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ABSTRACT 

Telegraph equations describing the particle densities in Brownian movement on a lattice site have been derived and it 
has been shown that the complementary classical Dirac equation appears naturally as the consequence of correlations in 
particle trajectories in Brownian movement. It has also been demonstrated that Heisenberg uncertainty relation between 
energy and time is the necessary and sufficient condition to transform this classical equation into usual Dirac’s relativis- 
tic quantum equation. 
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1. Introduction 

x tThe relativistic propagator for a free particle in   
space can be obtained [1-5] from the considerations of 
the statistics of random walks in space and time without 
restoring to formal analytic continuation. It has been 
shown [6] that the wave functions and propagators that 
occur in classical equations are themselves observables 
on the lattice in contrast to quantum mechanics where 
wave functions are rather mysterious objects which only 
facilitate calculations and which are not themselves ob- 
servables. It has also been shown [7] that the free particle 
classical Schrödinger’s equation in x t  space occurs 
naturally in the description of correlations in random 
walks on the lattice where the wave-function solutions 
describe the features of ensembles of random walks. In 
recent attempt a stochastic model of the telegraph equa- 
tion due to Kac [8] and Gaveau et al. [9] has been ex- 
tended [10] to obtain Dirac Equation for a particle in 
electromagnetic field using Brownian motion in time as 
well as space. Recently, the relativistic diffusion proc- 
esses have been discussed in random walk models [11] 
and the quantization of Brownian motion have been 
worked out [12].  

In our earlier papers [13-15] the diffusion equation and 
classical Schrödinger’s equation for free particle and also 
for a particle under a force field have been derived as 
complementary equations from the Brownian motion and 
it has been shown that the continuum limit which trans- 
forms this classical Schrödinger’s equation into the usual 

Schrödinger’s quantum equation without using any for- 
mal analytic continuation and the wave-particle duality, 
is simply Heisenberg’s uncertainty relation between po- 
sition and momentum of the Brownian particle. Extend- 
ing this work in the present paper by putting a finite 
speed cutoff into the diffusion process we have obtained 
telegraphic equations to describe particle densities in 
Brownian movement on a lattice site and showed that the 
complementary classical Dirac equation appears natu- 
rally as the consequence of correlations in particle tra- 
jectories in Brownian movement. Here the constituents 
of wave-function describe the features of ensembles of 
random walks on lattice and hence the observables are 
easily interpreted. We have also derived the condition 
which transforms this classical Dirac equation for 
Brownian movement into usual Dirac’s relativistic quan- 
tum equation and it has been demonstrated that this con- 
dition is basically Heisenberg’s uncertainty relation for 
energy and time. 

2. Telegraphic Equations from Brownian 
Movement 

Let us work in 2-dimensional spatial-temporal space 
 x, t

 ,p x t
 on a lattice with spatial and temporal spacings  

and  respectively and assume    as the prob- 
ability that a particle arrives in the state  
at x, t where these four states have been assigned to the 
particles to keep the track of correlation in the trajecto- 
ries as they move between lattice sites such that the state- 
1 and state-3 correspond to the particle moving to the 
right and state-2 and state-4 correspond to the left mov- 

 1, 2,3,4  
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ing particles. The state-1 and state-3 are separated by an 
odd number of transitions from right moving to the left 
moving and similarly, state-2 and state-4 are separated by 
an odd number of left to right transitions. At each lattice 
site, the Brownian particles choose whether to go left or 
right at the next step. Let us assume that the particles 
maintain the same direction with probability p and 
change the direction with probability q such that  

1.p q 

 
 
 

  

4
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                 (2.1) 

Then we write the difference equations for the ensem- 
ble of particles as  

   
   
   

  

1 1

2 2

3 3

4 4
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, ,

, ,

and , ,

p x t pp x t qp

p x t pp x t qp

p x t pp x t qp

p x t pp x t

 

 

 

 

   

   

   

  

 (2.2) 

which is the master set of equations for the ensemble of 
random walks giving the distribution of particles in the 
four states. 

Let us have 

1 1 Z p p p p 

 ,

             (2.3) 

which is proportional to the probability that a particle 
arrives at x t

3 2 4

 in any state.  
Let us also define 

2 1Z p p p p 

 2 ,0 0Z x

             (2.3) 

which gives the direction difference. If the number of left 
moving and right moving particles are the same in the 
beginning then we have  

                (2.5) 

Let E be the shift operator with respect to x coordinate. 
i.e., 

   
 

, , and

, ,

x t

p x t 





 

  1

Ep x t p

E p x t

 


       (2.6) 

Then using Equations (2.1) to (2.6), we get 

    
 


  

1
1 1

1
2

 , 1 2

, 1 2

Z x t E Z Z E Z

Z x t p q E Z Z









   

      
2 1 2

1 2 1 2

andZ

E Z Z

  
   

  

(2.7) 

If we choose 

   1 1 2 2 4 andX Z Z X  1 2 4,Z Z 

 
 

2

2

, and

,

EX x t

pEX x t

 

then Equation (2.7) reduce to  

   
   

1
1 1

1
2 1

, ,

, ,

X x t pE X x t q

X x t qE X x t









  

  
  (2.8) 

Expanding shift operator in terms of differential op- 

erator D x , we get   

     
   

2 2 2 3 3 3

2

1 2! 3!

1

E x x x

x o

  

 

         

    
 

Ignoring the term of order higher than , it gives  

  1nE n x                   (2.9) 

where n is any integer. Then Equation (2.7) reduce to  

     
       

1 1 2

2 2 1

, , and

, ,

Z x t Z x t Z x

x t p q Z x t Z x

 

 

    
 (2.10) 

Z        

If each particle persists at constant speed c along its 
current direction for an average time 1t   then   

0Lim c              (2.11)   

and  

q t   

1 1p q

            (2.11a) 

which gives 

           (2.11b)    

These equations show that each particle changes its 
direction with the average frequency μ and persists at 
constant speed c between two consecutive changes of 
directions. For such a periodic motion the mean free path 

c                  (2.12) 

plays the role of the wave length. 
Substituting the limits (2.11) and values of p and q 

from Equations (2.11a) and (2.11b) into Equation (2.10), 
we get 

   1 0 1 1 2

2 2 1 1

Lim , ,

and 2 2

Z t Z x t Z x t c Z x

Z t Z c Z x Z x

 

 
          

         
  

(2.13) 

Then Equations (2.8) reduce to the following form 

   

   

1 1 1 2 1 2

2 2 1 2 1 2

and

X t c X x X X x X X

X t c X x X X x X X

 

 

           

          

 

(2.14) 
2where     and it may be ignored if we retain 

the terms of only first order in  and then Equations (2.13) 
and (2.14) respectively reduce to the following forms: 

 

1 2

2 2 1

1 1 1 2

,

2 and

,

Z t c Z x

Z t Z c Z x

X t c X x X X




     
      

       

     (2.15) 

 2 2 1 2 .X t c X t X X             (2.16) 

where Equations (2.16) give a particular form of Tele- 
graph equations. 
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 Imposing the condition (2.5), Equations (2.15) are fur- 
ther reduced to 

1

 

Z t

Z t

  
  

2

2 1

, andc Z x

c Z x

  
  

2 2 4p p

        (2.17) 

which give another form of Telegraph equations. 

3. Classical Dirac Equation 

Let us denote the expected excess in the number of 
Brownian particles moving in a given direction by parity, 

1 1 3 andp p   

1 2

2 1 2

andqE

pE

 

 





           (3.1) 

which correspond to the expected difference in the num- 
ber of even and odd parity paths to a given point. Then 
using Equation (2.2) we have 

 
 

1
1

1

,

,

x t pE

x t qE

 

 





 

 
      (3.2) 

The ensemble of particles, described by master Equa- 
tions (2.2), change its state with each step and it takes 
eight time steps for the ensemble to return to its initial 
statistical state in the sense that the expected number of 
direction changes per particle is four [6]. Thus the Equa- 
tion (3.2) in the continuum limit is iterated for eight time 
steps i.e. 

   
0

Lim , 8k kt x t


, 8k x t  


      

 
 

18

2 2

,ˆ
,

   (3.3) 

where k = 1, 2, and  
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A
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 
 
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1

1
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


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 
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       (3.4) 

with 

Â   

or 

   
   8

1

1 8

p q x

x

 


   
     

1np n

8 7
8

7

1 8 8ˆ
8 1

p x
A

p q x p
   


  

   (3.5) 

under the approximation (2.9). Here under the first order 
approximation various powers of p, given by (2.11b) 
may be written as 

   

and then Equation (3.5) becomes 

8 1 8 8ˆ
8 1

x
A

8

8 8 x

 


   
 



 
 

    
   (3.6) 

Substituting this result into Equation (3.4) and using 
Equation (3.3), we get 

 
1 1 2 1

2 1 2 2

 – and

 

t c x

t c x

    

    

     

      
     (3.7) 

Let us write 

   
   

2 1

3 2

, , and

, ,

t

t

x t x t e

x t x t e





 

 




            .(3.8) 

Then Equation (3.7) become 

2 2 3

3 3 2

andt c x

t c x

  
  
      

     
       (3.9) 

Let us revert the Brownian motion such that the states- 
one and three correspond to particles moving to the left 
while the states-two and four correspond to right moving 
particles. In this case the states-one and three will be 
separated by an odd number of transitions from left 
moving to right moving and the states-two and four will 
be separated by an odd number of right to left transitions. 
Then the master Equations (2.2) will be transformed to  

     
     
     
     

1 1 4

2 2 1

3 3 2

4 4 3
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, , ,

, , ,
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p x t pp x t qp x t

p x t pp x t qp x t
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  

  

  

    

    

    

    

 p p

  (3.10) 

If 3 1 3 p p and 3 2 4      are the expected 
excesses in the number of left moving and right moving 
particles respectively, then we have  

   
   

1
3 3 4

1
4 4 3

, , and

, ,

x t pE x t qE
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  

  





   

   
   (3.11) 

Then Equation (3.4) becomes 

 
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 
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, ,
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B
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 
 

    
       

1

1

pE qE
B

qE pE





 
  
 

       (3.12) 

where 

             (3.13) 

Thus in place of Equations (3.7), we have  

 
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3 3 3 4

4 4 3 4

andt c x

t c x





       

        
   (3.14) 

Let us choose 

   
   

1 3

4 4

, , and

, ,

t

t

x t x t e

x t x t e









 
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Then Equation (3.14) reduce to 

1 1 4

4 4 1

andt c x

t c x

  
  
     
      

      (3.15) 
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If we define the function 

1

2

3

4








 



 
 
  

               (3.15a) 

then Equations (3.9) and (3.15) may be written as  




1 4 ic 0x x K                  (3.16) 

where K c  and  and   are 4 × 4 matrices 1 4 defined 
 

0 1 0

1 0 0

0 0 0

 
 
 
 

   (3.17) 

satisfying the conditions 

1 4 4 1 , 0             (3.18) 

These equations may be generalized in to the follow- 
ing form in three dimensional spatial coor

as  

1 4

0 0

0 0 1 0 0
,

0 1 0 0 0

1 0 0 0 1

 

  
 
 
 

0 1 0 0 0 1  
  



2 2 I  1 4

dinates; 

  0K                (3.19) 

where  = 1, 2, 3, 4 with x  2 3     and   and   are 
given by  

0

0 0 1

0 0 0

1 0 0


  
 
 
 

 (3.20) 

which satisfy the following conditions 

2 3 3 2

2 3

0

1 0 0 0
,

0 0 1 0 1

0 0 0 1 0

 
  
 

  

 

1 0 0 0 1 0

0

  
  


2 2
2 3 1 and I             (3.18a) 

owing conditions 
with matrices 1 and 4 given by Equation (3

The conditions (3.18), (3.18a) and (3.18b)
combined into following form  

These matrices also satisfy the foll
.17); 

1 2 2 1 1 3 3 1 2 4 4 2

3 4 4 3

0; 0; 0

and 0.

     

 

           
   

 (3.18b) 

 may be 

2 .v v v                   (3.21) 

These matrices constitute Majorana representation of 
Dirac operators and hence Equation (
classical Dirac equation which becom

3.19) may be called 
es usual relativistic 

Dirac equation for  

K c moc h  ,           (3.22) 

where c is the velocit nd y of light a

2moc          (3.22)        

But we have already seen that 1 t 
verage time for which each particle in t

  where ∆t is 
the a he Brownian 
motion persists at constant spee
re ng ∆t an

d c along its current di- 
ction. moc2 is its rest energy duri d thereafter it 

changes the direction. In other words in the time interval 
∆t the change of energy is ∆E = moc2. Then the condition 
(3.22), under which the classical Dirac equation becomes 
the Dirac’s relativistic quantum equation, is  

E t                   (3.23) 

which is Heisenberg’s uncertainty relation for energy and 
time. 

4. Discussion 

Equations (2.16) and (2.17), obtained from the Brownian 
d by master Equations (2.2), give 

s of Telegraph equation. The classical 
movement represente
two different form
Dirac Equation (3.16) in one spatial dimension and its 
generalization into the form given by Equation (3.19) 
appear naturally as the consequence of master Equations 
(2.2) and (3.10) of Brownian movement, where the con- 
stituents of , given by Equation (3.15a), have the 
meaning on the lattice and denote the limits of ensemble 
averages of excess parities. These functions are not just 
the calculational tools and the function  describes the 
features of ensembles of random walks on lattice and 
hence the observables are easily interpreted in contrast to 
the usual quantum mechanics. 

The conditions (3.22) which transforms the classical 
Dirac equation for Brownian movement into usual Dirac’s 
relativistic quantum equation, is basically Heisenberg’s 
uncertainly relation (3.23) for energy and time. The usual 
formal analytic continuation which is necessary to relate 
the classical and quantum equation is completely absent 
here and hence the interpretation of quantum mechanics 
here is direct one without the problems of measurements 
usually associated with quantum mechanics. Here the 
derivation of Dirac equation is a sensible classical scheme 
to produce many particle simulations of quantum me- 
chanics where quantum equation exists as a description 
of classical theory (Brownian movement). 

In our earlier papers [13-15] it has been shown that for 
transforming the classical Schrödinger’s equations, ob- 
tained as the consequence of Brownian movement, into 
usual Schrödinger’s quantum equation the necessary 
condition is Heisenberg’s uncertainty relation between 
position and momentum of the Brownian particle. In the 
light of this result and the forgoing discussion it may be 
concluded that the classical equations for ensemble av- 
erages of excess parity in Brownian movement can be 
transformed into usual Schrödinger’s equation by im- 
posing Heisenberg’s uncertainty relation between posi- 

2πh  with h as 
Planck’s constant  

This condition may be interpreted as  

Copyright © 2012 SciRes.                                                                                 JMP 



B. S. RAJPUT 

Copyright © 2012 SciRes.                                                                                 JMP 

993

tum Phase,”
national Journal of Theoretical Physics, Vol. 31, No. 7,
1992, pp. 1177-

tion and momentum of Brownian particle and the similar 
classical equations can be transformed into usual Dirac’s 
equation by imposing the uncertainty relation between 
energy and time associated with Brownian particle with- 
out using a formal analytic continuation and wave-parti- 
cle quality. These results support the recent work [16] on 
the role of generalized uncertainty principle in the de- 
velopment of quantum mechanics from classical con- 
text. These results partially support the earlier work [1-5] 
showing that the quantum mechanical equations are the 
derived properties of the binomial distribution and no 
formal analytic continuation is required to produce them. 
Some results of this paper shall be helpful in framing the 
foundation of space-time path formalism [17] for relativ- 
istic quantum mechanics. We shall undertake the study of 
this problem in our forthcoming paper. 
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