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ABSTRACT 

It is of general theoretical interest to investigate the properties of superluminal matter wave equations for spin one-half 
particles. One can either enforce superluminal propagation by an explicit substitution of the real mass term for an 
imaginary mass, or one can use a matrix representation of the imaginary unit that multiplies the mass term. The latter 
leads to the tachyonic Dirac equation, while the equation obtained by the substitution m  im in the Dirac equation is 
naturally referred to as the imaginary-mass Dirac equation. Both the tachyonic as well as the imaginary-mass Dirac 
Hamiltonians commute with the helicity operator. Both Hamiltonians are pseudo-Hermitian and also possess additional 
modified pseudo-Hermitian properties, leading to constraints on the resonance eigenvalues. Here, by an explicit calcu-
lation, we show that specific sum rules over the spectrum hold for the wave functions corresponding to the well-defined 
real energy eigenvalues and complex resonance and anti-resonance energies. In the quantized imaginary-mass Dirac 
field, one-particle states of right-handed helicity acquire a negative norm (“indefinite metric”) and can be excluded from 
the physical spectrum by a Gupta-Bleuler type condition. 
 
Keywords: Neutrinos; Particles; Tachyonos 

1. Introduction and Overview 

1.1. Theory and Experiment 

The superluminal propagation of matter waves is a 
highly intriguing subject which is not without contro-
versy. The subluminal (tardyonic) energy-momentum re- 
lation  needs to be changed to the super- 
luminal (tachyonic) dispersion relation . 
Recently, it has been argued that the tachyonic Dirac 
equation [1,2] provides for a convenient framework for 
the description of tachyonic particles; in this equation, 
the mass is multiplied by a matrix representation of the 
imaginary unit. Here, starting from the Dirac Hamilto-
nian, we explore a Dirac equation where the mass is ex-
plicitly multiplied by the imaginary unit and we find cer-
tain fundamental relations for the corresponding spin-1/2 
field theory. We also explore certain algebraic properties 
of modified Dirac theories with an imaginary mass term, 
and pertaining consequences for the eigenvalue spectrum 
of the imaginary-mass Dirac Hamiltonian. The tachyonic 
formulation [3-8] of a fundamental field theory is the 
only one compatible with Lorentz invariance, and there-
fore, compatible with special relativity. We exclusively 
use this concept in the following and avoid any breaking 
of Lorentz invariance. 

2 2 2E m p
2 2 2E m p

2eV

v c
v c

According to the summary overview presented in Ref. 
[9], low-energy experiments have determined the neu-
trino mass square to be in the range of a few . The 
best estimate for the neutrino mass square has been de-
termined as negative in all experiments [10-16], but the 
result has been consistent with a vanishing neutrino mass 
within experimental error bars. In direct measurements of 
the neutrino velocity [17-19], the best estimate derived 
from experimental data has been superluminal ( ), 
but again, consistent with the hypothesis   within 
experimental error bars (see also Ref. [9] or Table 1 of 
Ref. [20]). The OPERA collaboration [21] has indicated 
a preliminary, revised result of 

     3.8 62.7 3.1 . 10v c c stat sys2.8
     , which (just 

like all other available experimental results) neither ex-
cludes subluminal nor superluminal propagation. 

The neutrino is generally regarded as the most promi-
nent candidate for a superluminal particle in the low- 
energy domain [20,22-25]. However, the existence of 
conceivable superluminal particles in hitherto unexplored 
kinematic regions cannot be excluded, either; our study is 
of theoretical nature and not tied to a specific particle. It 
has recently been argued [1,2] that the tachyonic theory 
of spin-1/2 particles is easier to implement as compared 
to spinless particles, and we here continue this line of 
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thought by analyzing a theory where the imaginary mass 
is used explicitly in the Dirac equation, rather than a ma-
trix representation thereof. The latter has been used in 
Refs. [1,2,22,26,27]. We use natural units with 

0 1c    . 

1.2. Theoretical Foundations 

It is useful to recall that the subluminal (tardyonic) Dirac 
Hamiltonian DH  reads 

.DH m  p                (1) 

Here,  is the momentum operator. We use the Dirac 
matrices in the standard Dirac representation (

p
0=  

0=
, 

and  

0
, .

0

 
   

), 

2 20

2 2

1 0

0 1
 



 
   





       (2) 

The Hamiltonian DH  can be modified into a Hamil-
tonian describing superluminal (tachyonic) particles by 
the simple replacement  (see Ref. [28]), leading 
to the imaginary-mass Dirac Hamiltonian  

m im

.H i m   p               (3) 

Alternatively, one can choose a matrix representation 
of the imaginary unit, and write the tachyonic Dirac Ha- 
miltonian [1,2,22,26,27] as 

5 ,5H m  p

 25
4 4= 1 

2 2

2 2

0 1

1 0




 
  
 

             (4) 

with  and  

5               (5) 

Both H   and 5H  are pseudo-Hermitian, which im-
plies that eigenvalues are either real or come in complex- 
conjugate pairs,  and . Here, we also show that E *E
H   and 5H  fulfill additional, modified pseudo-Her- 
miticity conditions (“quasi-pseudo-Hermiticity”), which 
allow us to further conclude that if  is a resonance 
eigenvalue, so is , and thus, the eigenvalues either 
come in (real) pairs  and 

E
*E
E *E , or they occur in the 

rectangular complex configuration , , E *E E , and 
. The quantization of the imaginary-mass Dirac the-

ory naturally leads to helicity-dependent anticommuta-
tors. 

*E

We proceed as follows. In Section 2, we derive a few 
algebraic properties of the Hamiltonians H   and 5H  
which determine the general properties of their spectra. 
The field theory defined by the Hamiltonian H   is 
quantized in Section 3. In Section 4, we analyze the 
Hamiltonian H 

m m 
 which is obtained from (3) by the re-

placement . The quantization of the imagi-
nary-mass Dirac theory is shown to yield rather interest-
ing insight into helicity-dependent anticommutators. Con- 

clusions are reserved for Section 5. 

2. Algebraic Properties and Eigenvalues 

It is useful to derive a few algebraic properties of 5H  
and H   which determine the structure of the spectra of 
these Hamiltonians. We explicitly refer to the coordinate- 
space representations  i  p   

  ,H i i m    r               (6) 

and  

  5
5 .i m   r  

5 0 0 5, ,

H            (7) 

We use the following matrices,  

.        
1

          (8) 
1 5 0These fulfill    ,        1, and    . 

By elementary calculation, we infer that 

    1,H H   r r             (9a) 

    1,H H    r r            (9b) 

    1
5 5 ,H H  r r             (9c) 

    1
5 5 ,H H   r r            (9d) 

where the superscript + denotes the Hermitian adjoint. 
The relations (9a) and (9c) imply the pseudo-Hermiticity 
of the Hamiltonians   and 5H H , respectively, in the 
sense of Refs. [29-38]. As shown in Refs. [1,29], for a 
pseudo-Hermitian Hamiltonian, if  is a resonance ei- 
genvalue, so is . Indeed, it has been shown in Ref. [2] 
that 5

E
*E

H  has both real eigenvalues (corresponding to 
plane-wave solutions of positive and negative energy), 
and also resonances and anti-resonances whose reso-
nance energies are manifestly complex. The resonances 
correspond to evanescent waves whose wavelength is too 
long to support superluminal propagation; these waves 
therefore decay exponentially. 

In comparison to the structure of Equations (9a) and 
(9c), the relations (9b) and (9d) feature an additional mi-
nus sign. They correspond to additional “quasi-pseudo- 
Hermitian” properties of   and 5H H . These additional 
properties imply that if  is a resonance eigenvalue, so 
is 

E
*E . This can be shown as follows. Let   be an 

eigenfunction of a general Hamiltonian H   with ei-
genvalue . Then, because the spectrum of the Hermi-
tian adjoint of an operator consists of the complex-con- 
jugate eigenvalues, there exists a wavefunction 

E

  with 
the property 

*H E                   (10) 

from which we infer that 

 1 * ,H E                  (11) 
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and so, in view of Equation (9b), we have  
   *EH     . So, if E is a resonance eigenvalue 

of H 
 

, so is , with a corresponding eigenvector *E
 . The same property is implied for 5H  by Equa-

tion (9d). If E is real, then Equations (9b) and (9d) imply 
that energy eigenvalues come in pairs E and , whereas 
if they are manifestly complex, then they exhibit a rec-
tangular configuration (in the complex plane) consisting 
of E, ,  and  . 

E

*E *EE

3. Quantization and Spin Sums 

First, we observe that both H   and 5H  commute with 
the helicity operator,  

   5, 0,H p

0
.

0

 
   

 




, H  p            (12) 

where  

5 0 


              (13) 

The quantization of the tachyonic theory defined by 
the Hamiltonian 5H  has been discussed in Ref. [2]. 
Here, we are concerned with the Hamiltonian H  . The 
corresponding covariant form the imaginary-mass Dirac 
equation reads as 

    0.m x 

m im

i i
               (14) 

Of course, it could be argued that the solutions of the 
imaginary-mass Dirac equation can be written down im-
mediately, by simply replacing  in the well- 
known bispinor solutions of the ordinary Dirac equation, 
as given in Chapter 2 of Ref. [39]. However, this proce-
dure does not lead to compact formulas when one tries to 
develop the formalism further. A brief, sketchy, illustra-
tive remark is in order. According to Equation (2.40) of 
Ref. [39], the spin sum over the positive-energy states of 
the tardyonic (ordinary) Dirac equation leads to the ex-
pression  

    
01 1

2 2
k m

m m E


 

 2

k m
k m

m

 
     (15) 

where the latter term is the projector onto positive-energy 
states. Here, k k


m im

 is the Feynman dagger. When 
replacing  in the solution of the Dirac equation 
given in Equation (2.37) of Ref. [39], and performing the 
same spin sum over positive-energy solutions of the form 

   uu  

m im m im
   (using the notation of Ref. [39]), one has 

to replace  for the spinors and  for 
the Dirac adjoint bispinors. But then, 

    
01 1

2 2
k im k

m m E


 

 2

k im
im

m

 
    (16) 

which is not equal to a compact projector form, as an 
elementary calculation shows. By contrast, compact for- 

mulas for sums over spins can be obtained in the helicity 
basis, as shown in the following. 

For tachyonic particles, in analogy to the formalism 
developed in Ref. [2], it appears advantageous to use the 
helicity basis for the construction of the elementary solu-
tions. We recall that the eigenfunctions of the operator 

k  are given by  

   
cos sin

2 2
, _ ,

sin cos
2 2

i

i

e

a a

e





 

 





            
       

      
      

      

k k   (17) 

  and where   constitute the polar and azimuthal an- 
gles of the wave vector k, with        . 
We also recall the normalized positive-energy chirality 
and helicity eigenspinors of the massless Dirac equation 
as follows 

a a  k k k k

 2 0C i 

 

, 

 
     

 
1 1

= ,
2 2

a a
u u

a a
 

 
 

   
      

k k
k k

k k

 

  (18a) 

   
   1

,
2

T a
v Cu u

a


  


 
     

k
k k k

k

 

   (18b) 

   
   1

.
2

T a
v Cu u

a


  


 
    

 

k
k k k

k


5

   (18c) 

Canonically, the subscripts  of the u and v spinors 

correspond to the chirality (eigenvalue of  ), which (in 

the massless limit) is equal to helicity for positive-energy 
eigenstates, and equal to the negative of the chirality for 
negative-energy eigenstates. This is because the positive- 
and negative-energy solutions are multiplied by  exp i k r  

and  exp i k r , respectively [see Equation (22)]. Us-

ing the relation 

   2 2 2 2 2k im k im k m E m      k

 

, 

we find  

 

 

2
,

2

E im
a

U
E im

a







 
 
    

 
 
 

k
k

k

k
k

 

           (19a) 

 

 

2

2

E im
a

U
E im

a







 
 
    

  
 

k
k

k

k
k

0m 

.          (19b) 

The massless limit   E  k  is recovered as 
   U u k k   and    U u k k  . The negative- 

energy eigenstates of the imaginary-mass Dirac equation 
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are given as  

 
 

 
,

E im
a

E im
a





 
 
 
 
 
 
 

k
k

k
k

2

2

V




 




k           (20a) 

 
 

 
.

E im
a

m
a





 
 
 
 
 
 
 

k
k

k
k



2

2

V
E i





 


k           (20b) 

In the massless limit, the solutions  and v k  v k
 

  
are recovered, V   and  vk k     vk kV  . The 
states are normalized with respect to the condition  

       
   

1,

1.

U U

V V

 

 

  

 

k k

k k

 e ,ik xx U  
 k

 e ,ik xx V 
  k

   
U U

V V

 
 

 
 

 

  

k k

k k
      (21) 

The positive- and negative-energy solutions of the 
imaginary-mass Dirac equation are thus given as    

               (22a) 

 


             (22b) 

Here,  is a solution for positive energy, and   
constitutes a solution for negative energy. All above for- 
mulas are valid for mk , so that 2 2E m k  is 
real rather than complex. For mk , one encounters 
resonances, which complete the spectrum. These are de- 
rived from Equations (19) and (20) by the identification 

2 2 ,
2

i i 
  E m  k         (23a) 

2 22 ,m m   k k .          (23b) 

The Dirac adjoint is     0U U   k k . By an ele- 
mentary calculation, one shows that  

           
   

U U U U

V V

   

 

    

  

k k k k

k k 0.

V V  k k
 

This can otherwise be seen as follows. One first realizes 
that the adjoint equation of     0k im U k  reads as 

   0U k im  k , and so  

        

     0.

im U

k U



 



  

k

k k

im
im



1

2
1

2

U U U im
im

U k
im

     

 

k k k
  (24) 

Here, we have used the adjoint equation for the “first” 
 and the original form of the imaginary-mass Dirac 

equation for the “second” . 
  

bispinors in the following normalization,  

   
1 2

,U
m 

 
   

 

k
k k

 

In analogy to Ref. [2], we define the U  and V

          (25a) 

 
1 2

.V
m 

 
   

 

k
k k           (25b) 

Under charge conjugation, the spinors transform as 
   T

C   k k   and    T  k k 

 
 

C   . In analogy 
with Ref. [2], we write the field operator as  

   

    
 

3

3

2 2

d
e

2

e ,

, , .

ik x

ik x

k

k m
x b

E

b k

k E E E m i

 


 





 








 

    

 k k

k

k k





i

   (26) 

Note that the   prescription selects the resonances 
(as analytic continuations of the positive-energy solutions) 
and antiresonances (as analytic continuations of the ne- 
gative-energy solutions). This ensures that the waves are 
evanescent in their respective propagation direction in 
time. The second term in the sum in Equation (26) de-
scribes the absorption of a negative-energy tachyonic 
particle that propagates backward in time; this process is 
of course equivalent to the emission of a positive-energy 
antiparticle propagating forward in time by the Fein- 
berg-Sudarshan reinterpretation principle, as explained in 
Ref. [2]. Thus, 

 
 

   

    

3

3

d
= e

2

e ,

ik x

ik x

k m
x b k

E

d k

 


 

  



 






 k

k





d

    (27) 

where 
  creates antiparticles. For the imaginary-mass 

formalism, we postulate the same anticommutators as in 
Ref. [2] for the tachyonic Dirac equation, 

         , , 0,b k b k b k b k   
        (28a)  

         , , 0.d k d k d k d k   
       (28b)  

       

The nonvanishing anticommutators read as follows,   

 3 3, 2 ,
E

b k b k
m         k k

       

 (29a) 

 3 3, 2
E

d k d k
m

.         k k  (29b) 

The σ-dependent anticommutator implies that the 
norm of the right-handed helicity (positive chirality) neu- 
trino one-particle state is negative, and that the right- 
handed helicity particle state has negative norm and can 
be excluded from the physical spectrum if one imposes a 
Gupta-Bleuler type condition (according to Chapter 3 of 
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HRef. [39]). Likewise, antiparticles described by the ima- 
ginary-mass formalism can only exist in the right-handed 
helicity state. The matrix-valued tachyonic field anticom- 
mutator reads as 

         

 
       

       

3

3

, 0 ,

e
2

e ,

ik x y

ik x y

x y x y

d k m

E 

 

   





  



 






   



k k 

0

   k k    (30) 

where   is the helicity (for positive-energy states) and 
the negative of the helicity (for negative-energy states) 
and  is the tensor product in bispinor space. The fol-
lowing two relations 



      5 ,
2

k im

m
 

 


    k k      (31a) 

      5 ,
2

k im

m
 



 

 


    k k      (31b) 

are analogous to those found for the bispinor solutions of 
the tachyonic Dirac described in Ref. [1]. Note that the 
factors   in these equations are due to the quantiza-
tion conditions (28). Using Equation (31), we can derive 
the compact result,  

        ,5,x y i      im i x y 

 

    (32) 

where x y   is the distribution encountered in Eq- 
uations (3.55) and (3.56) of Ref. [39],  

 
 

    e .y ik x y  
3

3

d 1
e

22π

ik xk
i x y

E
        (33) 

The equal-time anticommutator of the fields thus reads  

as       5 0 3  r s

 ,
0 0

,
x y

x y  


, with the full, un-  

filtered Dirac-δ function and x t r
 ,

 as well as 
y t s  and the time 0 0x y t  . Furthermore, with 

the help of Equations (27) and (31), one obtains the 
propagator  (time-ordered product), S

     0 ,iS x y 50 T x y         (34a) 

 
 

 
4d

2

ik x yk
S x y

4 2 2
e .

k im

k m i
    





 

5

    (34b) 

The chirality projectors are invariant under multiplica-
tion by  , in view of the relation  

   5 5 51 2 1 2   . 
For consistency reasons, the imaginary-mass Dirac 

propagator should be connected with a Green function,  

0 1
,

E H



S 

E

              (35) 

where  is the energy argument of the Green function 

and   is the imaginary-mass Dirac Hamiltonian. In 
momentum space, we can replace  i m by kH  . 
An elementary calculation then shows that 

  2 2

1
.

k im
S k

k im k m

  
 

i

            (36) 

Introducing the   prescription as before, we find 
that  

    2 2

1 k im
S k

k i m i k m i
.


  

   

 

      (37) 

Having determined the propagator, let us briefly com-
ment on the non-invariance of the imaginary-mass Dirac 
Hamiltonian under time reversal. Indeed, time reversal 
exchanges the in- and out-states of a process. In the cal-
culation of a cross section, one has to square an invariant 
amplitude, which also exchanges in- and out-states, and 
leads to the occurrence of a propagator of the form  

0 0
2 2

,
k im

S k
k m i

 


  
 

im im

m m 

,

          (38) 

which is obtained from (37) under the replacement 
. In the time-reversed Hamiltonian, according 

to Ref. [40], the same replacement takes place. So, the 
non-invariance under time reversal of the imaginary- 
mass Dirac equation does not necessarily lead to an in-
consistent formalism within field theory. 

4. Inversion of the Mass Term 

It is instructive to consider the Hamiltonian which is ob-
tained from the imaginary-mass Dirac Hamiltonian in 
Equation (3) by the replacement , which 
amounts to an inversion of the sign of the mass term, 

H i m  p               (39) 

A preliminary remark is in order. Within  sym-
metric quantum mechanics [30-38], the one-dimensional 
quantum mechanical Hamiltonians 



2 3h i G x   x  and 
2 3h i G x   x  (with x being the coordinate) have been 

used as paradigmatic examples of an anharmonic (cubic) 
oscillator with imaginary coupling i G

h
. The Hamilto-

nians   and h  have the same spectrum [31,33,37,38], 
and moreover, the eigenvalues can be shown to be ana-
lytic functions in the complex G plane where iG g , 
and the g plane has a branch cut along the negative real 
axis. 

  and H HAs is to be expected, the Hamiltonians   
have the same spectrum, because H   fulfills the same 
algebraic relations (9a) and (9b) as H  . Moreover, the 
plane-wave eigenstates of H   are solutions of the co-
variant equation  

    0,i im x
               (40) 

where  
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     e ,ik xx U    k  eik xx V 
  k     (41) 

for positive-energy and negative-energy states, respec-
tively. We find  

 
 

 
,

E im
a

E im
a





 
 
 
 

 
 
 





k
k

k
k

2

2

U k          (42a) 

 
 

 
.

E im
a

E im
a





 
 
 
 

 
 
 





k
k

k
k

2

2

U



 



k         (42b) 

The negative-energy eigenstates are given as 

 
 

 
,

E im
a

E im
a





 
 
 
 

 
 
 





k
k

k
k

2

2

V



 



k         (43a) 

 
 

 

2

2

E im
a

V
E im

a







 
 
    

 
 
 





k
k

k

k
k

.         (43b) 

The states are normalized with respect to the condition   

        1,U 
  k kU U U   k k

   

     (44a) 

    1.V V
    k kV V  k k       (44b) 

We normalize the   and  bispinors according 
to 



   
1 2

,U
m 

 
 

 

k
k k            (45a) 

   
1 2

,V
m 

 
 

 

k
k k

   

            (45b) 

and obtain the following two relations, 

  5 ,
2

k im

m
     




k k  


   

     (46a) 

  5 .
2

k im

m
     




k k 

m m 

 


     (46b) 

These are the analogues of Equations (31a) and (31b) 
and differ from Equations (31a) and (31b) by the re-
placement  in the numerator. However, in the 
denominator no change takes place, because the de-

nominator is obtained as 2 2m m m  

 
 

. The field 
operator is  

   

   

3

3
=

d
e

2

d e ,

ik x

ik x

k m
x b k

E

k

 


 

  



 

   

  




k

k





 

   (47) 

with 
2 2E m   k

       

, and with an obvious identifica-
tion of the field operators according to Equation (27). 
The nonvanishing anticommutators read as follows, 

 3 3, 2 ,
E

b k b k '
m     

      


k k

       

 (48a) 

 3 3, 2 .
E

d k d k '
m     

      


k k  (48b) 

These imply that the inversion of the mass term does 
not change the fact that again, right-handed particle and 
left-handed antiparticle states acquire a negative norm. It 
is very instructive to clarify by an explicit, detailed cal-
culation that the inversion of the mass term does not 
change the pattern by which helicity components are 
suppressed for particle and antiparticle states. 

5. Conclusions 

In the current work, we investigate the relativistic 
(tachyonic) quantum theory defined by the Hamiltonian 
H i m p , which is obtained from the ordinary 

Dirac Hamiltonian by the simple replacement . 
In Section 2, we show that the Hamiltonian 

m im
H 

*E E *E

 is pseudo- 
Hermitian and has an additional quasi-pseudo-Hermitian 
property given in Equation (9b). Eigenvalues come in a 
specific structure in the complex plane. Namely, if E is a 
resonance eigenvalue, so is , , and  . This 
pattern is manifest in the spectrum calculated for the 
tachyonic Dirac Hamiltonian 5H  in Ref. [2] and in the 
spectrum of H   calculated here. Plane-wave solutions 
of the imaginary-mass Dirac equation are given in Equa-
tions (19) and (20). 

In Section 3, we complement recent work on the tachyonic 
Dirac Hamiltonian [2] and discuss the quantization of the 
spin one-half theory defined by the imaginary-mass Dirac 
Hamiltonian. We find helicity-dependent anticommuta-
tors as given in Equation (28). For both the imaginary- 
mass as well as the tachyonic Dirac Hamiltonian, the one- 
particle states of right-handed helicity acquire a negative 
norm and can be excluded from the physical spectrum by 
a Gupta-Bleuler type condition. Likewise, antiparticle 
states of left-handed helicity are excluded from the phy- 
sical spectrum. Compact representations are found for 
the spin sums (31) which enter the field anticommutator 
and the propagator. In Section 4, we find that an inver-
sion of the mass term does not change the fact that only 
left-handed helicity is allowed for particles described by 
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a tachyonic generalization of the Dirac equation, and only 
right-handed helicity for antiparticles. 

Obviously, the left-handedness of particle states and 
the right-handedness of antiparticles states imply that 
both the tachyonic Dirac equation as well as the imagi-
nary-mass Dirac equation represent candidates for the 
description of neutrinos, if improved experimental tech-
niques [10,18,19,41,42] finally allow us to decide if neu-
trinos propagate at superluminal or subluminal speeds, 
which would amount to deciding whether the neutrino 
mass square is positive or negative [9-16]. 
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