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ABSTRACT 

The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization 
source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to wide class of elec-
tric field configurations, and to the walls of discharge volume, which have a property of incomplete absorption of the 
electrons. Cathode is regarded as interior singular source, which is placed arbitrarily close to the wall. The existence of 
solution is considered also. During the proof of the theorem many of useful structure formulae are obtained. Elements 
of the proof structure, which have arisen, are found to have physical sense. It makes clear physical construction of non- 
local electron avalanche, which builds a source of ionization in glow discharge at low pressures. Last has decisive sig-
nificance to understand the hollow cathode discharge configuration and the hollow cathode effect. 
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1. Introduction 

The problem of creation of the hollow cathode theory— 
the theory for a glow discharge device in gases, which 
was invented by Paschen almost yet hundred years ago 
[1], producing anomalously high currents at the same 
voltages of discharge compared the glow discharge de-
vices, which have no geometry of hollow cathode—con- 
siderably stipulated for non-local ionization. The classi-
cal theory of the Engel and Shteenbeck cathode sheath [2] 
for glow discharge in simple geometry used the Town-
send formula for a source of ionization [3], which had in 
mind local dependence of ionization on the electric field. 
The local (or two-fluid) models of a glow discharge [4] 
gave qualitatively true description of the electric field 
and the electron and ion current density distributions in 
the cathode sheath of the plane capacitor at low current 
densities and not too low pressures. However they could 
not catch really the specific of negative glow. Last has 
low electric field, and the ionization here is produced 
with electrons gained the energy in another place, namely 
in the high field of the cathode sheath. Therefore the re-
gion of negative glow in the local model could not be 
obtained in principle, and the cathode sheath here is al-
ways contacting with a positive column. For a hollow 

cathode the model with local ionization turned out unac-
ceptable at all, because both cathode sheath and plasma 
of discharge have significantly non-local properties.  

On the route to the non-local ionization theory there 
were developed hybrid models—instead of two-fluid mo- 
dels—in which electrons produced ionization were con- 
sidered apart from slow electrons, latter providing bal- 
ance of current and electric charge [5]. In a hybrid model 
ions and slow electrons are described in terms of drift 
and diffusion, but fast electrons are described with the 
aid of the boltzmann equations or simulated with Monte- 
Carlo methods [6-8]. It was shown [9] that hybrid models 
describe a density of plasma in a glow discharge much 
better, though they are more complicated.  

Hybrid models set a problem of description of non- 
local ionization source, for which the Townsend formula 
is not available. The boltzmann equation for fast elec-
trons is many-dimensional, which makes difficulties in 
its use in calculations. The Monte-Carlo method is in es- 
sence a computing experiment, which supplies empirical 
data about numerical simulation of ionization source 
without understanding reasons of results obtained. 

The author of present paper had managed earlier to 
simplify this problem by use of original (not the hilbert 
[10]) averaging of the boltzmann equation for fast elec- 
trons, in result he obtained the non-local equation for a 
source of ionization in glow discharge and hollow cath-
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ode [11,12]: 

         0 , .r G s  r r r

 s r j



 , r r

2 3
0d , dns r G j

 

    r r r r  

Here  is a density of ionization source, n  is 
an electron flow density from the cathode (really first 
summand gives a contribution only in the part of the 
boundary  of the spatial area  of the glow dis-
charge, in which electrons are incoming from external 
source—a cathode), the definition of 0  see be- 
low. First summand in the right hand side of the equation 
describes an ionization with cathode electrons only, sec- 
ond summand describes an ionization with secondary 
electrons arisen from impact ionization inside discharge 
volume. The non-local source equation has mathematical 
class of an integral Fredholm second kind equation. It 
does not conflict with a local model of the Townsend io- 
nization source, but rather is a non-trivial and far-reach- 
ing generalization. Namely: if one rewrites the non-local 
equation in terms of one-dimensional spatial model of 
plane capacitor (without hollow cathode configuration) 
and simplifies the electron kinetics by rejecting elastic 
scattering and discreteness of energy losses in inelastic 
processes, the equation gets a class of an integral second 
kind Volterra equation [13,14]. In a case, when the non- 
local effects can be neglected, the kernel of equation 
quits to depend on its second argument. This kernel de-
generation enables to transform the integral equation into 
a differential equation, which coincides literally with the 
Townsend equation 



G

 d dj x xe e

Present paper is devoted to the proof of uniqueness for 
solution of non-local equation if it exists. Though there 
exists a set of theorems for existence and uniqueness of 
solutions in the theory of the Fredholm equations [15- 
17], one cannot use them because: 1) the kernel is de-
fined here not evidently, but as a solution of the linear 
boltzmann equation with differential and integral opera-
tors, the parameters of which have rather general physi-
cal properties; 2) the domain of kernel definition is de-
fined implicitly also, its geometry is varied in wide range 
of glow discharge devices, a hollow cathode of arbitrary 
shape is one of possibilities; 3) the integral term of the 
equation is usually not of low value in comparison with 
absolute term (secondary electrons usually contribute more 
to ionization against primary, cathode, ones); 4) the ker- 
nel is not hermitian (or symmetric) one. 

j .  

The question about existence of a solution is tied with 
a question about existence of kernel of the equation, the 
answer depends on existence of fundamental solutions of 
the boundary problem for a stationary boltzmann equa- 
tion for fast electrons. Not all configurations of the elec-
trical field and not all kinds of boundary conditions guar- 
antee an existence of a fundamental solution for station- 
ary problem. For example, if electric field is equal to 

zero in some region of ionization, one cannot neglect 
initial velocity of secondary electrons, as it was done in 
derivation of the equation, because electrons would be 
accumulated with no limits in this area, consequently a 
solution could not be stationary. Necessary conditions for 
existence of fundamental solution for auxiliary differen-
tial operator of the problem come to the Fredholm alter-
natives [15]. Investigation of sufficient conditions for 
existence of solution is not an easy problem, and in the 
paper we make the assumption that necessary fundamen-
tal solution for auxiliary operator exists.  

The proof is divided on five lemmas and final proving 
of the theorem. In lemma 1 it is proved uniqueness of 
zero solution for homogeneous differential equation, 
which is generated by auxiliary differential operator. 
This operator defines the distribution function for “fast” 
electrons, which are fortunate not to suffer any inelastic 
scattering as long as they appear from a source of ioniza-
tion (or from the cathode). Lemma 2 formulates ana-
logues statement for conjugate operator. From these re-
sults it follows the uniqueness of fundamental solution 
for auxiliary differential operator (if it exists), so the 
lemma 3 is devoted to prove this. In lemma 4 the funda-
mental solution of the boltzmann equation and some its 
properties are constructed from the solution and proper-
ties of fundamental solution for auxiliary operator. On 
the ground of properties obtained, it is proved the 
uniqueness of definition and the nilpotency of the kernel 
of the integral equation, shown above. Namely the prop-
erty of nilpotency (vanishing of some power of appropri-
ate operator) gives here a possibility to state a conver-
gence of the Neumann series and obtain the formula for 
solution of the integral equation, which is final part of the 
theorem proof.  

Thus, a set of useful formulae is obtained during the 
proof of the theorem. The constructions arisen have clear 
physical sense. 

2. Definitions and Properties of Physical  
Values 

Consider the domain 

  3 3 3: , , , , ,R R R       r v r v  

of 6-dimensional phase space for mechanics of electron 
motion,   is its spatial domain—open connected set in 

, the bound 3R   of which consists of piecewise 
smooth surfaces and is defined with the geometry of the 
glow discharge device.  

 v
v

 

ion  is an average electron impact ionization rate 
at the electron velocity , it is nonnegative continuous 
function, which has an energy threshold:  

2

0 at
2
e

ion ion

m v
v

e
  ,           (1) 
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here e  is an elem rge, ionentary cha  is the electron 
V, em  is a mass 


impact ionization ene om, ergy of the at
of electron. 

The operator of elastic scattering on gas atoms 

       2δ , 0v v v v v   

(2) 

conserves a number of electrons and kinetic energy o

3 3

L   
v

1 1
el el ik i k el

i k i kv v   

f 
scattered electrons  2 2ew m v here e , eV,  el v
an av  of elastic electron scattering on (alm

e at 

 is 
ost) erage rate

 po
immovable gas atoms at the electron velocity v . It is 
continuous function, 0v  . 

The operator of inelastic scattering at electron impact 
excitation and ionization  

sitiv all 

           

 

3d , ,inL f v f v f    



v v v v v v

v v
3, , ,v v

vv
 

     
v v

 (3) 

conserves a number of electrons involved into inel
scattering with atoms (here we mind primary electrons— 

 , , cos ,v v

astic 

we do not include secondary electrons, which appear in 
ionization in addition): 

   3

π

d ,v v 

2
3

0 0

2π d d sinv v      
     (4) 

 , 0  v v , in general case it is a generalized
the kernel of linear operator. This operator has a physical 
sense of generator of the electron source density by its 
distribution 



   v v

 function, 

function—for electrons, which suffer one- 
time inelastic scattering from initial velocity v  (second 
argument) to final infinitesimal domain of velocity in 
neighborhood of v . The property of the energy dissipa-
tion in inelastic scatterings on non-exited at s puts a 
restriction  

 

om

2 2

, 0 at , 0.e em m
  


    

v v
v v     (5) 

2 2in ine e

in  is the smallest of the energy thresholds fo
tic processes, eV. On phy ion in

r inelas-
sical reasons    be-

cause atomic ionization energy always exceeding excita-
tion energy of any level from discrete energy spectrum.  

It follows from restriction (5) that integration in (4) 
could be narrowed to the ball  

   
2 2

3

2 2

d ,
e e

in
m m

e e

v v



 

 

 
π

2
3

0 0

2π d d sin , ,cos ,
V v

v v v v      

 

 


 

  
v v

v v

2 2
,in

e

e
V v v

m
   

from which follows that the average rate  v  of ine-
lastic processes for electron with velocity v  has lower 
energy threshold in , namely,   0v   at  

  2 2e inm v e . We consider the function   v  be 
continuous. 

    E r r  is an electric field defined in the 
domain  . Choose the reference level of electric poten-
tial   r  so that it would have non-positiv  values only, 
and maximum o potential v the cl

e
f alue in osing   

would be equal t  o zero. Then the minimal value 

  min 


U 
r

. U  usually coincides with a voltage  

rg
 us 

r

of discha e. 
Let define, that the local maximum of electric po-

tential on the closing   is non-empty closed connect  
set 

ed
: ,M M M  r  having properties: if the poi  nt

0 Mr ha hos , ten hen 1) for any other point Mr  
lity     r r  is true, 2) for 

 s c
(if it exists) the equa 0

some 0   there exists a -neighborhood  
: : : ,M M M        r r r r     0  r r . Here 

generality quantifier   designates “for any”, existence 
quantifier   designates 
mum w  (<) to

ality. 
ause t um is a local 

minimum of the electron potential energy, and in

“there exists”. The local mini-
e define in analogy, by changing sign “less”  

sign “more” (>) in last inequ
Bec he local maxim  of the potential 

elastic 
processes occur only at electron kinetic energy exceeding 
the threshold value in , it might exist closed domain 
with slow electrons in the neighborhood of local maxi-
mum of potential at sufficiently small electron velocity, 
the electrons here do not participate inelastic processes, 
and thus its total mechanical energy conserves. All such 
domains of electron phase space (if they exist) let us join 
into a zone of slow electrons:  

Define a zone of slow electrons: 

       0
1

, , ,
P

p
s s in p

p

    


       Υ r r v  

  0min , ,p
p p in       r  

   , ,
2e

r v r  

here  
0

2
em v

  

pr  is a point of local maximum number p  of 
potential, p  is a trap depth, index 1, ,p PΛ  lists 
mutually insolated areas where the inequalities for small 
kinetic energy are true (slow electron cannot penetrate 
from one area to another through potent l barrier). 

Define a zone of “fast” electrons as \    . The 



ia

in s

set in  m
is o  provided

is an open connected set, so it is a do ain. 
Openness bvious, connectedness is  with 
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unrestrictedness of the energy from the top in in .  
Any two points    1 1 2 2, , ,in in r v r v  could be 

connected with piecewise smooth curve inside 

, ,t
e

e

m

 
   

 
v E  

city and electric field 

in  as  

fo ,  

ed not 
tra ron into ne. Let be 

llows: straights   1 1 1: , ,1C t t  r v

  2 2 2: , ,1C t t  r v  belong to in , because the in-  

crease of kinetic energy in the point concern  can
nsform “fast” elect   slow o

  maxU   r . The hypersurface 
r

 , max U r v   1 2 22 , , , ,in   r v r v   1

belongs to in  at all r , because the kinetic energy 
in it is not less than 2 in  everywhere. Connectedness of 
this e dness of hypersurfac  is provided by connecte  . 
The strai 1  and 2C  cr e hy rsurface given, 

ergy is unrestricted along them. So, one 
can connect the points of cro e hypersurface with 

c ypers

ghts C
n

oss th

ssing th

pe
because total e

third curve be ause of h urface connectedness. 
Besides in , we define its subsets 

 \ ,in s in        , 

which distinguish from in  by that we use overstated 
value of the threshold , 0in     in the definition 
of s  (and then  ) against former threshold in in . In 
pa ns  

we define si rly the domain of 
ff  minimal en-

s 

rticular, t omain of ionizing electhe d
\ ,s

ro
mila

 is that
 ion   

“fast” electrons, a single di
ion 

erence
ergy of inelastic processe in  in the definition we sub-
stitute with ionization en ionergy  . Obviously  

, ion inion in      . Besides, the subsets of in , 
which are restricted from the top by energy, w

  ,in in     r v . 
The subset of 3D velocity space  

     : , constinS    v r r v r  

let be named a local section of domain in . A local sec-
tion of domain   either is coincident all velocity 
spa

e designate 


in
3 ball with velocity 

ra  

as   

in

ce R , or it is an exterior of closed 
dius, which does not exceeding 2 in ee m  (slow 

 from the electrons s  d inside the ball). 
fine natur  in the point of 6D 

r

e hy

are distri
al direc

bute
tionsLet us de

phase space (excluding singular points  
     , : 0 0  r v v E ). Their “naturalness” is de-
fined with properties of the operator of the boltzmann 
equation, see below. 

1) A normal to th persurface of energy  

, , ,  
em

e

             
E v

2) A direction of phase flow (phase trajectories of col 
co

r v
 

llisionless electron motion) 

3) A spatial-like direction having spatial component, 
which is orthogonal to the velo

 , ,r  v E 0  

4) A velocity-like direction, having velocity component, 
which is orthogonal to the velocity and electric field  

 , ,v  v E0  

5) A velocity-like direction, which is orthogonal to 

v , having a velocity component, which is orthogonal 
to velocity  

2
, ,vE v

    
 

E v
E v0  

6) A direction, which is orthogonal to five ones above  

 

   22 2 ,e

e

v E
e m

24
5

e

e

m e
v

e m

m e

 
      


 

 
        

E v E

E v v E v v

 

In the case when 0 v E  the directions (3)-(6) we 
define with the use of arbitrary two vectors 1 2e e  of 
3-dimensional Euclidean space, which constitute the or-
thogonal triad with non-zero v  or 

,

E : 

   1 1, , , ,   e e0 0

6D ecause a scalar  

product: 

   2 5 2, , , .

r v

vE

 

   e e0 0
 

So defined directions do not consist mutually or-
thogonal set of directions in  space (b

 2

2t vE
e

e

m v
    E v  is not equal to zero  

in general case), but they consist a complete basis of di-
rections in (regular) point  , inr v . 

Indeed, first four 6D-vectors: , , ,t r v       are 
mutually o an space). If a set of 
vectors   near dependent, then 

rthogonal (in 6D Euclide
, , , ;t r v vE      is li

, , ,a b c d .

vE v one can 

s from definition, tha
 This contradiction means that th

 us define a function class 

equality vE t r va b c d            must be true 
at some values of factors  Taking scalar prod-
ucts , , ,vE vE t vE r        find, 
that only factor b  can be non-zero: vE tb   . But it 
is obviou t vectors ,vE t   are not 
collinear. e set  

, , , ;t r v vE        is linear independent. 
Let    inD  . The 

functions are sim taneously  
1) Finite functions, support of which nging to 

closing 

,f r v
ul

 is belo
in  of the domain in ; 

fferentiable along direction2) Continuously di  t  of 
the phase flow; 
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3) Twice continuously differen  local 
section  inS v r  along sph

tiable on v  in
 ere constv ; 

es into the piece of boundary 
4) Having its continuous extension and continuous ex-

tension of all listed derivativ
 3

in R   of domain in  ; 
5) As the problem has no differential operators along 

the rest of three directions  , r  and 5 , we 
guess n  continuity of 

 
ecessary n  the functio f  in in  

its

  , D

elf, nothing about its derivatives in these directions. 
In analogy we define the function classes  

in inD 

mains of definitions in the item 1).  
Let us designate as

  and so , h  on aving in mind other 
do

     , ,in in inC C C 


    
classes of finite functions, which are continuous on cl
ings of domains of their definition.  


os-

f gas  

al   

The operator of electron scattering on atoms o

      ,el inL L L v v v              (6) 

so operator of phase flow

 
em r v

e 
  v E r  

for collisionless motion of electron i
can be consider from

n the electric field 
  to ed as acting   inD   inC  .  

Define the generalized function  , ;g r v , , r v   
  in   v ental solution of sta-

oltzmann 
, ; ,r v r

tionary b
in  as a fundam

equation  

       3 3

e

e
L g

m
 

             
v E r v r r v v

r v
 

(7) 


g the condition of incom-

 in th  

in the domain , inr v  with a point source in the 
right hand side, and satisfyin
plete absorption e boundary 3

inR   of the 
domain in :  

 

 

, ; ,

, , 2 ,

g

v g
v

 

 

    
 

r v r

v
n r v v

  (8) 

here n



, 0 :

; ,



 

  

 

r v n

v

n n r v

  is an external unit 3D normal in the boundary 
  o : 0 1f the domain  ,     is the reflection 
factor for electrons in the boundary of discharge. 

Physical sense of the condition of incomplete absorp-
  of di e volume tion is: the boundary scharg   ab-

 1sorbs the part   of all electrons in average, which 

In is way, th
te as a 

g

get it, of electrons suffer elastic (“mirror”) reflec-
 by the boundary.  th athode—a bound-

ary emitter of electrons—is convenient to simula

 th
tion

iv

e rest 
e c

en singular source, which is located inside  , but 
arbitrarily close to its l boundary position. This con-
venience can be lained by active feature of cathode as 
electron emitter, and passive feature of anode and walls 

as electron absorbers and reflectors: the flow of cathode 
emission must be given as input data of the problem, but 
flows of absorption and reflection can be found ly in 
result of problem solving. 

The subset of functions from  inD  , which satisfy 
the absorption condition (8): 

 

rea
 exp

on

 , , 2 , 0 1,v f
v

  

, 0 :

,f
  

        
 

n r v v n

let us name 

r v n

r v

v

 

n

 D0 in . 
 0 inDThe question: is not   empty? - has no answer 

in this paper. It is tied with formulation of sufficient c -
ditions for existence of stationary solution, discussed 
above. So, we guess here: it is not empty. 

If 0

on

  v n , then for velocity of electron before re-
flection  2  v v n  we obtain    v n

  2 0.             v n v v n n n v n  

The proof of the theorem below is main goal of this 
paper: 

3. The Theorem 

A solution of integral equation 

       3
0d , ,s a r G s



    r r r r r          (9) 

respond  s r , where 

 , dG v    3 , ; , ,v g0 ion r v r 0        (10) r r 
 a r  is an arbitrary function, which is integrable un-

der the Lebesgue sense in  , g  is de
and (8), at the condition of existence of generalized solu-

fined with (7) 

tion 1g  of auxiliary equation  

       

   

1

3 3

, ; ,

,

el
e

L v g
m



 

e      


   

r v r v r v
r v

r r v v

 

which also satisfying boundary c

   
v E

onditions (8), exists and 
is unique. 

4. The Proof 

4.1. Lemma 1 

The solution of homogenious equation  

       , 0el

e
L v f

em

  
  

v E
r

    
r v r v

v
 (11) 

class of functions  0 inDin domain in  in the   exists 
and is unique:  , 0f r v . 
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An existence of solution is obvious. 
Let be 

4.1.1. The Proof of Lemma 1 

Copyright © 2012 SciRes.                                                                                 

  maxU 


 
r

r , and a number U 

ain  chosen. Let us construct the dom
  ,in in      r v . Multiply the Equation (11) by 

 ,f r v   in
 :  has 2 and integrate over

    el
e

L


  
     

v v r
r v

3 3d d 2 ,
in

e
r v f

m

 r E    , 0v f v r v  

Make transformations: 

         3 3      3 3 3 3 2, d d 2 , , d d 2 , 0,
in in

el
e

e
r v f f r v f L f r v f v

m


  

  
     

 
 r v v E r r v r v v r v r v

r v
 d d 2 ,

in


 


       

          

1 1

3 3
3 3 2 3 3 2

1 1

2 d d , , 2 d d , 0.

in in
i ke i

el ik i k
i k i k

m v

f f
r v v v v v r v f v

v v
  

 

 

  

  

    

 
  

  

r v

r v r v r v

3 3
3 3 2 3 3 2 2d d , d d ,

in in

el ik i k
k

e
r v f r v v v v v f

v
 

    
     



  v E r r v r v

 

 
First two integrals are reduced to integration along the 

boundary in
 . It consists of three kinds of sections: 1) 

e section, which is conditioned with the boundary of  

sp

th

atial domain of discharge  3
inR


    , 6- 

dimensiona rmal to the boundary is  ,   n 0 ; 2) 
the section, which is conditioned with upper boundary of  

 

l no

energy   Γ , in


    r v , the normal is  

 , , em

e

 


       
   

 
 

which is conditioned with the lower energy thresholds 

for inelastic processes   
1

Γ ,
P

inin p
p

 


  
E r v

r v
; 3) the section,  


 r vΥ ,  

which consists of sections of constant energy  

 , p r v , the normal is   , e
in

m

e
p 

    
 

E r v

Γin  on a 
reason of o he phase flow to the n  
of the hypers rgy. In section 

.  

First integral vanishes in sections Γ  and 
rthogonality of t ormal

urface of constant ene Γ  
it gives the expression 

 

 

 

 
 

 

 
 

  

2 3

2 3 2 2 3 2

0 0

2 3 2 2 3 2 2

0 0

2

d d

d d , d d ,

d d , d d , , 2

1 ,

r v

r v f r v f

r v f r v v f
v

v





 

 




 
   

    
   

   

        
 

 







n v

n v

n v r v n v r v

v
n v r v n v n r v v n n

v

2 ,fn v r v


  




 

 

   


n v

n v

 

2 3

0

d dr v
 


   

 
n v

n v  2 ,f
v 

    
  

n r v .

 

 
This expressi to the condition of 

incomp
Second in of the 

boundary due to orthogonality of the boundary normal to 
the vector of flow density (the intergrand here is a diver-
gence of 3D-vector, which is orthogonal to v ).  

 

on is nonnegative due 
lete absorption (8).  

tegral vanishes in all three sections 
 
So, we have  

 

           

0

3 3
3 3 2 3 3 22 d d , , 2 d d , 0.

v

f f
r v v v v v r v f v  

 


   

2 3 2 2d d 1 , ,r v v f      

1 1
in in

el ik i k
i k i kv v   

 
 

 
  

 
    

n v

r v r v r v

 


v

n v n r v



V. V. GORIN 1653

 
In order that sum of three integrals with continuous 

nonnegative integrands be equal to zero it is necessary 
that every of integrands be equal to zero in all points of 
the domain of integration. Taking into account the condi-
tion of incomplete absorption in first integral and posi-

v

  

ti eness of average rate of elastic collisions  el v  at 
nonzero velocity, we obtain  

   2 , 0, , , 1,f   r v r v          (12) 

     

 

3 3
2

1 1

, , 0,

, ,

ik i k
i k i k

in

f f
v v v

v v


 



 
 

 



 r v r v

r v

13)   (

     2 , 0, , in
 r v .  

hat  ,f r v  vanishes in the 
section Γ  otal reflection is

1

f vr v

The equality (12) means, t

        (14) 

at any velocity (if t  absent 
  eans that inside in). The equality (13) m   the 
function  ,f r v  is not dependent of the velocity direc-


tion:  

   2, ,f f vr v r%           (15) 

The equality (14) demands 

.    

 ,f r v  to vanish every-
where in  , where the average rate of inelastic proc- 

esses      , 0, , \ 0f v   r v r v .  
in

 

  0v  in

t the subset of low kinetic energi

:  
Bu es  

    2 , whe  , 2in e inm e     re 0vr v v  , is

not empty and it needs additional investigation (it in-
 “

  

fast” electrons having low kinetic energy, bu
echanical energy sufficient for inelastic processes

(11) for 
the subset mentioned with 

cludes t 
total m ). 
Substitution the expression (15) into Equation 

 v 0  gives 

   2, 0,
e

e
f v

m

  
      

v E r r
r v

%        (16) 

or 

    2 2, ,f v f v
  

 v r r% % 2

2
0.

e

e

m v


  

r
r r

 

1) Guess primarily that 0



v . Because the direction 
he vector is arbitrary, we have of t v  

     22
, 0.

e
f v

  
r% %    (17) 

r r

which originates 
he  u  is not n

points in it could
 us name all points of 

the set 

2
2

,
e

f v
m v


  

r r
r r

Let us choose some point 

  1 1:u u u   r , which one can con-
nect by a curve with the point 0r r , a connected com-
ponent of the set  u . At every value , 0u u U   
we get some integer   , 1, 2,P P u P  Λ  of connected 
components of the set  u , at that  u  can be 
prese n-crossin nected c

     , ,
P

qu u u

nted as a sum of its no g con om-
ponents: 

 
1

.p p
p

u p q


      Υ  

The sets  p u , defined here, are 2D surfaces— 
boundari , which could be de-
fined with equation 

es of 3-dimensional body
  u r equation for “addi-

tional body” 
 (or 

  u r . If one suggests )  u r
0w   it follows th
 bod main

domain becomes many-connected, but its 
addendum would be unconnected set. In presence of lo-
cal maximums of potential—vice versa: electron can be 
si e of “p

 

w , 
then from inequality e equation for 
the body mentioned. The y is the do  of 3-di- 
mensional space, where the electron can be arranged 
having total energy u . In presence of local minimums of 
potential, this 

0  in the   and arbi-
trary smooth curve in the set  
       0: :u u u     r r r , 

from this point
to be connected, not any two 
nected with curve in 

. Because t set 
of 
 Let

ecessary 
 be con-

general.

tuated in on otential pits” and it cannot jump over 
into other “pit”. 

Let us fix 2 constv  . Multiplying the Equation (17) 
by 3D vector    tangential to the curve in l l r

  1 0  r  at given oint r , we obtain that the de-
rivative along the curve 

 p

  0f   l r% , therefore func-
tion  2,f vr%  has constant value in the connected com-
ponent   1 0  r  of the set   0  r .  

Now let us choose other curve  :C ur c , which 
issues from point 0r r  such that electric potential 
  r  be only increasing (or only decreasing) along it. 

The parameter of the curve can be chosen as  u   r  
Any point r  of this curve belongs to one of connected 
co f the setmponents o     r , the suffix p  could 
be regarded as fix example, as equal to unit. The 
curve can be prolonged upward (downward) the electric 
potential as far as local maxi minimum) of the 
potential has reached.  

Let u e a connectedness dom ectr poten-
tial the s

 
ed, for 

mum (local 

s nam ain of el ic 

Υ

. If two o
 c

ntial, they

et 

  1 .c
C




  
r

r  

Here the curve C  is meant as the longest f 
such curves onnect the same pair of local maximum and 
local minimum of pote  define identical set 

c . 
Indeed, suppose contrary: for such curves 1C  and 

2C  exists a value min max:u u u u    of parameter, for 
which corresponding points of curves belong two differ-
ent connected components of potential:  
   1 1 ,u u c     u u2 2 c . If we start from 
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point of local maximum of potential  
   n 2 minu u  c , the 3D spatial body  



2

0 1 mir c

r

1

  min: u u   r  would be a connected body, hav- 

ing not less than two disconnected pieces of its boundary:  

  ur  and   ur . So, the additional set  

  max: u u   r  is disconnected set, c sisting f 

two insolated bodies, with boundaries 

 on  o  r

 1 u  and 
 2 u . Therefore, the curve 1C  ends inside  u1  , 

but the curve 

  1 2u uc c
long to the 

fined with
potential, an
curve. It s

Choo

be arrange

sin

2  en u , so curves could 
not come to a single local minimum of potential. From 
this contradiction it ws that points  

C side

e

 pa cal minimum
d does not 

hould be me

h
av cally c

no one can 
d inside another e

 and 

ds in

llo
u

e

 2

fo

minu 
 conn

, ;
sam

maxu  of both curves always be-
cted component of potential. 

So, a connectedness domain of electric potential is de-
ir of lo  and local maximum of 

depend on a choice of connecting 
ntioned that not every pair defines 

a connectedness domain. 
sing arbitrary pairs, whic  can be connected with 

some curve, h ing monotoni hanged potential 
along it, one can get different connectedness domains of 
the potential, which can cross each other, but 

ntirely. The feature of a con-
nectedness domain is to have single local minimum

gle local maximum of electric potential.  In the con-
nectedness domain of potential at fixed value of the ve-
locity the function  2,f vr%  has identical value where 
the potential is identical, therefore the dependence of 
function on coordinates takes place through the potential 
only:   

   
2

2, , , .
2
e

c

m v
f v f

e

 

  
 

r r r
)

%  

In 6-dimensional phase space the connectedness do-
mains of the potential originate open sets  
 3

c inR    , which are connected in a sense of 
curves in this space (it  proved in analogy of con-
nectedness of in

  in  These 6-dimensional do-
mains we name connectedness domains of the potential 
also. For the connectedness domain of the potential the 
equation (

can be
or  ).

7) can be rewritten as: 1

     , , 0f w f w
w

  


   
.     

r
r

) )
 

1.1) Where electric field is not vanish, we have  

   , , 0.f w f w
w

 



 

 

) )

 

 



 , ,f w w   
)

 

here   is any arbitrary-differentiable function. With 

the use of (15), in the connectedness domain of the po-
tential at 0v  we obtain: 

     
2

2, ,
2
em v

f f v
e

 
 

   r v r r%
(18) 

1.2) The set of singular points   : 0

  , . 
 

 r v

    

r E r  is a 
closed set. Consider any its connected co ponent. Ob-
viously, the potential has constant value along it. The  

m

Equation (17) gives  2, 0f v 


r
r
% , which means a  

dependence on one scalar value 2v  only. It does not 
contradict xpression (18



 the e ), therefore this expression 
can be extended into the set of singular points of electric 
potential mentioned, if such exist.  

Function f  is a continuous function, so, i
ferent connectedness domains of the potential cross each 
ot

f two dif-

her at some value of total energy  , the values     
of appropriate functions are equal. The exception is a 
case when the set   , const r v  consists of non- 
connected subsets of in

 , in this case values of     
in different subsets can ame value of total  differ at the s
energy  .  

Thus, all solutions of Equation (11) on in
  at 0v  

exhaust with functions  

    

     
2

, , 1, , ,
2
em

q Q
e

, , ,qf  

    
v

r v r Λ
    (19) 

where Q  is a number of connected components of hy-
persurface of constant mber can differ the 
number P  of connected components of the poten a : 

r v r v

 energy. This nu
ti l

    , 0Q u P u u U   , because connected components 
of equal oten p tial   u r  are divided by presence of 
bo  of n

mponents of constant energy 
th local minimums and local maximums  the pote -

tial, but connected co
 , const r v  are divided by presence of local maxi-

mums of potential only. This difference is stipulated by 
non-negatively defined kinetic energy. If Q 
exists several local maximums of potential-minimums of 

 

of to

1 , there 

potential energy of the electron. Obviously, the number
Q  of connected components of hypersurface of constant 
energy cannot exceed the number of local maximums of 
potential. 

For some value tal energy 1 1, in    choose 
any of connected components of set   1, r v , such 
one, that its crossing with in

  is not empty (it means 
that the electron, which is arranged over given “potential 
pit”, has the kinetic energy in some place, which exceeds 
the threshold of inelastic processes in ). In the point 

 
0

qr  of local minimum of the electron potential energy 
we have      0 0,q q

in   r v r , or, other way to say, 
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 2 2e inm e v , therefore here   0v  . Because of 
ntinuity, there exists a neighborhood of the point  

0
qr  

in the connected component of energy hypersurface 
given, in 

co

f
wh   v  , and therefore 

n of
ich everywhere 0

 unio , 0r v  (in account of (14)). The  all such 
neighborhoods of the point  

0
qr  bounds with the set, on 

which   0v  , where the statement (19) is true. The 
continuity of f  at this boundary means that  

 1 0q   . So, the statement (19) extends the lemma 
condition onto the set of low kinetic energies  

   

itio

.  

nded

 2m v 2 ine  , 

where   0v  , because this set is reachable along the 
hypersurface of constant energy from the points of high 
kinetic energy. Thus, the lemm n is true in the 

0in  . 
2) The set  0in

  v  a boundary set for open 
set in

  . Since the solution of Equation (11) is 
seeking on th ass of continuous functions, 

an be extended on zero values of the velocity 
by passage to the limit, in result of which one e

, in e
  

is

choice of up
e set   

r v

e 

mma condition onto whole 
 the 

fo
ndit

a cond
\ v

 

the state-

xtends the 
set in


per limit of the energy 

 ,r v is not bou  from the top 
y

set 

me

le



\ v

nt (19) c

 Since

0
cl

r th
i

3)
   

 co
in

with an on, for any point  , inr v  one can 
find such  , that this point would belong to the set in

  
also, therefore the lemma condition is extended onto 
whole set in

The lemma is 

4.1.2. The Remark 
The domain of uniqueness of zero solution of homoge-
neous Equation (11) can be extended into zone 

. 
proved. 

s  of 
slow electrons along those hypersu of constant en-rfaces 
ergy, which cross the boundary  . It follows from the 

12) at 1fact, that (   e can obtain by integration 
over 

 on

s  also. Therefore the cond bsorption 
makes zero solution unique also in those potential pits, 
where absorbing walls of the device are present. So, the 
zone of ab ce

ition o

bottom
d pres

f a

se ains the pits, which 
on the  of which in-
ons coul ent.  

 

int

n  of uniqueness rem
lls, 

w electr
are insolated from the wa
definite amount of slo

It is clear from physical sense that accumulation of
slow electrons in the insolated pit reduces positive spatial 
charge of the pit, in result of which the pit vanishes. Be-
sides, the motion of slow electrons should satisfy another 
kinetic equation with non-linear egral of their mutual 
collisions, which leads to maxwellization of their distri-
bution. But the consideration of back influence of the 
electron distribution on the electric field, also the kinetics 
of slow electrons, does not include into subject of this 
paper.  

4.1.3. The Conjugate Equation 
Let    0, inf D  r v . Multiply non-homogeneous equa- 
tion  

       

 1

,

,

el
e

e
L v f

m

s


  

       


v E r v r v
r v

r v

  (20) 

on arbitrary function    , inh D  r v  and integrate 
over the domain in

 : 

 

       ,elL v f  




v r v
v

 

   3 3
1d d , , .

in

in

em

r vh s



 



v E
r

r v r v

Making integration by parts in the left hand sid
equation, we obtain: 

3 3d d ,r vh

 r v

e  
  r

e of the 

   

 

       

   

3 3

3 3
1

,

d d ,

,

d d , , .

in

in

el
e

f

r v f

e
L v h

m

r vh s













  
        






r v

r v

v E r v r v
r v

r v r v

 (21) 

2 3

Γ

d d ,r v h


  n v r v

Designate: 

     1 ,el
e

L v
m


  

 
E r v

r v
    (22) 

e
D


  v

     1 .el
e

e
D L v

m
  

      
 

v E r v
r v

   (23) 

From the obtained equality (21) it is apparently 
function h  satisfies conjugate homogeneous equation  

that if 

 1 , 0,D h r v                 (24) 

also the “conjugate” condition of incomplete absorption: 

    

:

, , , 2

0 1

h v h
v







  



      
 

 

n

v
r v n r v v n n

(in which a sign of scalar product of the velocity on the 
no
si    

, 0 r v

,  (25) 

rmal is opposite to that was in (8)), then the left hand 
de of the equality, in account of transformations  
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       

 
   

 

Copyright © 2012 SciRes.    

 
    

 
 

2 3 2 3d d , , d dv h f r v   n v r v r v n 2 3

0

2 3

2 3

0

, , d d , ,

,

d d , , , 2

r h f r v h f

f

r v h v f
v



  

 


    

 

 
   

  

  

     
 





n v

n v

v r v r v n v r v r v

n n r v

v
n v r v n r v v

 

0    n v

v

0

d d , , 2r v v h
v


 

 
   

     
 

n v

n v n r v v

  n n  

    

 
    

2 3

0

2 3

0

d d , , 2 ,

d d , 2 , , 0,

r v v h f
v

r v h v f
v





 

 

   
   

   
   

       
 

        
 





n v

n v

v
n v n r v v n r v

v
n v r v v n n n r v

 
vanishes, and consequently, the condition of the or-
thogonality of the right hand side of (20) to all solutions 
of the homogeneous problem (24), (25) becomes the 
condition of solvability of the Equation (20) (the Fred-
holm condition). But for this problem the next lemma is 
true: 

4.2. Lemma 2 

pletely analogues to the proof of the lemma 1. 

, ; , in   r v r v

n

 
 

  
1

1

, 0 :

, ; ,

, , ; , 2 ,

g

v g
v





  

   

 

          

r v n

r v r v

v
n r v r v v n n

 (29) 

if it exists, is unique. The support of the function belongs 
to the set  

     , , .in in       r v r v  

Physical sense of the lemma: the electron, whic
pears in some point 

The unique solution of conjugate homogeneous equation 
(24) at “conjugate” condition of incomplete absorption 
(25) on class of functions    , inh D  r v  is  
 , 0h r v . 

The Proof 
is com

h ap-
r  having the velocity v , con-

serves its total energy during its motion as long as it 
e act of ine-

The Equation (26) and conjugate Equation (27), also 
the conditions of incomplete absorption (28) and (29), 
right and “conjugate”, are interrelated: one of them
lows from another. Indeed, let us write down the equa-
tion (20) with arbitrary right hand side in the operator 
form: 1 1D f s

leaves the energy hypersurface in result of th
lastic collision or absorption with a wall.  

4.3. Lemma 3  fol-

Generalized function  

  1 , ; , , ,ing   r v r v   . The Equations (26) and (27) in that 
form take a view: 1 1

ˆˆD g I , 1 1
ˆˆD g I    (here Îwhich satisfies the equations: 

      1 , ; ,el
e

L v g
m

 

  ,

e





 3 3

   



v

v v

     

(26) 

       
v E r v r v r

r v

 is 
identical operator, 1ˆ  and 1ˆg g  designate linear in
operators with the kernel  1 , ; ,g  r v r v  and the k
conjugated). Let us multiply (26) from the right on 1

tegral 
ernel 

s , 
then obtain: 1 1 1 1ˆD g s s , from which it follows  r r

     

 3

e
L v

           




v E r v

v v

   (27) 

lete absorption: 

 

1 1ˆf g s . Now let us multiply (20) from the left on 1ĝ  
and obtain: ˆ ˆ

  3

em
  1 , ; ,

el

g  

  

 

r v

r v r v r r

and the conditions of incomp

 

  

, 0 :

; , ,





  

 

r v n

n n r v

 


1

1

, ; ,

, , 2

g

v g
v

  

 

    
 

r v r v

v
n r v v

(28) 

 1 1 1 1g D f g s f  f. Because of  one can 
consider an arbitrary function (which satisfies a condition 
of differentiability and the conditions of incomplete ab-
sorption in the boundary), from the expression obtained it 
follows 1 1

ˆĝ D I , which is identical to (27). Conse-
quently from (26) it follows (27). And back, from (27) it 
follows: 1 1

ˆĝ D I , 1 1ĝ D f f , and then with account 
of (20): 1 1ĝ s f , 1 1 1 1 1ˆD g s D f s  , from which, be-
cause of arbitrariness of 1s , we obtain 1 1

ˆˆD g I . 

The Proof  
Existence and uniqueness. The Equation (26) is equiva-
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lent to the operator equation 1 1
ˆˆD g I , and the equation 

(27) th r equation 1 1
ˆˆD g I   , or, that is the same, 

to the equation 1 1ˆ

 , r v  on its variables, for any 0
e ope

ˆ
rato

g D ate they are 
equivalent to exis nce of the reciprocal operator  

1
1 1ˆ

I ; in the aggreg
te

g D , or to existence a ss classical (not 
generalized) solution of the Equation (20) at an arbitrary 
continuous right h For existence of a solution of 

ogeneous Equation (20) at the boundary con
tions of inco n it is necessary the or-
thogonality of the right hand side of the equation to all 
non-zero solutions of conjugate homogeneous equation 
(24) at “conjugate” condition of incomplete absorption 
(25). By  it was proved that such solutions do 
not exist, thus right hand side of (20) has no additional 
restriction . As nt n o e, the formulation of suf-
ficient con of tion of the equation 
(20) is not an easy prob m, so we do no ns er it
here.  

nd uniquene

and side. 
non-hom di-

mplete absorptio

lemma 2

s  me io ed ab v
ditions existence of solu

le  t co id  

 of solution of non-homogeneous Equa-

ave uniq
d by lemm

1

For uniqueness
tion (20) it is necessary and sufficient, that the homoge-
neous Equation (11) would h ue solution (equal 
to zero). The last was prove a 1. 

The support of g . The proof of the lemma 1 (also the 
lemma 2) remains true in that case, if from the set in  
o e udes any layer   1 2,n l exc    r v . At that, it is 
not necessary to put any boundary condition in the 
boundary of the layer, because the vector field of phase 
flow is tangential to the boundary in any point, and the 
flux through the boundary from appropriate integral 
terms vanishes. In result, the equalities (13) and (14) be-
come true again, and the proof of lemma 1 and lemma 2 
for the set   1 2\ ,in     r v  is carried out in 
analogy to made above. 

Let  

  2

1
exp , 1;

1

0, 1.

C
       
 

r
r r

r

 


11

2
2

0

1
4π exp d

1
C r r

r


       
  

be the normalized “cap” [15]. Build a sequence of “caps”, 
which are convergent to the delta-function of right hand 
side of (26) or (27): 

       6, ; ,n n n n       r v r v r r v v . 

(Here the convergence treats in a sense of weak con-
vergence of linear functional, see [16].) The support of 
any “cap” is concentrated in the right product of balls  

   supp 1 1n n n       r r v v . 

At fixed , r v  consid n D fer 1 n n the equatio   re-
spond the unknown nf . Because of continuity of the 

function    one 
can find such number 0n , to begin from which it is true 
the estimation for the energy: 

      0, , ,  , supp ,  n n n       r v r v r v  

If now one chooses  1 ,   r v ,   
 2 ,    r v , than we obtain that the equation 

1 n nD f  on the set   1 2\ ,in     r v  is homo-
geneous: 1 0nD f  . Because of lemma 1 it has here sin-
gle solution - zero. Hence, the support of the solution of 
the equation 1 nD f n  belongs to the set  

  1 2in ,    r v  . Because   could be chosen 
arbitrarily small, the support of (generalized) function 

lim n
n

f f


  (weak limit) belongs to the crossing of all 
such sets, namely, to the set     , ,in      r v r v  
(at fixed , r v ). Now if one fixes ,r v  and consider in 
analogy the conjugate equation D h1 n n

  , one, using 
lemma 2, comes to analogues result respond variables 

,  . Therefor e support of generalized fu  1r v e th nction g  
belongs to the set       , ,in in       r v r v . 

The lemma is proved. 

4.4. Lemma 4 

 , ; ,g  r v r v  of the Equation (7) The solution 

       3 3

e

e
L g  

  
   


v r v v

r
 

in the c eralized functions o

m
    

  
v E r r

v

lass of gen n the set 
 , ; , in in   r v r v , at the boundary conditions of in-
complete absorption (8), in a condition of existence of 
the function  ,1 , ;g  v  (see lemma 3)

y: 
r v r , exists, is 

unique and has a propert

 , ; , 0g   r v r v  at    , ,   r v r v .   (30) 

Physical sense of inequality (30): t  
has arisen low discharge in the phase point ,

he electron, which
 in g  r v  at 

the energy  ,  r v , can not gai nergy in the 
process of motion under elastic and inelastic scattering 

motionless” atoms of gas, because inelastic pro -
esses make its mec

n more e

on “ c
hanics of motion dissipative. 

4.4.1. The Proof 
tion (7) in the form Rewrite the Equa

       , ;el

e 
   

       3 3 3

,

d , , ; , .

e

L g
m

v g  

  
  
   

         

E r v
r v

v v r v r v r r v v

 
v v v r v r

Because of property (5), if a point  , inr v , then 
 , inpoint r v  (otherwise the factor   vanishes). 

Using the superposition principle [15] p. 195, let us rep-
resent the solution ion (7) as a sum of solutions 
with elementary sources fr

of Equat
om (26). It enables to repre-
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sent the Equation (7) in in  form  

  , ; ,g    r v r v  

Because of property (5) one can change the order of 
in

tegral

   

   
   

3 3
1

3

3 3

, ; , d d , ; ,

           d , , ; ,

                    +

in

g r v g

v g

 



     

      

    





r v r v r v r v

v v r v r v

r r v v

 

or 

         

 , ; ,g  r v r v

  3 3 3    

 

1

1

d d , ; , d ,

, ; , .

in

r v g v

g




 

 

 r v r v v v

r v r v

tegration by the velocities , v v :  

 

 3 3 3
1

, ; ,

d d d , ; ,
in

g

r v v g


 

      

r v r v

r v r v   

   , , ; ,g g       v v r v r v  1 , ; , . r v r v

Due to (5) the integration here is made over set  

 
2

3, ; in

m v
R

 2

.
2 2
e e

in

m v

e e


                
r v v  

 structure of this set we have inequality:  



From

2 2v v   2
in v , so, if 

2

e

e

m
  , in  r v  than  

 , in  r v  also. This makes it possible to change the
order of integration mentioned. 

We obtained the integral equation  

 ; ,g   v r v     (31) 

where 
  , .  v v v   (32) 

 

 

 1

, ; ,

,

, ; , ,

in

g

g



 



 

v

r v r v

 3 3d d , ; ,r v K    

r v r v

r v r r

  3
1, ; , d , ; ,K v g    r v r v r v r

Using (5), we obtain: 

 

   d , ; , , .e e
in

m m

e e

v g


 
 

      v v r v r v v v
 

2 2 3
1

2 2

, ; ,K  r v r v

From the lemma 3 for the function 1g  and from the 
property of energy dissi sup-
port of function К ,r v ) can ged 
only at  

, in

pation (5) it follows that the 
variables be arran (by 

     , ,      r v r v  r v , 

from which we have: 

 , ; , 0K   r v r v  at    , , in    r v r v .   (33) 

Physical sense: the operator  

     3 3ˆ , d d , ; , ,
in

Kf r v K f


      r v r v r v r v    (34) 

 the energy of electrons not less than the value 

in

reduces
  of minimal energy of all inelastic processes: 
tio

if func-
n  ,f r v  has a supp
longs to the set 

ort restricted by energy,
be  

 which 
 1,in  r v , then the support 

of the function 
 
 ˆ ,Kf r v  must belong to the set  

   1,in in     r v . 
Let        , 1, , ; , 0, ,in in in inI I   r v r v r v r v  

be an indicator of the set in . The operator  
   0 0: in inD DK̂     one can presen as a product of 

two operators: 
t 

       1
ˆ ˆ ˆ ˆ ˆ, : ,K g D C g D  0 1 0:in in in inC       , 

where 

 ˆ ,f

     3 3, d d ,inI r v f  3 , .


      r v r v v r

The indicator of set in

r v
 

r v

  is included to avoid 
eration of zone 

consid-
s  of slow electrons (the pr

transformation “fast” electrons into slow ones is not in-
ocess of 

teresting for the problem stated). Because the function 
 0 inDf    is finite, its support is restricted by energy 

with th lue e va   1, r v , therefore the function 
   2 ˆ, ,s fr v r v r its support  the 

inequality 
 is finite also, fo

  1, in   v
The operator ˆ

r  is true.  
K  acts to the same manifold of func-

tio n which it is defined, so there exist powers of the
K̂ . 

In the operator form 
d to its kernels) the equation (31) takes 

form: 1
ˆˆ ˆ ˆ

 in
ns, o  

operator 2 3ˆ ˆ ˆ ˆ ˆ ˆ, ,K KK K KK  Λ and so on
(where the names of integral op-

erators correspon

  1
ˆ ˆ ˆ ˆI K g gg Kg g , or    . Its formal solu

tion is the Neumann series: 

  1

1 1
0

ˆ ˆ ˆˆ ˆ ˆn

n

-

g I K g K g




     
 
 . 

However, because the energy is restricted from
bottom, but every action of the operator ˆ

 the 
K  reduces the 

en  leergy of electron not ss than in , so an operator 

1
ˆ ˆnK g  vanishes o  functions of the class n  inC   at 

inn   , other to say, the operator K̂  is nilpotent  
on functions, which support is restricted from energy top 

 with energy  , the index of nilpotency is equal to 
  1inn     (he ets designate integral part 

 3). Thus the series has finite number 
of summan

re the brack
of number: [3.14] =

ds: 
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 1ˆ ˆ , ,
N

n
ing K g N

0

ˆ
n

     


     
 r v       (35) 

Existence and uniqueness of  , ; ,g  r v r v  are con-
sequences of those for kernels 1g  and K , which are 
include ula fo , and unambiguity 
of finite number of operati

d into form erator
n it. Since there is no 

summands, which itial energy of electron 
 ,  r v  (which el ore first act of inelastic 

r the op
ons i

 increase in
ectron had bef
 , ; , 0 scattering), then g r v r v  at  

e

   , ,  r v r v . 
Because of arbitrary choice of upper boundary of en-

ergy in limits of the domain of “fast” electrons the state-
m nt of the lemma can be extended into whole set 



 , ; ,r v r in in   v . 
The lemma is proved. 

4.4.2. Normalized Spaces 
In manifolds  0 inD   and  inC   one can introduce 
the norm of space 1L  in such way: 

   

   1

, ,

.in

s

D f C 

r v

t

3 3

0 1

: d d

: ,
in

in

in

s C s r v

f D f D f



  

  


 

Such definition of the norm is convenien  in the sense 
that the norms of the operator 1D  and its reverse opera-
tor 1ĝ  are equal to unit, and they turn out to be re-
stricted and continuous automatically. These norms have 
ph  sense: they are equal to the total flow of “fast” 
electrons from n tributed source in all 
vol ge.  the no

ysical
negative dis

ume of disc In this way, rm of the opera-
to

on-
har

r ̂  is equal to the norm of the operator 1
ˆ ˆ ˆK g   

and it does not exceed unit, because of conservation of 
flow of electrons, which undergo inelastic scattering. In 
sequence ors ˆ, the operat   and K̂  are restricted and 
co

However,

ntinuous also. 

 the other norm  3 3d d ,f r v f r v   
in

 

could have physical sense for ace  0 inD   also, 
at non-negative 

 the sp
f  it coincides with (average) total 

num f “fast” electrons i scharge volume. But 
if such norm to us op

ber o n the di
erator 1ˆe, the g  can be unrestricted 

on  in . Indeed tential ener  “pit” 
exi n the discha  ch has a bottom 

C
sts i

, let an
rge

 electron po
volume, whi

gy

min  , a depth p in   and does not border with 
walls of discharge volume. Then for Equation (20) there 
is a solution  

    

  
      

min

1 1

, , ,

supp ,

, , .

p

p in p

p

f

D f v s

 

    

  



   

 

r v r v

r v r v

 

Obviously, one can build a sequence of functions  

      min
1

1
,in pn

p

n n   
  



    
   

  
p in 

   1 12
exp , 1 1; 0, 1;x C x x x 1 

1x
       

 
11

2
1

1
d exp .

1
C x

x





 



    

ch wea

  
  

whi kly converges to  min in     ; at that 
way the norm “number of particles” would converge to  

finite positive limit, but in the same time the flow  
1

ns   

of the electrons, which undergo inelastic scattering, 
would tend to zero because of factor  v . If now one 
builds new sequence from previous one, in which every  

term of initial sequence is divided on the num er  
1

nsb ,  

then now for every term of new sequence the flow is 
equal to unit, and in the same time “the number of parti-
cl

for 
functions from 0D  the operator 1ˆ

es” would increase unrestrictedly.  
Nevertheless, in the norm “number of particles” 

g  would be rest ed 
on manifolds 

rict
  , 0inC    , and, in particul n ar, o

   ionC  . Unrestrictedness of 1ĝ inC on the whole   
is tied with increase of concentration of “fast” electrons 
in bringing near to zone of slow electrons, because of 
necessity of the flow conservation in a stationary prob-
lem, though the rate  v  of inelastic p ocesses tends 
to zero in reaching the boundary of division of “fast” and 
slow electrons. As mentioned above, the gaining of elec-

ormation” of the

ions

r

trons in the pit must lead to “def  pit itself 
and to formation the configuration of electric field of 
discharge, which does not enable too high concentrat  
of electrons. 

4.5. Lemma 5 

The operator      3
0 1 0

ˆ : d ,G s r G s   r r r r  is d d  


identically and has properties: 
1) Shrinking of a support: if a support of non-negative 

function 

efine

 s r  belongs to the set  

  u u    r , then the support of the nonnega-  

tive function    1 0
ˆs G s longs to the set r r  be

  ionu ionu        , 

and the enclosure 
ionu u

r

    is true. 
2) Nilpotency: since the potential energy is restricted 

from the top and botto there exists positive integer 
power М of the operator 0Ĝ , which turns any function 

m, 

  ,s r r , integrable on  , identically into zero: 
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   0
ˆ 0.

M
G s r  

The Proof 
Unambiguity. On the definition  

     , ; ,v g r v r 0 . 

ion of the fun
uaranteed  by lemma 4 

3
0 d ionv  

mbiguity of definit

,G r r

Though una ction  
 , ; ,g r v r 0  at fixed r  is g

on  ly in the domain , inr v  for “fast” electrons, the 
integration velocities in zone by s  of slow electrons 
does not con

of
tribut

 ionizatio
e because

the rate 
, 
n 

 first factor in the integral, 
 ion v , is equal to zero in zone 

s  (because of fore function (1)). There  ,0G r r  is 
define

1) From lemma 4 it fo  , ; , 0
d id tically. en

llows, that g r v 0  at  r

   
2e

   r r , other t -zero values of 
2

em


v
o say, non  

g  are possible only at    
2

2

m
   

v
r r . But, due  

(1), to provide th factor  v  not to v

e

e
to property ion an- 

ish it is necessary, t  

e 

hat the condit nio
2

2
e

ion

m

e
 

v
 be  

true, from which follows    
2
e

e


2m
ion    r r , or  

  ion

v

    r r . It means that   

     0 , 0 at .ionG        r r r r       (

upport of th  function  s r  belongs to the 
set 

36) 

Since the s e
 u     r an from (36) it follows, 

that non-zero values of 
 u , th

 1s r  a  possible only at 
    ion iu

re

on        r r , other to say, the support 
of the function  1s r   to belongs ionu  . The enclosure 

ionu u    is obvious because of positiv  of 
ionization threshold 
 e value

ion . 
The statement a) is proved. 
2) Since the electric

is restricted from top 
 potential in a gas discharge device 
and bottom, statement 2) is true at 

  1ion  , where M U    max 


 
r

r . 

iew:  
   

U
The lemma is proved. 

4.6. The Proof of the Theorem 

The Equation (9) in operator form takes a v
 0

ˆs a G s  r , or  0
ˆÎ G

umann 
r r    s a r r . Formal 

series: 

 0
0

m

m

a





 
r . 

 in the lemm
mber of summands: 

 

solution is given by the Ne

   ˆs I G r r  
1

0
ˆ ˆa G

   

However, because of nilpotency of perator 0Ĝ , 
which was proved a 5, this series has only 
finite nu

 

the o

 ˆ .
M

m
ionU   

 
       (37) 

ula (37) obtained defines identically the so-
lution of the Equation ), 

0
0

,
m

s G a M


  r r

The Form
 (9 and thus it proves an existence 

of n of existence of solution 
th

5. lts and Conclusions 

rem for solution of 
 useful constructions 

se and 
enable to understand ucture of non-local

 of non-local 
source of ionization in glow discharge and hollow cath-
ode. 

First of all, one manages to understand that an ele-
mentary s re-

gs to. The elastic collisions 
with atoms do not change significantly the
ergy because of slow velocity of atoms in
with typical velocities of “fast” electrons and small mass 
of

 the solution (at the conditio
e Equation (26)) and its uniqueness.  
The theorem is proved. 

 Discussion of Resu

In the proof of the uniqueness theo
Equation (9) there are built many of
and formulae. All of them have clear physical sen

 a str  electron 
avalanche, which forms configuration

ource of “fast” electrons, which can be 
garded as localized in some point of 6D phase space, 
supplies electrons into hypersurface of constant energy, 
which the source point belon

 electron en-
 comparison 

 electrons, so elastic scattering can be regarded as con-
serving the electron energy. Thus, the auxiliary differen-
tial Equation (26) with appropriate boundary conditions 
defines the distribution 1g  of electrons from a point 
so r inelastic scattering and wall 
absorption as yet. This stationary solution might exist, if 

ed 

urce, which did not suffe

a point source of electrons is balanced with distribut
electron losses in inelastic scattering and wall absorption. 
The distribution 1g  has monochromatic energy spec-
trum (everywhere here we mean total mechanical energy 

 

 

 
2

,
2
em v

e
  r v r . 

The inelastic losses of energy generate a source of 
electrons having lower energy than primary ones had, 
this process is described with operation 1 1ˆs g . The 
distribution 2g  of lower energy electrons gives opera-
tion 2 1

ˆg Kg . If distribution 2g  describes “fast” elec-
trons, they are able to loose its energy again: 3 2

ˆg Kg , 
and so on. 

If one guesses that only some finite number of energy 
transformations are significant among all inelastic proc-
esses (for example, excitation of atom from ground state 
to first exited level, and its ionization from ground state 
to the bottom of electron continuous energy spectrum), 
the operator ̂  would consist of finite number of 
monochromatic summand having as factors the delta- 
functions of appropriate energy changes. Then primary 
point source generates discrete spectrum of energies for 

s, 
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inelastically scattered electrons. The generalized function 
g  represents an electron distribution, which is generated 
by the point source ( g  does not include the distribution 
of ionization product-secondary electrons, born in ioni-
zation e Formula (35) illustrates th ructure of ). Th e st g . 

Othe hand, among elastic pr  there are pre-
se

r ng vel
g

s co
gy for pri

n

n
w

r  in ocesses
nt ionization processes, which generate secondary elec-

trons—product of ionization. Primary energy of secon-
dary electron (in assumption of its slow sta ti ocity, 
which we ne lect) depends not on energy level of pri-
mary electron, but on value of electric potential in the 
spatial point of their birth. The potential change n-
tinuously along hypersurface of constant ener -
mary electron, so secondary electrons, starting with zero 
velocity, would have continuous spectrum of energy. If 
secondary electron is “fast”, it generates its own discrete 
spectrum, but taken they all together, their spectrum 
would be continuous. The equation in the introduction of 
the paper (obtai ed in [12] by V. V. Gorin) represents the 
source of ionization  s r  as a sum of contribution of 
electrons from the cathode, and contribution of secon-
dary electrons from discharge volume. First are primarily 
monochromatic, after inelastic action they are distributed 
on some discrete spectrum, so the first summand has 
discrete energy spectrum. In second summand we see the 
integration inside discharge volume over r . As poten-
tial energy of the electron changes continuously in this 
i tegration, and secondary electrons supposed to be born 

ith negligible kinetic energy, electron energy in a 
source  s r  changes continuously, and, though the 
kernel  0 ,G r r  at fixed r  would give discrete spec-
trum (see definition (10)), the averaging on r  gives 
continuous energy spectrum of ionization with secondary 
electrons. So, the non-local ionization source has both 
discrete and continuous energy spectrum that was found 
earlier by other authors [18]. Formula for distribution 
function, obtained in [12]: 

     

   

2

3

, d , ; ,

d , ; ,

e nf r g j

r g s





  

  





r v r v r r

r v r r

0

0
 

has analogues structure: first summand, from cathode 
electrons, has discrete energy spectrum due to constant 
value of potential along the cathode and discrete spec-
trum of the point source; second summand has continu-
ous spectrum due to averaging in the integral over all 
discharge volume. 

Final Formula (37) for a source of ionization demon-
strates a structure of non-local avalanche: operators 

0
ˆ , 1, , .mG m M Λ  increase primary ionization source. 

Other words, one primary electron ionizes in average 
some nu of atoms, some of secondary electrons are 

atoms in addit n, and so on, as long as no “fast” elec-
trons appear (at m M

 

ber 
d they, in their turn, ionize s me number of 

io

m
n“fast”, a o

 ). Mathematically it me ns: the 
norm of operators 

a

0
ˆ 0, 1, ,mG m M  Λ , so, the norm 

of operator 

 0 0 0
0 0

ˆ ˆ ˆ1 1, .
M M M

m m m
ion

m m

G G G M U 
 

        
1m

Here general inequality for norms is substituted with 
equality, because all operator summands are non-nega- 
tive and act on non-negative source functions. When 
“more than unit” (>1) can be substituted with “much 

f ho

ments 
he efforts of my frien

 Boordo and Prof. Yu V. Yakovenko, who 
were aimed to make paper more clear.  
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