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ABSTRACT 

We argued that the standard field scalar potential couldn’t be widely used for getting the adequate galaxies’ curve lines 
and determining the profiles of dark matter their halo. For discovering the global properties of scalar fields that can de-
scribe the observable characteristics of dark matter on the cosmological space and time scales, we propose the simplest 
form of central symmetric potential celestial-mechanical type, i.e. U(φ) = –μ/φ. It was shown that this potential allows 
get rather satisfactorily dark matter profiles and rotational curves lines for dwarf galaxies. The good agreement with 
some previous results, based on the N-body simulation method, was pointed out. A new possibility of dwarf galaxies’ 
masses estimation was given, also. 
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1. Introduction 

The outstanding peculiarity of modern cosmology just 
consists in what, that it allows carrying out the high-pre- 
cision measurements of the Universe physical parameters 
that were considered as impossible not so long ago. Talk, 
for example, about the measurement of cosmic micro- 
wave background anisotropy [1], about the polarization 
of cosmic microwave background [2], about the gravita- 
tional microlensing [3,4] and some other observable ef-
fects of modern cosmology. 

This peculiarity of modern cosmology allows using 
broadly the observable data for next development of the- 
oretical models those processes that are the paramount 
for understanding the structure and evolution of the Uni- 
verse. In doing this we concentrate our attention on pro- 
blem that is orientating on the dark matter phenomena 
understanding, first of all. Some new results in this sphere 
have been presented in the recent article [5]. 

This article organized as follows. In second section we 
briefly describe the shape of a galaxy’s halo of dark mat- 
ter. In third section we consider the scalar field of the 
oscillator type and demonstrate that standard scalar po- 
tential couldn’t be productively used for getting the ade- 
quate galaxies’ curve lines and determining the profiles 
of dark matter halo. For doing this it is necessary choose 
another type of scalar potential. This problem was sea- 
rched in Section 4. There was argued that global proper- 
ties of scalar fields is possible describe by the central 
symmetric potential celestial-mechanical type, i.e. by  

  μ
U φ =

φ
. Section 5 was devoted to calculating pro- 

files of dark matter halo and rotational curves of a galaxy 
on the basis of potential celestial-mechanical type. Some 
astronomical predictions concerning the physical charac-
teristics of dwarf galaxies were argued in last sixth sec-
tion. 

2. Scalar Field for Describing Halo of the 
Dark Matter 

Talking about the dark matter it’s necessary mention the 
pioneer Zwicky article [6], where the idea about presence 
an unknown type of substance (dark matter) in galaxies 
was put forward at first. This substance ensures the sta- 
bility of any galaxy. That is why the modern vision about 
the galaxy structure includes the dark matter halo as its 
indispensable component [7]. 

According this as the simplest model of a galaxy the 
following system of number subsystems is considering— 
massive nuclei (the rotating black hole, usually), bulge, 
spherical stars shell, gaseous flat disc and halo of dark 
matter. Note that stars shell and flat disc have the com-
mon sizes in order of 10 Kpc, while the typical sizes of 
dark matter halo are about of 100 Kpc and larger.  

The observable data show that halo of dark matter 
contains the main part of galaxy’s mass (about 90%). 
The typical total galaxy mass estimates as 

 12 14~ 10 -10 SunM M SunMGal , where —mass of the Sun 
[8,9]. 

Copyright © 2012 SciRes.                                                                                 JMP 



L. M. CHECHIN 378 

Because the goal of our article is searching some pro- 
perties of the dark matter, only, we’ll neglect all of gal- 
axy’s components except the halo of dark matter in fol- 
lowing. 

In accordance with number of articles, enumerated, for 
example in [7], the dark matter possible describes by 
setting the suitable scalar field. For classical scalar field 

 the energy-momentum tensor has the form φ

   2

αφ U φ
1

2μν μ ν μνT = φ φ g       

 U φ

     (1) 

where —the potential energy of scalar field, 

μνg —the metric tensor of an external gravitational field. 
Later on we’ll consider flat space-time, i.e. . μν

Basing on (1) it is easy get the expression for the sca-
lar field energy density  

g = δ

   2
φ +U φ 

 00

1

2 mT = ρ=          (2) 

the space momentum tensor 

 21

2kl k l mT = φ φ+ φ     klU φ δ         (3) 

and the expression for isotropic pressure 

   2

mφ U φ  

0μν
νT =

g = δ

1

2
p =    

Now we’ll find the field equation by usage the law of 
energy-momentum conservation  

                (4) 

Remembering that μν μν  and considering the 
Newtonian limit, from (4) we get  

 
0

U φ
+ =

φ




 

Δφ              (5) 

3. Scalar Field of the Oscillator Type 

Choosing the effective potential energy as 2  
1

2
2φ = m φ

02Δφ+ m φ=

ψ = φ r

U

that corresponds to the standard scalar potential of the 
oscillator type, we get the well-known equation  

              (6) 

Passing to the new variable  and using the 
spherical coordinates, (6) rewrites as 

2

2

d
0

d

ψ
+ψ =

r

r = mr

 0expψ imr

r = mr

23 eV

331.8 10 g 
271.0 10 erg sec

               (7) 

where  is the dimensionless variable. It has the 
standard solution of oscillator type 

 0expψ = ψ ir =          (8) 

Now the question arises—what of magnitude the vari- 

able  may be? For its estimating remember that 
minimal mass m of the scalar field particles, describes 
the cold dark matter, according [10], equals 10 . 
Then in usual units (1eV ;  
   ; 10 13.0 10 cm sec   ) theс  maxi- 

mal corresponding distance will be  

1
max ~10 0.1r m pc = Kpc

c




r

       (9) 

But from the set of observable data the most interest- 
ing distances for a galaxy’s curve lines is about ten and 
more kiloparsecs. Hence,  is the large parameter sat- 

isfies following condition 
max

1
r

r = mr =
r

 

 

. Substitu- 

tion (8) and its derivative into (2) give the explicit and 
exact form of dark matter density profile  

 
2 2

2
0
2 2

max max

1 1 1
exp 2

2

ψ
ρ r = + imr

r rr r

  
  
    

 

   (10) 

From expression (10) anyone easy gets the scalar field 
mass density 

2 2 2 2
0

02 4 2 4

cos cos

2

m ψ mr mr
ρ r = ρ

m r m r
        (11) 

From all of above we may write down the Poisson 
equation for a searching gravitational potential  r

φ
 of 

the scalar field  in spherical coordinates 

  2
2

02 2 2

d1 d cos
4π

d d

r mr
r G

r rr m r


 
    

 
    (12) 

From this equation after its first integration and omitt- 
ing the periodical terms it follows the functional depen- 
dency  

 
3

d 1
~

d

r

r r




 

             (13) 

and after second integration we find the potential space 
dependency  

2

1
~r

r
             (14)  

Expression (13) allows find the rotational curve line 
by equating it to the specific centrifugal force, i.e.  

2

3

1
~

v

r r

 

. So, the rotational curve line has the next func- 

tional dependency 

1
~v r

r
                (15) 

Now question arises—how does the curve line (15) 
correlate with the real observable data? Basing on the 
observable results of dark and baryonic matter distribu- 
tions in 34 bright spiral galaxies [11], we may conclude 
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the follows.  
First, there are number of variants that modeling the 

density distribution of dark matter halos by N-body si- 
mulation method [12-14]. The most part of them predicts 
satisfactory that dark matter is essential to the inner radii  

of galaxies, i.e. for the regions where 
max

~1
r

r

 

, in contra- 

diction to maximal sizes of halo which we are consider- 
ing previously. 

Second, the observable rotational curves don’t repre- 
sent by the curve lines type of hyperbola. Hence, expres- 
sion (15) is the result of poorly theoretical determined 
dark matter distribution even in galaxies where the pre- 
sence of dark matter is dominant. 

From all of sad above it is clear, that standard scalar 
potential couldn’t be productively used for getting the 
adequate galaxies’ curve lines and determining the pro- 
files of dark matter halo. For doing this it is necessary to 
choose another type of scalar potential. Note that Yu- 
kawa-type potential for describing dark matter has been 
considered by A. Loeb and N. Weiner [15] recently.  

4. Scalar Field of the Celestial-Mechanical 
Type 

In fact, the potentials type of 21

2
2φ = m φ

 

U  and ana-  

logous them (self-acting potentials, Higgs potentials, 
Yukawa-type potential, etc) are using for searching the 
local properties of the scalar fields on small space and 
time intervals (for very early and early Universe). But 
our aim is discovering the global properties of scalar 
fields that can describe the observable characteristics of 
dark matter on the cosmological space and time scales. 

The global properties of scalar fields, as it seems, is 
possible describe by the simplest form of central symme- 
tric potential celestial-mechanical type, i.e. by  

μ
U φ =

φ
 . Thus the corresponding unit Lagrangian  

takes on the form 

 21

2
L




               (16) 

where μ  is any constant value. Its possible interpret- 
tation sees in Section 6. For deducing (16) we based on 
the Lagrangian of a probe particle moving in the central 
symmetric field and used the standard formal replacing  

kt x  and  2kx φr = , that usually applies in the  

field theory [16]. 
Earlier was pointed out that simplest halo of dark mat- 

ter have the spherical-symmetric shape, i.e. it depends 
from radius r only. That is why consider the one-dimen-  

sional operator nabla  d

d rr
  e

r

. So, in place of (6)  

we get the following equation in the dimensionless va- 
lues  and φ  (as in (7)) 

2

2

d
0

d 2

φ μ
+ =

r φ
            (17) 

that describes the linear “movement” of a unit mass par- 
ticle’s in the central field. The angular momentum M  
for such type of “movement”, as it well known, equals to 
zero, i.e. we may set  M 0= . Hence, for finding φ r

 
  

and its first derivative 
d

d

φ r

r
 it is preferring use La- 

grangian (16) than equation of “motion” (17). According 
classical textbooks [17,18] we have  

d

2

φ
r =

μ
E +

φ

 
 
 

             (18) 

Now consider the field analogs of some types of move- 
ment that are interesting from dynamical viewpoint and 
having width applications in the celestial mechanics. 

1) Assume that “total energy” is more larger than “po- 

tential energy”, i.e. that 
μ

E
φ



r

. From physical view- 

point this condition means choosing the space region of 
dark matter halo that closed to center of a galaxy. Then 
integral (18) takes on the approximate expression (inte- 
grating constant have been included into ) 

1
ln

22

μ
r = φ φ

EE

  
 

r +δr 0φ= φ +δφ

0r 0 δr

δφ

           (19) 

For its inversing let 0r =  and , 
where  and φ  are the main terms, while  and  

 are the small additives order of 
0

1
μ

Eφ
  to them. 

That is why 0 02φ = E r  and 0.   2 ln
2

μ
δφ= E δr + φ

E


 

These expressions allow write down the final result in the 
following form and with the mentioned above accuracy 

 2 ln 2
2

μ
φ r E r + E r

E
            (20) 

2) Let the opposite correlation 
μ

E
φ



r

 takes place.  

This condition, contrary to previous one, means choosing 
the space region far from center of galaxy. Then from (18) 
we get immediately (integrating constant have been in-
cluded into , also) 

3 2 5 21 2 1

3 2

E
r = φ + φ

μμ

 
 
 

        (21) 
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In full analogy with the first variant we set 0  
and , where 0  and 0φ  are the main terms, 
whereas  and δφ  are the small additives order of  

r = r +δr
φ= φ δφ r

δ
0 +
r

0

1
μ

Eφ
  to them. Such representation leads to the next  

approximate functional dependency 

 
2 3

2 3 13
22 2

φ r rμ
   
 

2
4 3

3

3 E
+ r


    
 

    (22) 

So, expressions (20) and (22) describe explicitly the 
scalar field potential in the whole region—closed to the 
center and far from the center—of dark matter halo dis-
tribution.  

5. Profiles of Dark Matter Halo and  
Rotational Curves of a Galaxy 

Profile of dark matter is important characteristic of a 
galaxy structure. It allows calculate the corresponding 
gravitational potential, find the galaxy’s rotational curve 
and make some other cosmological conclusions. In most 
articles the profiles of dark matter halo and the rotational 
curves of a galaxy were searched by the N-body simula- 
tion method, mainly. But we’ll consider them from the 
theoretical field viewpoint. 

Now, basing on (20) and (22), it possible finds profiles 
of dark matter halo and rotational curve lines for any 
galaxy. 

1) First of all it is easy calculate the first derivatives 
from potential (20)  

 d

d

φ r 1
2

2

μ
= E +

r rE
          (23) 

Substituting (20) and (23) into (2) we get the following 
mass density profile of dark matter 

 
2

1 1

2 22

μ μ
ρ r = +

r EE

   
   

  

1
1 ln 2E r

r


  


  (24) 

The integrating constant has been included into the left 
side of (24). Examining it we see that mass density of 
dark matter decreases in space and becomes equal to zero 
at the distance  

 2

02 exp 2E r = E
1

1
2

+ μ
E

  
  

  

r > r

 

     (25) 

At distances 0  the mass density of dark matter 
becomes growth again. This circumstance is very impor- 
tant, because in the neighboring region the rotational 
curve line must possess by small “gap” that is possible 
observing in principle. 

Results of articles [19,20] gives that authors’ mean radial  

density profile at small distances decreases as 
1

~ρ r
r

  

that is in good correlation with our estimation (24). 

Now remembering that ratios 
0

1
μ

Eφ
  and 

3 2

1
1

μ

rE
   

take places, it possible omits the second term in (24) as 
the value of larger order of minuteness. Our next step is 
finding the gravitational potential of field produced by 
main term in mass density (24). The Poisson equation in 
the spherical coordinates takes on the form  

 2
2

d1 d 1
2π 1 2π

d d 2

r
r G G

r r r rr E

    
       

  


 (26) 

Integration (26) gives 

 d
2πG

d

r
= μ= C = const

r


 

 r = C r

      (27) 

and 
            (28)  

hence. 
From (27) easy get the rotational curve line by its 

equating to the centrifugal force that acts at a “probe” 
star. Thus, the following relation  

2v
= C

r
                (29) 

and the corresponding simplest rotational curve line  

  1 2~v r r                 (30) 

that analogously (15) is the direct consequence of (29), 
take places. From the geometrical viewpoint in coordi- 
nates  ;v r

30

 this curve represents the line that slowly 
growth with distance increasing. That is why the shape of 
line (30) is in good correlation with the real rotational 
curve lines, because starting from any distance all of 
them possess by a weak trend for growth with the dis- 
tance increasing. The results of dark matter’s profiles 
observing at short distances (~ Kpc ), that are proofing 
our conclusion, present in article [11]. 

2) In full analogy with the previous variant we calcu- 
late the first derivative of (22)  

  2 3 2
2 3 1 3

3

d 2 3 2 3

d 3 2 3 2

φ r E
= μ r + r

r 
   

   (31)     
   

Substituting (22) and (31) into (2) and remembering  

that 0 1
Eφ

μ


 

, analogously to our foregoing result, the  

approximated expression takes place 

4 3
2 3

0 2

3

2 3
0 0

2 3 2 1

9 2 3

2

μ
ρ r = ρ + μ + r

E

= ρ +σ r







 
 

          
  




    (32) 
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where 0ρ  is the corresponding small (order of  

0 1
Eφ

μ


 

) constant value. 

Examining article [19,20], cited above, we see that au- 
thor’s mean radial density profile at large distances, con- 
trary to our result (32), decreases more rapidly, namely  

as 
5 2

1
~ρ r

r

 

. The same conclusion follows from arti- 

cle [11], where the mass density profile changes according  

the dependency 
31 9

1
~ρ r

r

 

. 

But at the same time dark matter profile (32) is in good 
correlation with the results of article [21], where the 
shape of profile density for dark matter dominated dwarf 
and low-surface brightness late-type galaxies describes  

as 
1

~
γ

r
r

γ ρ , 0.2 - 0.4. It is important to underline  

that instead of other articles the power index in profile 
density for such type of cosmic objects is smaller than 
unite. 

Now, omitting in (32) the constant term we get equ- 
ality for finding the gravitational potential. In fact, the 
Poisson equation takes on the form  

 2 d1 d

d d

r
r

r r
0

2 2 3
4πG

r r

 
 
 

        (33) 

Then 

  1 3
04πG r  

d

d

r

r


         (34) 

From (34) we get the rotational curve line by its equat- 
ing to the centrifugal force. Thus we have the needed 
relation  

2v

r
1 3

04πG r 

 

           (35) 

and the corresponding curve line  

2 3~v r r              (36) 

From the geometrical viewpoint in coordinates  ;v r  
curve line (36) represents the line that growth with dis- 
tance increasing more rapidly than curve (30). That is 
why its shape is differing from the real rotational curve 
lines. But it is necessary remember that theoretical curve  

line relates to large distances (
μ

E
φ


qr q 

a = const

), while all of hav- 

ing now observable curve lines were plotted for the short 
distances (about 30 - 40 Kpc). And now we once again 
are quoting the above mentioned article by Kravtsov and 
Klypin [22], where the rotational curve reproduces by de- 
pendency  with 0.9 - 0.8. This power in- 

dex coincides practically with our result (36). 

 ~v r

Note that behavior of curve lines (30) and (36), if they 
apply to galaxies movement, is also in good correlation 
with the results of searching hidden mass in the Local 
Group [23]. 

6. Conclusions 

From body of article we may conclude the following. 
Our choice of scalar field the celestial-mechanical type 
allowed productively describes the dark matter halo’s 
profiles at small and large distances. They are in rather 
good correlation with results of Kravtsov and Klypin on 
the modeling of profile density and rotational curve lines 
shapes for the dark matter dominated dwarf and the low- 
surface brightness late-type galaxies. 

The potential of oscillator-type, as it well known, de- 
scribes one-dimensional particle movement, while the 
celestial-mechanical potential describes two-dimensional 
movement in any plane. That is why for the partial case 
of circular movement along the trajectory  it 
possible decomposes on two independent orthogonal 
oscillator-type movements. This statement allows find 
the next relation between mass of particle and parameter  

μ  in expression (17) 2
3

μ
m = , or in the usual units  

a

 1 21 2

3 2

GΜ
m =

a c

   
 


         (37) 

For the physical interpretation μ  we assume that it is 
the ordinary celestial-mechanical parameter. Hence  
μ GΜ , where  is the gravitational constant, G Μ  is 
the central gravitating mass.  

Basing on (37) it is possible calculate masses of par- 
ticles that describe dark matter around dwarf galaxies, for  

example. Note that for spheroid dwarf 34
π

3
Μ ρ a , 

than  
1 2

1 2

3
2

Μ
ρ

a
   
 

 ρ. Here 

 

 may be interprets as  

any mean mass density of a dwarf galaxy. As  
1 2

52 3 2 1 2
2

8.2 10 cm g
G

c


   


, than using the modern  

typical physical characteristics of spheroid dwarf galax- 
ies   7 8~ , ~0.310 -10 SunΜ M a Kpc

 
 [24,25], we find  

 that 
1 2 10 11 1 2 3 2~ 10 -10 g cmρ    

29~10 eVm 

2310 eVm 

. Hence, a particle  

mass is of order . This estimation is in the 
likelihood correlation with the previous given minimal 
mass of dark matter’s particle . 

Moreover, because galaxy’s observable characteristics 
type of sizes is possible measuring with higher accuracy 
then its gravitating mass, expression (37) allows get pos- 
sibility for more correct mass estimation. In fact, invers- 
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