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ABSTRACT 

The time-dependent entropy of a single free quantum particle in the non-relativistic regime is studied in detail for the 
process started from a fully coherent quantum state to thermodynamic equilibrium with its surroundings at a finite tem-
perature. It is shown that the entropy at the end of the process converges to a universal constant, as a result of thermal 
interaction. 
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1. Introduction 

It is well-known that entropy, as the measure of “the 
amount of uncertainty”, can not decrease in any sponta-
neous process according to the second law of thermody-
namics [1]. In a recent work [2], we studied the thermo-
dynamics of a single quasi-free massive quantum particle, 
by performing statistics directly on the matter wave of the 
particle. Taking into account the detailed configuration of 
diffraction in real space and thermal interaction with the 
surround space at a finite temperature, the complicated 
behavior of the time-dependent internal energy is studied 
for the whole process started from a fully coherent quan-
tum state to thermodynamic equilibrium with the sur-
rounding space. An expression for the entropy of the 
particle is also shown in [2]. The purpose of the present 
article is to present the detailed derivation of the expres-
sion of the time-dependent entropy for the particle and 
study in more detail the physics in the irreversible proc-
ess. Numerical calculations confirm that the entropy in-
creases monotonically with time and the entropy gener-
ated in the whole process converges to a universal con-
stant. Although the system studied here is the simplest 
quantum system at a finite temperature, it already shows 
how a single quantum particle feels the temperature of its 
surrounding space. In conventional quantum mechanics, 
entropylike concepts are defined only for statistical de-
scription of ensembles of identical quantum systems. Our 
results here confirm the conclusion that entropy is a physi-
cal observable that can be well-defined for each individ-
ual quantum system at finite temperatures [3]. 

2. Model Calculations 

The system considered is a structureless quantum particle 

of mass m and kinetic energy E0 initially at the origin, 
moving along the x-axis in a space at a nonzero tempera-
ture T. The space here may be filled with electromagnetic 
radiation just as the cosmic background in the universe. 
In quantum mechanics, the particle is described by a 
wave-packet sharply peaked at the de Broglie wavelength  

 1 2

02h mE   and the wave-packet propagates at  

 gV h mgroup velocity  , with h being the Planck’s 
constant. The matter wave front is assumed to be circular 
with finite radius a0 which is large compared with the 
wavelength, so that the shape and linear dimension of the 
forward-going wave-front remains unchanged. Strictly 
speaking, the particle is quasi-free in the model calcula-
tion, even though there is no interaction with other parti-
cles. If the radius a0 tends to be infinitely large, the re-
sults reduce to that of a free quantum particle. A point in 
the central part of the wave-front generates forward-go- 
ing semi-spherical waves, according to the Huygens prin-
ciple. A point at the edge of the wave-front is assumed to 
generate out-going fully spherical waves and thus the 
particle undergoes a kind of reflection. The kinetic en-
ergy associated with the forward-going wave-packet fol-
lows the form [2] 

   0 0exp 2kE x E x a L  ,          (1) 

where x = Vgt representing its central position and L is a 
temperature dependent parameter of dimension length 
and is expected to be infinitely large as the temperature 
tends to zero. This is just the energy for the source to 
generate out-going fully spherical waves. In general, all 
energy states are not equally likely. In principle, the par-
ticle may be in any of these diffracted states besides the 
forward-going plane-wave state, i.e., the particle itself 
constitutes automatically a thermodynamic system as a 
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result of diffraction at the edge of its matter-wave front. 
Thermal interaction between the particle’s system and 
the surrounding space becomes possible and the space 
here acts as the heat reservoir at constant temperature. As 
time goes on, the probability decreases for the particle in 

the quantum state described by forward-going wave- 
packet. At the end of the process, the particle can only be 
in a series of states diffracted at the edge and moves 
equally to all directions. The partition function at a given 
time is written in the form      f dZ t Z t Z t 

 

, with 
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0 0

2 2
exp exp exp exp e rg g t

r

V t V t
t E E t

a L a L

 
      

          
     

Z               (2) f

 
representing contribution from the forward-going wave-front, and 
 

       0 exp
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0

exp d e e
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V t
Z t
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0
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from all spherical waves diffracted at the edge, respec- 
tively. Here the notation 

    0 02 exp 2EP x a L x a L  
1 Bk T   is used as usual 

with kB being the Boltzmann constant. The constant Z0 is 
defined as the non-zero real solution of the transcend 
equation 0 0 , and an approximate value 
Z0 = 1.25643 is used in our numerical calculations. The 
probability density function is defined as  

 

and the step length is chosen to be 0 0 . 
The time is scaled as 

0 02d Z a L E
r c t t t

 exp 2 1 0Z Z  
 , where 0c  

is the temperature dependent characteristic time. 
2t ma L h

The expectation value of energy of the particle or its 
internal energy Ux(t) for the coordinate is 
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ln

    (4) 

 
which evolves depending on the temperature and the 
particle’s initial energy in a complicated form. In general, 
a quantum particle absorbs or gives out heat continuously 
when its initial energy E0 is less or more than kBT/2, in-
dicating exchange of energy between the particle and its 
surrounding space in the whole process. The limiting 
value of the internal energy for the freedom in the x-di- 
rection is kBT/2, regardless of its initial energy [2]. The 
limit is reached within several tc and the overall decay or 
increase in internal energy does not follow the simple 
exponential form. 

We use the well-known definition of entropy of a dis-
crete system 

B i i
i

S k p p                 (5) 

where pi is the probability in the ith state and the sum 
goes over all states accessible to the system. The defini-
tion is perfectly unambiguous for systems of any size and 
there is no restriction to equilibrium situations: the prob-
ability will be time-dependent if the system evolves dy-
namically. The entropy of the particle is thus a function 
of the probability distribution and is not fluctuating since 
it has nothing to do with the state in which it happens to  

be. We first assume that the forward-going wave-front 
representing a single quantum state makes little contribu-
tion to the entropy. The entropy is then determined by all 
those states diffracted at the edge. In quantum mechanics, 
the spreads in energy and time are related by the uncer-
tainty relation 2π .E t h   To prepare the original 
state with energy E0, the uncertainty in time is estimated 
to be 02πt h E 

V t
, corresponding to an uncertainty in 

position of the particle g 

 

. Therefore, waves dif-
fracted at the edge should be indistinguishable when the 
wave-front moves forward within about one wavelength. 
Please note that the analysis here does not mean the en-
tropy is physically related to the principle of uncertainty 
in quantum mechanics. In fact, as shown below, a dif-
ferent choice of the indistinguishable length leads to an 
unimportant additive constant in entropy. We choose  as 
the shortest step and rewrite the partition function due to 
diffraction at the edge of the wave-front in discrete form 

0

0
e

g

l

V t
Z f

d l
l

Z t A f


 



  ,          (6) 

where  explf A l   and  02A a L . According 
to Equation (5), the entropy is then 
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where the subscript x represents the coordinate and d 
diffracted states at the edge. This expression is exact and 
must be used within the time gt V . At a later time 

gt V , by changing summation into integration and 
with the help of the exponential integral function [4], we 
obtain 

   
   

 
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d
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

 

 
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 


(8) 

Note that the constant term  ln A  is eliminated 
because it is an additive constant depending on how to 
define a distinguishable state and in thermodynamics we 
are interested only in the entropy generation during the 
process of evolution. Moreover, the factor A  in the 
discrete form of the partition function Equation (6) cor-
responds to a common weight factor for all states in the 
problem and has no physical consequence in calculating 
the average value of a quantity except the entropy.  

Similar discussion applies also to the case that the con-
tribution from the forward-going wave-front is included. 
The entropy of the particle is expressed as 

     
 
 

 
 
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l
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e
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g

l

V t Z f
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Z t
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B Z f

x l
l

f f
B

k
S t A f

Z t

Z t Z t
k

Z t Z t



 



 




    (9) 

which ensures that the entropy starts from zero and re-
mains positive later. At a time gt V

 ln
, by eliminating 

the A term once again and changing the summa-
tion into integration, the time-dependent entropy of the 
particle for the x-coordinate can be obtained 
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  

E

 (10) 

In fact, time-dependent entropy of a quantum system 
has been studied by Gheorghiu-Svirschevski using an 
extended Liouville-von Neumann equation [5]. Unfortu-
nately, we failed to obtain an expression for the entropy 
using this theory to compare with Equation (10). The 
reason is that the system here is not described by stan-
dard plane-wave with infinite spacial extension. The pre-
sent work starts from a circular matter wave pulse with 
finite radius a0, its time evolving is governed by the Huy-

gens-Fresnel principle. Furthermore, every point at the 
edge of a wave-front is assumed to generate continuously 
out-going spherical secondary wavelets. In principle, 
such a system can be studied with the path integral for-
mulation of quantum theory, but not the Schroedinger 
formulation. 

In Figure 1 we plot the numerical results for the en-
tropy of the particle determined by Equation (10) as a 
function of the scaled time for different values of 0 . 
For 0 2E  , the entropy starts from zero and increases 
with increasing  ct t

E
 and shows little dependence on 

the exact value of 0 . For 02 50E  , Equation 
(10) may become negative numerically, indicating that it 
is inexact in the initial stage. Fortunately, it starts to be 
positive at a latter time   1t t  0 50Ec . For   , the 
entropy starts to be non-negative at   1t t 

E

c  and then 
increases monotonically with time in accordance with the 
second law of thermo-dynamics. Mathematically, Equa-
tion (10) reduces to Equation (8) in the limit of large 

0  and thus the entropy as a function of the scaled 
time  t t Ec 0 shows no direct dependence on  . 

Although the entropy evolves in a complicated from, it 
tends to reach its limit within a time about   5t tc  . 
The limit can be calculated exactly from Equation (10) 
and is of the form 

  
0

0

0 0

0

ln1 1 e
ln

2 1 e

1.27
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C Z Ei Z
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

   
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  (11)  


where Ei the exponential integral function [4]. Note that 
the limit is universal with no regards to the unknown 
 

 

Figure 1. The entropy of a single quantum particle for the 
x-coordinate as a function of the scaled time for different 
values of E0. The curves may become inexact for (t/tc) < 1, 
as described in the text. 
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parameter L, the temperature of the surrounding space 
and the initial state of the particle. In a textbook of statis-
tical physics, it is well-known that the entropy per parti-
cle in an ideal gas of N particles in a volume V and at 
constant temperature T is expressed as the Sackur-Tet- 
rode formula [6] 

2

2π
ln B

B

mk T
k

h


 a

5 3
ln

2 2B B

S N
k k

N V
  ,     (12) 

showing dependences on the temperature and the mass of 
the particle. It should be pointed that Equation (11) is the 
entropy per freedom generated in the process started 
from an initial coherent quantum state to final thermo-
dynamic equilibrium with its surroundings, before we 
call it a particle in conventional statistical physics, i.e., it 
moves equally to all directions. For a real free particle 

0 



, independent motion is allowed in the perpen-
dicular direction. Therefore, the total entropy per particle 
generated in the whole process of decoherence should be 
3Sx()  3.81kB. 

3. Conclusion 

In conclusion, we have derived an expression for the 
time-dependent entropy of a single non-relativistic quan-
tum particle freely moving in a space at constant nonzero 
temperatures. The entropy increases monotonically with 

time in accordance with the second law of thermody-
namics. Although the initial state of the particle and the 
temperature of the surrounding space play important 
roles in the process, the total entropy generated tends to 
be a universal constant. 
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