
⋅ =
∆+ + +

∆ ∆ ∆ ∆

, 

(103) 
6 3
6 4

p s
p s
−
−

 →  
6 3

4 5

3 4 5

1 2.061 1 1
E

E E
E E E

−∆
⋅ =
∆ ∆+ +

∆ ∆ ∆

, 

(104) 
6 3
6 5

p s
p s
−
−

 →  ( )
6 3

2

5

3 4 5

1 3.81 1 1
E

E
E E E

−∆
⋅ =
∆+ +

∆ ∆ ∆

, 

(105) 
6 4
6 5

p s
p s
−
−

 →  
( )

4 5 4
2

55

1.84E E E
EE

∆ ∆ ∆
= =
∆∆

, 

 
Table 2. Quantum-mechanical ratios of transition probabilities between the pairs of quantum levels (see [11]) compared with 
the intensity ratios calculated in Table 1.                                                                      

No Case  Quantum-mechanical ratio Intensity ratio from Table 1 

(1) 
2 1
3 1

p s
p s
−
−

 →  6.25 3.8
1.64

= ; 5.4 

(2) 
2 1
3 2

p s
p s
−
−

 →  6.25 28.4
0.22

= ; 29.2 

(3) 
2 1
4 1

p s
p s
−
−

 →  6.25 9.4
0.68

= ; 17.1 

(4) 
2 1
4 2

p s
p s
−
−

 →  6.25 65.8
0.095

= ; 83.3 

(5) 
2 1
4 3

p s
p s
−
−

 →  6.25 208
0.030

= ; 238 

(6) 
2 1
5 1

p s
p s
−
−

 →  6.25 18.4
0.34

= ; 43 

(7) 
2 1
5 2

p s
p s
−
−

 →  6.25 128
0.049

= ; 193 
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(8) 
2 1
5 3

p s
p s
−
−

 →  6.25 391
0.016

= ; 514 

(9) 
2 1
5 4

p s
p s
−
−

 →  6.25 833
0.0075

= ; 1110 

(10) 
2 1
6 1

p s
p s
−
−

 →  6.25 32
0.195

= ; 90 

(11) 
2 1
6 2

p s
p s
−
−

 →  6.25 216
0.029

= ; 390 

(12) 
2 1
6 3

p s
p s
−
−

 →  6.25 651
0.0096

= ; 987 

(13) 
2 1
6 4

p s
p s
−
−

 →  6.25 1390
0.0045

= ; 2045 

(14) 
2 1
6 5

p s
p s
−
−

 →  6.25 2980
0.0021

= ; 3765 

(15) 
3 1
3 2

p s
p s
−
−

 →  1.64 7.45
0.22

= ; 5.4 

(16) 
3 1
4 1

p s
p s
−
−

 →  1.64 2.41
0.68

= ; 3.2 

(17) 
3 1
4 2

p s
p s
−
−

 →  1.64 17.3
0.095

= ; 15.4 

(18) 
3 1
4 3

p s
p s
−
−

 →  1.64 54.7
0.030

= ; 44.1 

(19) 
3 1
5 1

p s
p s
−
−

 →  1.64 4.82
0.34

= ; 7.98 

(20) 
3 1
5 2

p s
p s
−
−

 →  1.64 33.5
0.049

= ; 35.8 

(21) 
3 1
5 3

p s
p s
−
−

 →  1.64 102
0.016

= ; 95.4 

(22) 
3 1
5 4

p s
p s
−
−

 →  1.64 218
0.0075

= ; 206 

(23) 
3 1
6 1

p s
p s
−
−

 →  1.64 8.4
0.195

= ; 16.6 

(24) 
3 1
6 2

p s
p s
−
−

 →  1.64 56.6
0.029

= ; 72.2 

(25) 
3 1
6 3

p s
p s
−
−

 →  1.64 171
0.0096

= ; 184 

(26) 
3 1
6 4

p s
p s
−
−

 →  1.64 364
0.0045

= ; 379 
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(27) 
3 1
6 5

p s
p s
−
−

 →  1.64 781
0.0021

= ; 697 

(28) 
3 2
4 1

p s
p s
−
−

 →  0.22 0.32
0.68

= ; 0.60 

(29) 
3 2
4 2

p s
p s
−
−

 →  0.22 2.32
0.095

= ; 2.86 

(30) 
3 2
4 3

p s
p s
−
−

 →  0.22 7.33
0.030

= ; 8.16 

(31) 
3 2
5 1

p s
p s
−
−

 →  0.22 0.65
0.34

= ; 1.48 

(32) 
3 2
5 2

p s
p s
−
−

 →  0.22 4.49
0.049

= ; 6.63 

(33) 
3 2
5 3

p s
p s
−
−

 →  0.22 13.8
0.016

= ; 17.6 

(34) 
3 2
5 4

p s
p s
−
−

 →  0.22 29.3
0.0075

= ; 38.1 

(35) 
3 2
6 1

p s
p s
−
−

 →  0.22 1.13
0.195

= ; 3.08 

(36) 
3 2
6 2

p s
p s
−
−

 →  0.22 7.6
0.029

= ; 13.4 

(37) 
3 2
6 3

p s
p s
−
−

 →  0.22 22.9
0.0096

= ; 33.9 

(38) 
3 2
6 4

p s
p s
−
−

 →  0.22 48.9
0.0045

= ; 70.1 

(39) 
3 2
6 5

p s
p s
−
−

 →  0.22 105
0.0021

= ; 129 

(40) 
4 1
4 2

p s
p s
−
−

 →  0.68 7.14
0.095

= ; 4.76 

(41) 
4 1
4 3

p s
p s
−
−

 →  0.68 22.7
0.030

= ; 13.7 

(42) 
4 1
5 1

p s
p s
−
−

 →  0.68 2.0
0.34

= ; 2.47 

(43) 
4 1
5 2

p s
p s
−
−

 →  0.68 13.9
0.049

= ; 11.1 

(44) 
4 1
5 3

p s
p s
−
−

 →  0.68 42.5
0.016

= ; 29.5 

(45) 
4 1
5 4

p s
p s
−
−

 →  0.68 90.6
0.0075

= ; 63.6 

(46) 
4 1
6 1

p s
p s
−
−

 →  0.68 3.49
0.195

= ; 5.14 
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(47) 
4 1
6 2

p s
p s
−
−

 →  0.68 23.4
0.029

= ; 22.3 

(48) 
4 1
6 3

p s
p s
−
−

 →  0.68 70.8
0.0096

= ; 56.8 

(49) 
4 1
6 4

p s
p s
−
−

 →  0.68 151
0.0045

= ; 117 

(50) 
4 1
6 5

p s
p s
−
−

 →  0.68 324
0.0021

= ; 216 

(51) 
4 2
4 3

p s
p s
−
−

 →  0.095 3.17
0.030

= ; 2.86 

(52) 
4 2
5 1

p s
p s
−
−

 →  0.095 0.28
0.34

= ; 0.52 

(53) 
4 2
5 2

p s
p s
−
−

 →  0.095 1.94
0.049

= ; 2.32 

(54) 
4 2
5 3

p s
p s
−
−

 →  0.095 5.94
0.016

= ; 6.17 

(55) 
4 2
5 4

p s
p s
−
−

 →  0.095 12.7
0.0075

= ; 13.2 

(56) 
4 2
6 1

p s
p s
−
−

 →  0.095 0.49
0.195

= ; 1.08 

(57) 
4 2
6 2

p s
p s
−
−

 →  0.095 3.28
0.029

= ; 4.68 

(58) 
4 2
6 3

p s
p s
−
−

 →  0.095 9.9
0.0096

= ; 11.9 

(59) 
4 2
6 4

p s
p s
−
−

 →  0.095 21.1
0.0045

= ; 24.6 

(60) 
4 2
6 5

p s
p s
−
−

 →  0.095 45.2
0.0021

= ; 45.2 

(61) 
4 3
5 1

p s
p s
−
−

 →  0.030 0.09
0.34

= ; 0.18 

(62) 
4 3
5 2

p s
p s
−
−

 →  0.030 0.61
0.049

= ; 0.81 

(63) 
4 3
5 3

p s
p s
−
−

 →  0.030 1.88
0.016

= ; 2.16 

(64) 
4 3
5 4

p s
p s
−
−

 →  0.030 4.0
0.0075

= ; 4.67 

(65) 
4 3
6 1

p s
p s
−
−

 →  0.030 0.15
0.195

= ; 0.38 

(66) 
4 3
6 2

p s
p s
−
−

 →  0.030 1.03
0.029

= ; 1.64 
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Continued 

(67) 
4 3
6 3

p s
p s
−
−

 →  0.030 3.13
0.0096

= ; 4.16 

(68) 
4 3
6 4

p s
p s
−
−

 →  0.030 6.67
0.0045

= ; 8.59 

(69) 
4 3
6 5

p s
p s
−
−

 →  0.030 14.3
0.0021

= ; 15.8 

(70) 
5 1
5 2

p s
p s
−
−

 →  0.34 6.94
0.049

= ; 4.49 

(71) 
5 1
5 3

p s
p s
−
−

 →  0.34 21.3
0.016

= ; 11.9 

(72) 
5 1
5 4

p s
p s
−
−

 →  0.34 45.3
0.0075

= ; 25.8 

(73) 
5 1
6 1

p s
p s
−
−

 →  0.34 1.74
0.195

= ; 2.09 

(74) 
5 1
6 2

p s
p s
−
−

 →  0.34 11.7
0.029

= ; 9.05 

(75) 
5 1
6 3

p s
p s
−
−

 →  0.34 35.4
0.0096

= ; 23.0 

(76) 
5 1
6 4

p s
p s
−
−

 →  0.34 75.6
0.0045

= ; 48.4 

(77) 
5 1
6 5

p s
p s
−
−

 →  0.34 162
0.0021

= ; 87.4 

(78) 
5 2
5 3

p s
p s
−
−

 →  0.049 3.06
0.016

= ; 2.66 

(79) 
5 2
5 4

p s
p s
−
−

 →  0.049 6.53
0.0075

= ; 5.74 

(80) 
5 2
6 1

p s
p s
−
−

 →  0.049 0.25
0.195

= ; 0.46 

(81) 
5 2
6 2

p s
p s
−
−

 →  0.049 1.69
0.029

= ; 2.02 

(82) 
5 2
6 3

p s
p s
−
−

 →  0.049 5.10
0.0096

= ; 5.12 

(83) 
5 2
6 4

p s
p s
−
−

 →  0.049 10.9
0.0045

= ; 10.6 

(84) 
5 2
6 5

p s
p s
−
−

 →  0.049 23.3
0.0021

= ; 19.5 

(85) 
5 3
5 4

p s
p s
−
−

 →  0.016 2.13
0.0075

= ; 2.16 

(86) 
5 3
6 1

p s
p s
−
−

 →  0.016 0.082
0.195

= ; 0.175 
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Continued 

(87) 
5 3
6 2

p s
p s
−
−

 →  0.016 0.55
0.029

= ; 0.76 

(88) 
5 3
6 3

p s
p s
−
−

 →  0.016 1.67
0.0096

= ; 1.93 

(89) 
5 3
6 4

p s
p s
−
−

 →  0.016 3.56
0.0045

= ; 3.98 

(90) 
5 3
6 5

p s
p s
−
−

 →  0.016 7.62
0.0021

= ; 7.32 

(91) 
5 4
6 1

p s
p s
−
−

 →  0.0075 0.038
0.195

= ; 0.081 

(92) 
5 4
6 2

p s
p s
−
−

 →  0.0075 0.26
0.029

= ; 0.35 

(93) 
5 4
6 3

p s
p s
−
−

 →  0.0075 0.78
0.0096

= ; 0.89 

(94) 
5 4
6 4

p s
p s
−
−

 →  0.0075 1.67
0.0045

= ; 1.84 

(95) 
5 4
6 5

p s
p s
−
−

 →  0.0075 3.57
0.0021

= ; 3.39 

(96) 
6 1
6 2

p s
p s
−
−

 →  0.195 6.72
0.029

= ; 4.34 

(97) 
6 1
6 3

p s
p s
−
−

 →  0.195 20.3
0.0096

= ; 11.02 

(98) 
6 1
6 4

p s
p s
−
−

 →  0.195 43.3
0.0045

= ; 22.8 

(99) 
6 1
6 5

p s
p s
−
−

 →  0.195 92.9
0.0021

= ; 41.9 

(100) 
6 2
6 3

p s
p s
−
−

 →  0.029 3.02
0.0096

= ; 2.54 

(101) 
6 2
6 4

p s
p s
−
−

 →  0.029 6.44
0.0045

= ; 5.25 

(102) 
6 2
6 5

p s
p s
−
−

 →  0.029 13.8
0.0021

= ; 9.66 

(103) 
6 3
6 4

p s
p s
−
−

 →  0.0096 2.10
0.0045

= ; 2.06 

(104) 
6 3
6 5

p s
p s
−
−

 →  0.0096 4.6
0.0021

= ; 3.8 

(105) 
6 4
6 5

p s
p s
−
−

 →  0.0045 2.14
0.0021

= ; 1.84 
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Table 3. Energy intervals E∆  entering the calculations of Table 1. All presented E∆  values contain the common factor 
of 4 22ef m e=  .                                                                                       

1 4 12 2 2 2

1 1 1 1; ;
1 2 1 4

E f E f−

   ∆ = − ∆ = −   
   

 

2 5 2 6 22 2 2 2 2 2

1 1 1 1 1 1; ; ;
2 3 2 5 2 6

E f E f E f− −

     ∆ = − ∆ = − ∆ = −     
     

 

3 6 3 6 12 2 2 2 2 2

1 1 1 1 1 1; ; .
3 4 3 6 1 6

E f E f E f− −

     ∆ = − ∆ = − ∆ = −     
     

 

4 5 12 2 2 2

1 1 1 1; ;
4 5 1 5

E f E f−

   ∆ = − ∆ = −   
   

 

5 2 2

1 1 ;
5 6

E f ∆ = − 
 

 

 
The lifetime of the excited state p is represented by a sum of  

1
p q

p q

t
a −

−

= ∆                                   (41) 

performed over all possible transitions from state p to states q which are lower than p (see [14]), i.e.  
.p qE E>                                    (42) 

In the hydrogen atom the lowest possible state q is represented by 1n = . This means that for 2p n= =  we 
have only one term:  

2 1 1
2 1 1

1 ;ht t
a E−

−

= ∆ = ∆ =
∆

                            (43) 

for 3p n= =  we have two terms which are  

3 2 2
3 2 2

1 ht t
a E−

−

= ∆ = ∆ =
∆

                           (44) 

and 

3 1 1 2
3 1 1 2

1 ;h ht t t
a E E−

−

= ∆ = ∆ + ∆ = +
∆ ∆

                      (45) 

for 4p n= =  we have three transitions giving  

4 3 3
4 3 3

1 ,ht t
a E−

−

= ∆ = ∆ =
∆

                           (46) 

4 2 3 2
4 2 3 2

1 ,h ht t t
a E E−

−

= ∆ = ∆ + ∆ = +
∆ ∆

                     (46a) 

4 1 3 2 1
4 1 3 2 1

1 ,h h ht t t t
a E E E−

−

= ∆ = ∆ + ∆ + ∆ = + +
∆ ∆ ∆

                (46b) 

etc. In the last steps of (46)-(46b) we applied the partition of the transition times into their component intervals 
similar to those applied in Section 3. 

In general the lifetime of state p is  

qpq
p a

T
−

∑ 1=life                                 (47) 
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where q are the states lower than p so they all satisfy (42). Next any reciprocal value of p qa −  is  

1 1 .
i p q

p q
i qp q i

t h
a E

= −

−
=−

= ∆ =
∆∑                             (48) 

We have found before [6] [7] that the intervals nE∆  and nt∆  satisfy the equation  

n nt E h∆ ∆ =                                  (49) 

where for large n the formula  
3 3

4
2π

n n
nt T

me
∆ = =

                               (50) 

is fulfilled with a good accuracy: the nT  is the time period of the electron circulation about the nucleus of the 
hydrogen atom. Roughly the Formula (50) can be applied also for small n. In this way we obtain the lifetime  

3
life 16

2 1 4
2π 10  sec.T T
me

−≅ = ≈
                               (51) 

for the level 2p n= = . The lifetime for the level 3p n= =  which is a sum of (44) and (45) becomes  

( )
3

life 3 3
3 1 2 4

2π2 1 2 2 ;T T T
me

≅ + = + ×
                           (52) 

the lifetime for the level 4p n= =  is a sum of terms entering the Formulaes (46)-(48):  

( )
3

life 3 3 3
4 1 2 2 4

2π2 3 1 2 2 3 3 .T T T T
me

≅ + + = + × + ×
                     (53) 

The procedure outlined above can be extended to an arbitrary n. We obtain [15]  

( ) ( ) ( )
3 31

life 4 2
4 4

1

2π 1 2π1 2 1 3 3 1
30

k n

n
k

T k n n n n n
me me

= −

=

≈ = − − − −∑                    (54) 

so for large n  
3

life 5
4

1 2π .
5nT n

me
≈

                                  (55) 

Evidently the present calculations do not take into account the quantum numbers other than n. 
The quantum-mechanical calculations done for the lifetimes of the excited levels in the hydrogen atom are 

represented in [14]. For 1n  this formalism gives  
life 4.5~ .nT n                                   (56) 

7. Transition Time and Emission Intensity between Energy States of  
the Hydrogen-Like Atom Having the Nuclear Charge Ze; Z > 1 

In considering the transition times of electrons in the hydrogen-like atom a situation when the electron is moving 
in the field of the nucleus having the charge Ze  where 1Z >  seems to be of interest. In particular the change 
with Z of the intervals E∆  and t∆  between the nearest quantum states in the system is worth to be considered. 
For 1Z =  we demonstrated (see [6] [7]) that for such pairs of states the intervals of energy and time satisfy the 
relation  

.E t h∆ ∆ =                                   (57) 

In fact both E∆  and t∆  depend on Z. First we have that  
2~E Z∆                                    (58) 

because  

( ) ( )2 1 ;n nE Z Z E Z= =                             (59) 
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see e.g. [13]. Our aim is to calculate the dependence  

( ).t t Z∆ = ∆                                   (60) 

This is an easy task if we note that the Joule-Lenz law gives  

2E Ri
t

∆
=

∆
                                   (61) 

where  

2 n
V ER T
i e

∆
= ≅                                  (62) 

is the resistance of the current i induced by the energy transition E∆  and nT  is the time of the electron 
circulation involved in calculating E∆ . Since  

n

ei
T

≅                                        (63) 

equation (61) becomes approximately  
2

2 2n
nn

E E e ET
t Te T

∆ ∆ ∆
≈ =

∆
                                 (64) 

so  

nt T∆ ≈                                       (65) 

holds irrespectively of the size of Z. 
It is easy to show that ( )nT Z  in a hydrogen-like system should be  

( ) 2~ ;nT Z Z −                                     (66) 

see also [13]. For example let us note that according to the virial theorem  
( ) ( )
kin pot2 0n nE E+ =                                    (67) 

we obtain  

( ) ( ) ( ) ( )
kin pot kin pot

1
2

n n n n
nE E E E E= + = − =                             (68) 

where  

( )

( )
2

pot .n

n

ZeE
r Z

= −                                    (69) 

Equation (59) together with (68) implies that  

( ) ( )1n
n

r Z
r Z

Z
=

=                                   (70) 

which is in accordance with the well-known result; see e.g. [13]. On the other hand  

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( ) ( )
( )

2 2 2
2

kin 2 2

2 2
2 2

kin 2

2π 2π 1 1
2 2 2

2π 1
1 .

2 1

n n n
n

n n

n n

n

r Z r Zm m mE v Z
T Z Z T Z

r ZmZ E Z Z
T Z

  =
= = = 

  

=
= = =

=

                (71) 

This implies that  

( ) ( )4 2 2 1n nZ T Z T Z= =                                 (72) 
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or  

( ) ( )2 1n nT Z Z T Z−= =                                 (73) 

which is the result given in (66). 
In effect because of (65)  

( ) ( ) ( ) ( ) ( ) ( )2
2

11 1 ,n n n n n nE Z t Z E Z T Z Z E Z T Z h
Z

∆ ∆ ≅ ∆ ∆ = ∆ = = =             (74) 

so the Formula (57) remains unchanged upon the change of Z. 
But the result of (73) has an important consequence concerning the emission intensity which is  

( )
( )

( )
( )

2
4

2

1 1
,1 11n

Z E Z E ZEI Z
t t ZT Z

Z

∆ = ∆ =∆
= ≅ ≅
∆ ∆ ==

                          (75) 

so we obtain that the intensity of transitions in the hydrogen-like system having 1Z >  is approximately 4Z  
times larger than intensity of similar transitions obtained in the hydrogen atom having 1Z = . An experimental 
verification of this result seems to be a not too difficult task. 

8. Summary and Discussion   
In the paper a semiclassical approach to the transition intensities between p and s quantum levels of the 
hydrogen atom is compared with the quantum-mechanical transition probabilities for the same pairs of levels. 
An evident convergence between the sets of the data calculated by the both methods is obtained. 

The present method is fully a non-probabilistic one. This is so because the idea of probability became 
unnecessary to apply as far as we do not ask when (or why) the system is going to change. In fact we look for a 
definite change of the occupation of quantum states in the system and the energy connected with it. In this case 
there is no uncertainty, or search, in the system to obtain the interval of time necessary for transition. Formally 
the changes of the quanta of energy and time remain on an equal footing. A difference-especially evident in the 
case of the hydrogen atom-is mainly connected with the computational practice: The quanta of energy are easy 
to calculate (with the aid of the fundamental constants of nature taken into account), but we are unable to do the 
same thing with the intervals of time. In effect first the intervals of energy have to be obtained, next they serve 
us as a background for calculating the intervals of time. 

Once the system “decides” to change its definite population into another one, the time necessary to perform 
the transition process is defined-together with the energy change connected with transition-by the complemen- 
tary relation (3), or a superposition of (3). A single (3) is adequate for an emissive transition between two 
neighbouring energy levels. On the other hand, if for some (unknown) reasons, the atom “decides” to choose the 
energy change (emission) corresponding to a larger distance between the levels than described by a single 
Formula (3), the transition time should necessarily fit to this requirement. In this case the individual formulae (3) 
serve also to calculate the components of the whole time interval necessary for transition; see formulae (26) and 
(27). 

Computationally this makes the semiclassical approach much more simple than the quantum-mechanical one. 
For example we readily obtain that the ratio of the intensities ( )1n p ns+ −  transition should be larger than the 

intensity of ( ) ( )2 1n p n s+ − +  transition for any n. This is so because the ratio of the intensity of the first kind 
of transitions to the intensity of the second kind transitions is given by  

( )
( )

2

2
1

n

n

E

E +

∆

∆
                                      (76) 

and we have (see Table 3) that  

1n nE E +∆ > ∆                                      (77) 

For a reason similar to (77) the intensity of ( )2n p ns+ −  should be larger than intensity ( ) ( )3 1n p n s+ − + . 
This is so because the ratio of these intensities is given by  
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1

1 2 2

n n n

n n n

E E E
E E E

+

+ + +

∆ ∆ ∆
=

∆ ∆ ∆
                                 (78) 

and we have  

2.n nE E +∆ > ∆                                    (79) 

It should be noted that when we consider space and time as elements of a common space-and-time system, the 
quantum theory “selects”the time variable to a treatment based on a fully different footing than it may concern 
the intervals in space. Because of Equation (3) the time is divided into portions, or quanta, similar to those of 
their energy partners E∆ . 

In result a whole of the time interval between two events-which are the beginning and end of the emission-is 
divided into portions, or quanta, similar to those of the energy partners entering (3). In effect the time interval 
between two events is either elementary, i.e. defined by a single t∆  entering one of the elementary formulae in 
(3), or the transition process is not elementary, i.e. its time interval is composed of a sum of it∆  entering 
different elementary formulae in (3). A similar existence and selection of the elementary intervals defining the 
spatial behaviour of the electron particle seem to be yet unknown. 

A simple example of an application of the Formula (30) can be given also for some cases of the ratios of the 
s-p transition intensities which have been not yet considered in the present paper. For example we have for the 
ratio  

( )2
2 22 2

2 3 3
2 2

1 1
3 2 2 3 2.86,1 14 2

3 4

E Es p
s p E E E

−∆ ∆−
→ = = =

− ∆ ∆ ∆ −
                       (80) 

wheras the quantum-mechanical ratio of transition probabilities is  
0.63 : 0.25 2.52=  [11] [16];                             (81) 

for the intensity ratio  

( )2
2 23 3

3 4 4
2 2

1 1
4 3 3 4 2.16,1 15 3

4 5

E Es p
s p E E E

−∆ ∆−
→ = = =

− ∆ ∆ ∆ −
                      (82) 

whereas the quantum-mechanical ratio of transition probabilities is  
0.018 : 0.0085 2.12=  [11] [16]                           (83) 

and for the intensity ratio  

( )2
2 24 4

4 5 5
2 2

1 1
5 4 4 5 1.84,1 16 4

5 6

E Es p
s p E E E

−∆ ∆−
→ = = =

− ∆ ∆ ∆ −
                      (84) 

whereas the quantum-mechanical ratio of transition probabilities is  
0.0065 : 0.0035 1.86=  [11] [16]                            (85) 
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Abstract 
The pattern of isentropes in the vicinity of a first-order phase transition is proposed as a key for a 
sub-classification. While the confinement-deconfinement transition, conjectured to set in beyond 
a critical end point in the QCD phase diagram, is often related to an entropic transition and the 
apparently settled gas-liquid transition in nuclear matter is an enthalphic transition, the conceiv-
able local isentropes w.r.t. “incoming” or “outgoing” serve as another useful guide for discussing 
possible implications, both in the presumed hydrodynamical expansion stage of heavy-ion colli-
sions and the core-collapse of supernova explosions. Examples, such as the quark-meson model 
and two-phase models, are shown to distinguish concisely the different transitions.  

 
Keywords 
Entropic and Enthalpic Phase Transitions, Chiral Phase Transition, Isentropes,  
Quark-Meson Model, Linear Sigma Model with Linearized Fluctuations  

 
 

1. Introduction 
The beam energy scan at RHIC [1]-[7] is aimed at searching for a critical end point (CEP) in the phase diagram 
of strongly interacting matter, which is related to confinement-deconfinement effects. At a CEP [8]-[11], a line 
of first-order phase transitions (FOPT) is conjectured to set in. Still, the hypothetical CEP could not (yet) be 
localized by ab initio QCD calculations. Therefore, details of the FOPT curve and details of the equation of state 
in its vicinity are unsettled to a large extent. 

The utmost importance of the search for a CEP is also manifested by the fact that further ongoing relativistic 

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2016.78077
http://dx.doi.org/10.4236/jmp.2016.78077
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


F. Wunderlich et al. 
 

 
853 

heavy-ion collision experiments, such as NA61/SHINE [12]-[15], have it on the their priority list, and planned 
experiments at FAIR, e.g. CBM [16], at NICA, e.g. by the MPD group [17], and at J-PARC, e.g. by the J-PARC 
heavy-ion collaboration [18], are primarily motivated by it. The proceedings of the CPOD conferences [19] [20] 
document well the theoretical expectations and experimental achievements in this field. 

The CEP itself (which may occur also as a tricritical point [21]) is interesting, as it is expected to show up in 
specific fluctuation observables [22]-[27], related to critical exponents, however, also the emerging FOPT curve 
can give rise to interesting physics phenomena. If the hypothetical FOPT curve continues to small or even zero 
temperatures, astrophysical consequences for neutron stars [28]-[41] proto-neutron star formation and 
core-collapse supernova explosions [33] [36] [42]-[44] are directly related to the physics of heavy-ion collisions, 
supposed the FOPT curve is accessible in such experiments (cf. [45] for searches for two-phase mixture effects 
related to the deconfinement FOPT). 

From the theory side, the famous Columbia plot (cf. [21] for an update) unravels the following qualitative 
features: (i) At zero chemical potential, three-flavor QCD in the chiral limit displays a first-order confinement-  
deconfinement transition which extends to non-zero strange-quark masses tri

s sm m<  and light-quark masses 

, 0u dm → ; the delineation curve to the region , , 0u d sm >  is related to a 2nd order transition with ( )2Z  

symmetry, beyond which the transition turns into a cross over; for tri
s sm m>  and , 0u dm → , the 2nd order 

transition line is related to ( )4O  symmetry. The physical point , , 0u d sm >  is in the cross over region. (ii) For 
tri

s sm m>  and , 0u dm → , the phase structure in the temperature-chemical potential plane is determined by a 

2nd order transition curve of presumably negative slope (with the above mentioned universal ( )4O  scaling  
properties) which ends in a tri-critical point, where the 1st order transition sets in, expected to continue to zero 
temperature. (iii) Upon enlarging ,u dm  toward the physical values and keeping the conjectured tri 0s sm m> > , 
the 2nd oder transition curve turns into the pseudo-critical (cross over) curve which ends at non-zero chemical 
potential in a CEP. The latter one can be thought to arise from the previous tri-critical point along a 2nd order 
( )2Z  curve when enlarging ,u dm . Therefore, the expectation for 2 + 1 flavor QCD with physical quark masses  

is the existence of a CEP at a temperature below the pseudo-critical temperature of ( )154 9 MeV±  and non-  
zero chemical potential and an emerging 1st oder transition curve going to zero temperature [21]. Present day 
lattice QCD evaluations attempt to quantify these features, cf. [46], for example. 

In a recent series of papers [47]-[49], the authors promote a useful sub-classification of FOPTs by attributing 
the confinement-deconfinement transition to an entropic one, while the established gas-liquid transition in 
nuclear matter [8]-[11] is classified as enthalpic one. The key is the Clausius-Clapeyron equation  

( ) 1 1 2 2

1 2

d
d 1 1
cp T s n s n
T n n

−
=

−
                                  (1) 

which relates the slope of the critical pressure, cp , along the FOPT w.r.t. temperature, T, to entropy densities 
1,2s  and baryon densities 1,2n . Denoting by the label “1” the dilute (confined/hadron) phase and by “2” the 

dense (deconfined/quark-gluon) phase, the slope of the critical pressure curve is positive, d d 0cp T > , for 
larger entropy per baryon in phase “1”, meaning an enthalpic FOPT. In contrast, for larger entropy per baryon in 
phase “2” the critical curve has a negative slope, d d 0cp T <  meaning an entropic FOPT. 

Some guidance for the trajectories of fluid elements is given by the isentropic curves, determined by 
consts n = , when having in mind the adiabatic expansion of matter created in the course of a heavy-ion 

collision as long as the respective fluid element is in a pure phase, “2” or “1”. The details of the transit through 
the two-phase coexistence region depend on the latent heat and other details of the equation of state. With 
respect to investigations of the heavy-ion dynamics (cf. [50]) seeking for imprints of the conjectured QCD 
FOPT and CEP signatures, it seems tempting to clarify in a clear-cut picture the different patterns of isentropes 
being related to a FOPT. 

Our note is organized as follows. In Section 2 we discuss obvious types of isentropic patterns which may 
accompany a FOPT in strongly interacting matter. The pattern classification is put in relation to the entropic and 
enthalpic sub-classes. We see enthalpic transitions either with incoming-only or incoming + outgoing isentropes, 
thus qualifying also the latter one for modeling the QCD deconfinement-confinement transition. Examples based 
on transparent models are presented in Section 3 and Appendix. In Section 4, we summarize.  



F. Wunderlich et al. 
 

 
854 

2. Isentropic Patterns  
We restrict our discussion to the grand canonical description of matter by an equation of state ( ),p T µ  with 
one conserved charge, e.g. baryon number, related to the chemical potential µ . Entropy density and baryon 
density are given by ( ),s T p Tµ = ∂ ∂  and ( ),n T pµ µ= ∂ ∂  and the Gibbs-Duhem relation e p sT nµ+ = +  
holds (e is the energy density). Considering the region 0s >  and 0n > , the isobars constp =  have negative 
slopes in the T-µ diagram upon 

d 0d d pT n sµ
=
= − . We assume locally a FOPT which is signaled by a kinky 

behavior of ( ),p T u  over the T-µ plane, both in T and µ  directions. ( ),p T µ  refers here to stable states; if 
multi-valued regions emerge, the branch with maximum pressure is the stable one. We further assume, for the 
sake of definiteness, the FOPT curve has a negative slope, ( )d d 0cT µ µ < . In fact, ( ) ( )( )1 2d , , 0p T p Tµ µ− =  

on the FOPT curve delivers ( ) ( )1 2 1 2d dcT n n s sµ = − − − , where we suppose 1 2n n<  and 1 2s s< . 
We also recall from the equilibrium conditions 1 2T T= , 1 2µ µ=  and 1 2p p=  on the FOPT curve the 

relation  

( ) 1 1 2 2

1 2

d
d 1 1
cp n s n s

s s
µ
µ

−
=

−
                                  (2) 

which is another form of the Clausius-Clapeyron Equation (1). 
From selected examples we can infer three different patterns of isentropes in the T-µ plane: 
Type IA: Isentropes come in from the phase “2”, enter the critical curve ( )cT µ  and leave it toward the phase 

“1” at lower temperature, see Figure 1, left top panel. According to Clausius-Clapeyron (1) one has 
( )d d 0cp T T > , i.e. a gas-liquid or enthalpic transition in the nomenclature of [49]. 

Type IB: Isentropes come in from the phase “2”, enter the critical curve ( )cT µ  and evolve toward phase “1” 

at higher temperature, see Figure 1 middle top panel. Clausius-Clapeyron tells us for that case ( )d d 0cp T T < , 
i.e. a QCD type or entropic FOPT in the nomenclature of [49]. 

Type II: Isentropes come in from both sides, i.e. phases “1” and “2”, enter the critical curve ( )cT µ  and run 
down on it, see Figure 1, right top panel. According to our experience with a number of models, 2 2 1 1s n s n<  
in a point on the critical curve, i.e. also a gas-liquid type or enthalpic FOPT with ( )d d 0cp T T > . 

 

 
Figure 1. Schematic representation of isentropes (lines with arrows indicating the expansion path) for the FOPT 
types IA (left panels, consts n = ), IB (middle panels, consts n = ) and II (right panels, 1 1 2 2s n s n> ) in the 
T-µ plane (upper row) and the T-n plane (lower row). States in “1” (see text) are left/below the phase border line 
(fat curves in the upper row), while states in “2” are right/above. The green areas in the lower row depict a part of 
the two-phase coexistence regions for the respective types. Note that the coexistence regions (green areas) can 
appear in quite different shapes.                                                                    
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The direction of isentropes is such to describe expansion, i.e. both temperature and density drop in pure 
phases. Type I is related to in-out (or going-through) isentropes, while type II has incoming-only. A prominent 
example for type II is the van der Waals equation of state, cf. [51] and Figure 1 in [52]. We emphasize the local 
character of our consideration, that is the restriction to the vicinity of a T-µ point on the presumed phase 
boundary. These patterns translate directly into the T-n plane, see bottom row of Figure 1, where one verifies 
that dropping temperatures along isentropes in pure phases imply in fact dropping densities, too, i.e. proper  
expansion. Types IA and IB are delineated by 1 1 2 2s n s n= , resulting in ( ) constcp T = . Types IA and II 

share as common feature flatter isobars than the critical curve ( )cT µ ; for type IB, the critical curve is flatter 
than the isobars. For the moment being we do not see the need to study further fine details, e.g. slopes and 
relative slopes of isentropes near the critical curve. 

We would like to emphasize that also models of type IA could serve as an illustration of the possible structure 
of the phase diagram, despite they belong to the gas-liquid transition type: Suppose ( )1 00cn T n→ > , where 0n  

is the nuclear saturation density and 1
cn  denotes the density of phase “1” at the critical curve, then nothing  

seems to speak against the scenario with an expanding and cooling fluid element initially in phase “2”, which 
traverses the confinement transition region (two-phase coexistence) and arrives in the hadronic world of phase 
“1”. That means, if “2” is a deconfined state, then both IA and IB allow for a graceful exit into the pure 
(hadronic) phase “1”, while II ends locally in a two-phase mixture of “1 + 2” for adiabatic expansion dynamics, 
i.e. some part of matter remains in the deconfined state “2”, e.g. as quark nuggets, contrary to our present 
expectations and in agreement with the failure of previous searches for them [53]-[57], (see however [58] [59] 
for considering them as candidates of dark matter). Whether realistic models can be designed to do so (cf. [60] 
for a recent attempt), in agreement with serving for two-solar mass neutron stars, is a question beyond the 
schematic phenomenological approaches. Anyhow, type IA supplements the considerations favored in [48] 
[49].  

3. Examples  
We are going to present a few examples for the above discussed transition types. For that, we select the 
quark-meson model1 (cf. [63] for a description of the setting used here2) with linearized meson field 
fluctuations3 and show that only shifting the nucleon/quark vacuum mass parameter qm  relative to the critical 
chemical potential at zero temperature 0

cµ  is sufficient to switch from IA to II. The latter one is to a large 
extent determined by the product of the sigma mass parameter mσ  and the (classical) vacuum expectation  
value of the sigma field 

0σ . We are fully aware of the shortcomings of such a model w.r.t. proper account of  

nuclear matter properties at low temperatures and QCD thermodynamics at high temperatures, as discussed in 
[48]. But in view of the pertinent complexity of the QCD degrees of freedom in the strong coupling regime such 
a model with chiral symmetry breaking and restoration may give some glimpses of what is conceivable, in 
principle. 

Also our model for the type IB (cf. Appendix) has, at best, illustrative character: It is a two-phase 
construction with states in “2” modeled by the extrapolation of weakly interacting quarks and gluons, 
supplemented by an effective bag constant to account for some non-perturbative aspects, and states in “1” 
referring to thermal light-meson (pion) excitations and nucleons in some mean field approximation including a 
realistic incompressibility modulus. 

Figure 2 exhibits the isobars constp =  over the T-µ plane for two parameter sets (see figure caption for the 
values) of the quark-meson model in linearized fluctuations approximation [63] [65]-[67]. These patterns look 
fairly similar at a first glance. The isobars are flatter than the phase border line (fat white curve). The CEP  

 

 

1We chose this since in the chiral limit it obeys the same symmetries (an ( ) ( ) ( )4 2 2O SU SU×  [61]) as QCD [62] putting both into the 
same universality class and thus rendering the model a good prototype for studying the properties of the QCD chiral transition. 
2In a nutshell, the employed model, also coined linear sigma model, is based on a doublett of quark degrees of freedom, an iso-scalar sigma 
field and an iso-triplett pion field with standard coupling among these fields.  
3According to our experience with numerical evaluations, the account of linearized meson field fluctuations modifies significantly the results 
of the mean field approximation. (For the inclusion of the complete fluctuations spectrum within the functional renormalization group ap-
proach, see [64].) In particular, the fluctuating meson degrees of freedom deliver explicit contributions to the pressure. 
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Figure 2. Contour plots of scaled pressure CEPp p  (i.e. isobars, top row) and entropy per baryon s n  (i.e. isentropes, 
bottom row) for FOPTs of type IA (left column) and type II (right column) over the T-µ plane. Equation of state from the 
quark-meson model with linearized fluctuations applying the parameters 

0
90 MeVσ =  (expectation value of the sigma 

field in vacuum, as indicated by the label 0), ,0 138 MeVmπ =  (pion mass) as well as either ,0 1284.4 MeVmσ =  (sigma 

mass), ,0 390 MeVqm =  (quark mass) (left column) or ,0 700 MeVmσ = , ,0 360 MeVqm =  (right column). The pressure is 

scaled by the pressure at the critical end point, i.e. with 8 42.38 10 MeVCEPp = ×  (left) and 8 48.59 10 MeVCEPp = ×  (right), 

respectively. The arrow in the bottom left plot points to a state where the density at 0T =  is equal to 3
0 0.17 fmn −= . On 

the bottom right plot this point is located at the phase boundary.                                                    
 

coordinates are ( ) ( ) ( )( ), 97 MeV , 377.5 MeVCEP CEPT µ =    for the parameter set depicted on the left panels 

and ( ) ( )( )98 MeV , 216.5 MeV   on the right ones. (Note that we use actually quark chemical potential qµ   

and net quark density qn .) One must not consider these values as predictions of the CEP location since the 
proper account of fluctuations can significantly change them. Furthermore, the inclusion of some gluon 
dynamics, e.g. via a coupling to the Polyakov loop, thermal gluon fluctuations as well as extending the invoked 
hadron species can also cause substantial changes of the CEP coordinates. 

Despite of the apparently marginal differences of the isobar patterns, the isentropes are drastically different. In 
the left bottom panel of Figure 2, type IA isentropes are seen which mean incoming from phase “2” and 
outgoing into phase “1” whenever they meet the critical curve. In contrast, the right bottom panel in Figure 2 
displays a type II FOPT with incoming-only isentropes into the critical curve. 

Figure 3 exhibits the isentropes in pure phases “2” and “1” over the T-n plane. This presentation verifies that 
both the temperature and the density drop along the isentropes in pure phases. One can infer directly from the 
bottom panels of Figure 2 the above claim w.r.t. outgoing isentropes from the low-density phase border curve  
( )1n T  for type IA, see left panel of Figure 3, while for type II (right panel) only incoming isentropes appear 

(isentropes with 5s n >  enter the two-phase region at smaller densities which are not displayed). 
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Figure 3. As Figure 2 but for the isentropes in the T-n plane for pure phases only. The difference in s/n between two 
adjacent isentropes is 0.2 and the thick blue isentropes are labeled with their respective s/n. The two-phase coexistence 
regions are depicted as green areas with the CEP (black bullet) on top. The dashed grey curves enclose the regions in T-µ 
space displayed in Figure 2, i.e. the gray regions correspond to regions outside. The densities are scaled by the nuclear 
saturation density 3

0 0.17 fmn −= .                                                                             
 

Consistent to the Clausius-Clapeyron Equation (1), the critical pressure as a function of the temperature is 
increasing, see Figure 4. The inclined numbers at the top axis depict the (critical) chemical potential values  
corresponding to the temperature given at the lower axis thus highlighting the shape of ( )cp µ  which is 
actually decreasing in agreement with (2). 

We mention that the employed minimum set-up of the quark-meson model does not allow for type IB 
transitions since thermal gluon fluctuations are not included, i.e. the number of effective degrees of freedom 
accounting for thermal fluctuations is too small. One may, however, easily construct two-phase models with a 
high-temperature quark-gluon phase and a low-temperature hadron phase. Figure 5 in the Appendix presents 
such an example. Without fine tuning, such models do not display a CEP at 0µ > , instead the constructed 
phase border curve continues form the T axis down to the µ  axis. Reference [68] provides an example of 
enforcing a CEP at 0µ >  to obtain also a type IB transition. 

The focus of the present note is on the isentropes relevant for the expansion dynamics in relativistic heavy-ion 
collisions. As emphasized, e.g. in [40] and references therein, analog considerations are useful for discussing the 
impact of peculiarities of the QCD phase diagram in core-collapse supernova explosions. There, one has to 
consider adiabatic paths along compression with proper leptonic contributions including also trapped neutrinos. 
For a first orientation, the pressure as a function of the energy density at suitable values of the entropy per 
baryon is to be analyzed to figure out whether the FOPT effects in iso-spin symmetric matter translate into 
modifications of neutron star configurations (with β  stability, no trapped neutrinos) such as the occurrence of 
a third stable island (cf. [28]), nowadays often refered to as twin configurations [29]-[31] [37] [69]-[74], or 
modify the core collapse dynamics (with trapped neutrinos) toward proto-neutron stars or even black holes such 
as discussed in [40] [42] and references therein. We leave according investigations to separate dedicated 
analyses.  

4. Conclusions and Summary  
In summary we discuss options for modeling a hypothetical first-order phase transition which is related to a 
critical end point in a strongly interacting medium. Guided by the expectation that the QCD cross-over (as 
remnant of the transition of massless 2 + 1 flavor QCD, cf. [21]) at a temperature of about 150 MeV at small 
chemical potential turns, at the critical point at large chemical potential, into a first-order transition we consider 
scenarios where initially deconfined matter can evolve completely into confined (hadronic) matter. We 
emphasize that both enthalpic and entropic phase transitions are consistent with such an expectation provided a  
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Figure 4. The critical pressure ( )cp T  as a function of temperature for FOPTs of type IA (left panel) and II (right panel). 
The numbers on the upper axis are the critical chemical potentials (in MeV) corresponding to the temperatures on the lower 
axis. Equation of state and critical pressures CEPp  as described in the caption of Figure 2.                              

 

 
Figure 5. Isobars (left top panel) and the critical pressure cp  as a function of temperature (right top panel) as well as 
isentropes, both over the T-µ plane (left bottom) and over the T-n plane (right bottom) for the two-phase model of type IB 
FOPT, based on Equations (3-7). As in Figure 3, the coexistence region is depicted as green area. Our calculations do not 
map out completely the T-µ plane, thus leaving some uncharted regions in white in the left column and the bottom right 
panel.                                                                                                   
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graceful exit from the deconfined state into pure hadron matter is possible upon adiabatic expansion. At low 
temperature, the low density part of the two-phase coexistence region must be at larger densities than nuclear 
matter at saturation (for isospin symmetric nuclear matter). This implies that the pattern of isentropes must “go 
through” the phase border curve to be conform with the envisaged scenario. In contrast, the van der Waals type 
transition is of a different kind as it has locally incoming isentropes only. Obviously, more complicated phase 
border curves may allow for mixtures of the mentioned types. Our discussion also completely ignores flavor- 
locked color superconducting phases which are expected at larger densities. 

Our discussion is based on equilibrium thermodynamics, and the medium is assumed to obey one conserved 
charge—the baryon density. Accounting for more conserved charges, e.g. related to isospin, strangeness, electric 
charge etc., complicates the picture. Transient states related to under saturated or over saturated gluons [75] or 
under saturated quark state occupation [76] give rise to many interesting phenomena beyond our discussion. 

The lacking of ab intio information from first-principle calculations of QCD thermodynamics lets many 
options still be conceivable. This makes the concerted experimental hunt for signals of the critical end point and 
the related first-order transition so important.  
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Appendix 
A two-phase model for type IB  

The constructed FOPT is based on the extrapolation of a hadron equation of state with pressure  

2
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=
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                                        (3) 

to be calculated from  

B c TW e n W W= = +                                    (4) 

with  
2

0
bind ,

18
B

c N
B

n nKW W m
n

 −
= + + 

   
2 43 π ,

2 18T
B

TW T
n

= +  

ˆ ˆ ˆ ,N
B

ss s s
n π= = +                                     (5) 

3 2
2πˆ 2.5 ln ,
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nπ =  

The temperature ( )ˆ,BT n s  follows self consistently from  

( )ˆ,
ˆ
BW n s

T
s

∂
=

∂
                                    (6) 

and the baryo-chemical potential is then ˆB BW p n Tsµ = + − . We utilize the nucleon mass 938 MeVNm = , 
the nucleon binding energy bind 16 MeVW = − , nuclear incompressibility coefficient 235 MeVK =  and  
saturation density 3

0 0.17 fmn −= .4 The equation of state in the high temperature phase is defined by the 
extrapolation of a quark-gluon equation of state from leading-order weak-coupling (cf. [78] for advanced 
calculations) supplemented by a bag constant B  

2 2
4 4 2 2 4

2 2
π 7 π 1 116 ,
90 8 90 24 48πq B Bp T f T T Bµ µ

 
= + + + − 

 
                  (7) 

where we employ for the number of effective quark degrees of freedom 2.5 3 2 2 30qf = × × × =  and 

( )4235 MeVB = . These branches are matched by the above mentioned Gibbs criteria for equilibrium, 1 2p p= , 

1 2T T= , 1 2µ µ= . The resulting isobars, the critical pressure ( )cp T  as well as isentropes, both over the T-µ 
and the T-n-planes are exhibited in Figure 5. 

 
 

 
 
 
 
 

 

 

4This is a model in the spirit of [77] for nuclear matter and pions.  
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