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Abstract 
 
In the present paper we have made an attempt to investigate the importance of the concepts of dynamical 
stability and complexity along with their interrelationship in an evolving biological systems described by a 
system of kinetic (both deterministic and chaotic) equations. The key to the investigation lies in the expres-
sion of a time-dependent Boltzmann-like entropy function derived from the dynamical model of the system. 
A significant result is the determination of the expression of Boltzmann—entropy production rate of the 
evolving system leading to the well-known Pesin-type identity which provides an elegant and simple meas-
ure of dynamical complexity in terms of positive Lyapunov exponents. The expression of dynamical com-
plexity has been found to be very suitable in the study of the increase of dynamical complexity with the suc-
cessive instabilities resulting from the appearance of new polymer species (or ecological species) into the 
original system. The increase of the dynamical complexity with the evolutionary process has been explained 
with a simple competitive model system leading to the “principle of natural selection”. 
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1. Introduction 
 
The evolution in physical science is referred to the ap-
proach of a system to the thermodynamic equilibrium 
characterized by the increase of entropy of the second 
law of thermodynamics. The evolution in physical sys-
tem is always directed to the continuous disorganization, 
that is, to the destruction of structures introduced by the 
initial conditions [1-3]. The biological evolution, on the 
other hand, points precisely to the opposite direction. In 
biology the idea of evolution is associated with the irre-
versible increase of organization giving rise to the crea-
tion of more and more complex structures. These two 
aspects of evolution can be reconciled by the concept of 
the open-system model of living system and the applica-
tion of the second law of thermodynamics to the system 
as a whole—living + environment [1-3]. Like in physical 
science the entropy plays a significant role in biological 
evolution [4-12]. Both organization and complexity can 
be measured in terms of entropy. Another important idea 
which play significant role in the study of evolution is 
the concept of stability. The evolution can, in fact, be 
viewed as a problem of stability [1] and it can also be 
considered as the process that generates most of all, if 
not all, complex structures in nature [8]. Both the con-

cepts of stability and complexity are interrelated playing 
significant role in the process of evolution as we are go-
ing to investigate. 

In the present paper we have made an attempt to study 
the importance of the concepts of stability and complex-
ity together with their relationship in the characterization 
of evolution of a biological system. We have considered 
first a dynamical model of the biological system consist-
ing of a number of interacting polymer species (or eco-
logical species) described by a system of non-linear rate 
equations. We have studied the local dynamical behav-
iours of the system such as the criteria of stability and 
complexity around a stationary state. We have next con-
sidered a statistical mechanical model of the system 
around the stationary state and found out the expression 
of Boltzmann-like entropy of the evolving system. The 
rate of change of Boltzmann-entropy, that is, Boltz-
mann-entropy production rate leads to the well-known 
Pesin-type identity which provides an elegant and simple 
measure of dynamical complexity in terms of positive 
Lyapunov exponents [17-19]. The expression of dy-
namical complexity has been found to be very suitable in 
the study of the increase of complexity with the succes-
sive instabilities resulting from the appearance of new 
polymer species (or ecological species) into the original 
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system. The increase of the dynamical complexity with 
the evolutionary process has been explained with a sim-
ple competitive model system leading to the “principle of 
natural selection”. 
 
2. Biological System: Dynamical Model and 

Stability 
 
Let us consider a biological system consisting of n inter-
acting components (e.g. polymer species or ecological 
species) of concentration x i , (i = 1,2, ···,n). The dynamical 
model consists of the set of rate equations in state space 

 ,x f x               (2.1) 

where  1 2, , , nx x x x   is a point in the n-dimensional 
state-space,   is a control parameter. For simplicity we 
consider a single parameter. The functions  1 ,f f  

2 , , nf f  are assumed to be continuously differenti-
able in some open set  ; 0, 1, 2, ,i iS x x i n     in 
the state-space. The system of equations (2.1) are in gen-
eral non-linear and it is difficult to find out the solution 
in closed form. We assume that for a certain value (or a 
range of values) of the control parameter   the system 
(2.1) has a stationary solution or fixed point  1 ,x x    

2 , nx x   (say). We consider a neighbouring point 
  δx t x x  , where  δx t  is the deviation of  x t  

from the stationary state or fixed point x*. Linearizing 
the system of Equations (2.1) about the stationary point 
or fixed point x   the time-evolution of  δx t  is given 
by 

     δ δx t A x x t             (2.2) 

where    i j x
A x f f


       is the Jacobian matrix of  

the function f at the stationary state x  . The time de-
rivative in the left-hand side represents the local deriva-
tive δ δt  instead of the total time-derivative d dt . The 
solution of (2.2) is given by 

   δ δ 0Atx t e x               (2.3) 

 δ 0x  is the deviation of the initial state (or point) 
from the stationary point x  . For orthonormal repre-
sentation of the Jacobian matrix  A x   we have 

   1 2Diag , , nA x            (2.4) 

where  1 2, , n    are the eigenvalues of the matrix 
 A x  . In this case the solution (2.3) reduces to the 

form 

     δ δ 0 , 1, 2, ,it
i ix t x e i n       (2.5) 

The solution (2.5) shows that the asymptotic stability 
of the stationary state x   requires that the real parts of 
all eigenvalues must be negative: Re ( 0j   for all j ). 
This implies that all the deviations  δ ix t  regress with 

time for asymptotic stability. If any one of the eigenval-
ues has a positive real part, the stationary state is unsta-
ble. We can extend the above result for chaotic systems. 
For the dynamical model system (2.1) let us consider two 
neighbouring trajectories—one arising from the refer-
ence point rx  and another from the neighbouring point 
   δrx t x x t  . The distance between the two trajec-

tories at time t is given by the Euclidean norm 

       
1

2 2 2 2
1 2δ δ δ δ nx t x t x t x t         (2.6) 

For orthonormal representation of the Jacobian matrix 
 A x   we have 

     δ δ 0 , 1, 2, ,it
i ix t x e i n         (2.7) 

where  1, 2, ,i i n    is the Lyapunov exponent defined 
as the average rate of divergence of two neighbouring 
trajectories [20]: 

 
   δ1

lim log , 1, 2, ,
δ 0

i
i

t
i

x t
i n

t x




 
  

 
   (2.8) 

It is important to note that the Lyapunov exponent i , 
is the value of the real part of the ith eigenvalue averaged 
over the trajectory under study [20]. For different values 
(zero, negative and positive) of the Lyapunov exponents 
we will get different types of attractors, for examples, 
fixed points, limit cycles, quasiperiodic torus and chaotic 
in three dimensional state space [17]. 
 
3. Statistical Model: Entropy and Dynamical 

Complexity 
 
We now consider the concept of complexity. A system 
consisting of a large number of interacting or interrelated 
elements or components is called a complex system. 
How to measure the complexity? There are different ap-
proaches to the concept of complexity. The entropy 
which is at the heart of statistical mechanics and infor-
mation theory plays a vital role in the characterization of 
complexity [11]. For the entropic characterization of 
complexity we need a statistical mechanical model out of 
the dynamical model of the system. Statistical model is 
necessary in view of the enormous number of accessible 
microstates (or representative points) along the different 
trajectories from the initial state to the current state. The 
statistical mechanics is also necessary for the chaotic 
systems which are characterized by exponential separa-
tion of nearby trajectories [18,19]. Both the cases repre-
sent complexity about the dynamical behaviours of the 
system. To find out a measure of complexity we require 
an appropriate measure of entropy characterizing the 
evolution of the system from the initial state x(0) to the 
current state x(t). For the system under consideration we 



C. G. CHAKRABARTI  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                 JMP 

623

have from (2.5) 

       δ δ 0 δ 0Atx t e x B t x         (3.1) 

where   AtB t e  is the matrix of evolution and plays a 
crucial role in evolution of the system. In the orthonor-
mal representation the evolution matrix Ate  can be rep-
resented as the diagonal matrix  1 2diag , ,t tAte e e    

nte . The diagonal elements ite ,  1, 2, ,i n   char-
acterize the different trajectories connecting the initial 
state to the final (current) state. The accessible micro-
states along the trajectories ite  are thus characterized 
by the quantities ite ,  1, 2, ,i n  . Then the measure 
of all accessible microstates lying on the trajectory ite  
can be taken to be proportional to the quantity ite , 

 1, 2, ,i n  . The quantity   1
i

n t

i
t e


   is then  

proportional to the measure (or volume) of the totality of 
all accessible microstates lying on the different trajecto-
ries for evolution:    δ 0 δx x t . With this interpreta-
tion of the quantity  t  we can define a Boltzmann - 
like entropy of the macrostate consisting of all accessible 
microstates in the evolution    δ 0 δx x t  as 

    1
1

ln ln i
n

n t
B ii

i

H t t e t 




          (3.2) 

where we have taken the multiplicative constant factor to 
be equal to unity. The quantity (3.2) is the measure of 
entropy associated with the evolution    δ 0 δx x t . 
We can approach the determination of the expression of 
the entropy (3.4) without any consideration of the statis-
tical model. The complexity of evolving system lies with 
the entropy of the evolution matrix   AtB t e . The en-
tropy of the non-probabilistic square matrix  B t , con-
sistent with Boltzmann entropy, is given by [14] 

    1
log log i

n t
B i

H t B t e


         (3.3) 

where  B t  is the determinant of the diagonal matrix 
 1 2diag , , ntt tAte e e e   . Question may arise about 

the physical validity of Boltzmann-like entropy for the 
system under consideration. The system under consid-
eration being in the vicinity of local stationary state with 
a certain value of the control parameter  , the use of 
Boltzmann-like entropy is justified [19]. The exponential 
in (3.3) with negative Lyapunov exponents i  must be 
replaced by 1, only one microstate with negative Lyapunov 
exponent being occupied δ 0ix  . So the entropy (3.2) 
reduces to the form 

 
1

n

B i
i

H t t




                (3.4) 

where the summation in the right-hand side extends over 
all positive Lyapunov exponents only. Evidently the en-
tropy  BH t  is zero at the initial time t = 0 and it in-
creases with the time evolution. We now proceed to 

measure the complexity associated with the evolution. 
The complexity which we call dynamical complexity is a 
property of the evolution of a state and not of the state 
itself [13]. We, therefore, define the dynamical complex-
ity as the rate of change of the entropy (3.4), that is, the 
Boltzmann-entropy production rate 

 
1

n

B i
i

C H t 




               (3.5) 

where the right-hand side represents the sum of all posi-
tive Lyapunov exponents. The result (3.5) is analogues to 
Kolmogorov-Sinai entropy rate (or simply K-S entropy) 
and corresponds to the well-known Pesin’s identity 
[17,21]. Pesin-like identity plays significant role in the 
characterization of complexity of different type of dy-
namical systems, for example, hyperbolic dynamical 
system [22]. The complexity measure (3.5) shows that it 
is completely dependent on the positive Lyapunov ex-
ponents of the system. It remains bounded for chaotic 
attractors which may be a point, a closed curve or an 
unclosed but bounded orbit, even for very complex one 
such as Rossler’s strange attractor [15,16]. 
 
4. Structural Instabilities: Increase of  

Complexity and Biological Evolution 
 
In biology and sociology the idea of evolution is associ-
ated with the increase of complexity or organization giv-
ing rise to more and more complex structure [1]. In this 
section we wish to study evolution on the basis of the 
measure of complexity (3.5). To study evolution we have 
to start with appropriate rate equations or model equa-
tions describing the process. We assume that the system 
is maintained uniformly and that there exists at least one 
asymptotically stable stationary solution of the model 
system. This implies that all deviations or fluctuations 
regress in time, that is, all the eigenvalues of the charac-
teristic equation have negative real parts. We now need 
to incorporate structural fluctuation resulting from the 
appearance of a new species or mutants in the system at 
stable steady state. Like in many other systems, the evo-
lution of the system under consideration depends on the 
control parameter  . As the system evolves and con-
tinuously perturbed by the outside world the parameter 
  can then change smoothly or abruptly. The change of 
the parameter   generally changes the structure of the 
rate equations. As a result of the change of the parameter 
  the stability of the system may be disturbed with the 
inclusion of a new species into the system. However, in 
view of the smallness of the change of the parameter  , 
the structural stability of rate equations is assumed not to 
be disturbed, the enlarged system evolves eventually to a 
new stationary state, reached sooner or later depending 
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on the magnitude of the changing parameter   [1,23]. 
We have to study the increase of complexity (under cer-
tain condition) of the enlarged system with the succes-
sive instabilities resulting from the successive appear-
ance of new species. According to the measure of com-
plexity (3.5) the increase of complexity is equivalent to 
the appearance of a new positive Lyapunov exponent or 
an eigenvalue with positive real part. Let us explain this 
with a simple competitive model system. Let us first 
consider a single polymer species (or an ecological spe-
cies) of concentration x1 in a medium of limited re-
sources. The dynamical equation of this reference spe-
cies is assumed to be governed by the logistic growth 
equation 

 1 1 1x x a bx                (4.1) 

with stationary states  1 ,0x a b  . The stationary 
state 0 is unstable where as a b  is stable. The point 
a b  thus represents the stable steady state of the spe-
cies 1x . 

Now we suppose that a new species appears by muta-
tion or a new species invades the system. Let 2x  be the 
concentration of the new species at some time t and is in 
competition with the original species 1x  for a limited 
resource. Let the governing equations for the whole sys-
tem be given by the Lotka-Volterra model equations of 
competition (for simplicity excluding the case of compe-
tition exclusion) [24]. 

  
  

1 1 1 1 1 2

2 2 2 2 1 2

x x a b x x

x x a b x x

  

  




           (4.2) 

The system (4.2) has three stationary states 1 2 3, ,s s s  

  1 2
1 2 3

1 2

0,0 , , 0 , 0,
a a

s s s
b b

   
     

   
     (4.3) 

The first stationary state  1 0,0s   is trivial and un-
stable. The second stationary state  2 1 1 , 0s a b  con-
sists of the population of the first species only and cor-
responds to the moment of the appearance of the second 
species or external disturbance. The system can then 
evolve if the state  2 1 1 , 0s a b  is unstable which 
requires the positivity of the Lyapunov exponent or posi-
tivity of the real part of the eigenvalue. This requires 

1 2 1 2 2 1

1 2 1

0 or
b a a b a a

b b b


          (4.4) 

This is the condition of growth of the second species 

2x  and the second species 2x  grows to some finite 
value 2 2a b . The total system then evolves to the new 
(third) stationary state  3 2 20,s a b  implying the 
extinction of the first species 1x . The third stationary 

 3 2 20,s a b  is stable if 2 2 1 1a b a b . With this cri-
teria of stability of the third stationary state 3s  we can now 
introduce a new species 3x  to the state  3 2 20,s a b  
to disturb its stability. The criteria of instability of the 
system with the inclusion of the third new species 3x  
requires 

3 2

3 2

a a

b b
                   (4.5) 

The process may go on with successive instabilities of 
the stationary states with the appearance of new species. 
Note that the appearance of successive instabilities imply 
the appearance of successive eigenvalues with positive 
real parts (or positive Lyapunov exponents) and hence 
the increase of complexity step by step.In ecology this 
transitional process corresponds to the process of eco-
logical succession [24,25]. This result may be interpreted 
in another way: the system tends in the long run to the 
stationary state characterized by the maximum of the 
fitness function i ia b : 

31 2

1 2 3

n

n

a aa a

b b b b
             (4.6) 

which is nothing but the Gauss-Volterra principle of 
‘natural selection’ in competitive system. We thus see 
that the process of natural selection lies in the increase of 
complexity. We have proved the increase of complexity 
given by (3.5) with the increase of number of species and 
therefore with the number of differential equations de-
scribing the dynamics of the system. The validity of the 
above statement requires two conditions to be satisfied. 
First, the system must be at stable stationary states just 
before the appearance of any new species and secondly, 
the system must be unstable just after the appearance of 
the new species. However, if any one of the conditions 
fails, the increase of complexity with the increase of the 
number of differential equations does not materialize. 
We shall illustrate this with a model system. Let us con-
sider Rossler model system which is the simplest possi-
ble strange attractor. The system is described by the sys-
tem of three differential equations [16] 

x y z                    (4.7a) 

y x ay                   (4.7b) 

 z b z x c                (4.7c) 

For the choice of parameters a = 0.1; b = 0.1 and c = 
14 there is apparent chaotic attractor. The Lyapunov ex-
ponents have been determined by computation simula-
tion to be approximately 0.072, 0 and −13.79. The first 
two equations of the system are linear. We begin by 
looking at the dynamics in the xy-plane only. Setting z = 
0 yields 
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x y

y x ay

 
 




                (4.8) 

The origin (0,0) is a stationary point. The eigenvalues 

of the Jacobian matrix at (0, 0) are 
1

22 4a a    
. For 

a > 0, there is at least one eigenvalue with positive real 
part (or positive Lyapunov exponents). So the origin is 
unstable. We may consider the system (4.8) to represent 
the dynamics of a system of two species x and y having 
unstable stationary state (0, 0). The system (4.7) may be 
considered as the enlarged form of the system (4.8) when 
a new species z is introduced in the original system (4.8). 
The measure of complexity of the system (4.7) according 
to the formula (3.5) is given by C2 = 0.072 and that of the 
system (4.8) is C1 = 0.1. We thus see the decrease of 
complexity in spite of the increasing of the number of 
differential equations. This is in view of instability of the 
stationary state of the original system (4.8). As such 
Rossler system (4.7) can not serve as a mathematical 
model for biological evolution. 
 
5. Conclusions 
 
The main objectives of the paper is to study the interrela-
tionship between the concepts of dynamical stability and 
complexity and to study the importance of this relation-
ship in an evolving biological system on the basis of dy-
namical model (both deterministic and chaotic) of the 
system described by a set of kinetic equations. The char-
acteristic features and results of the paper are as follows: 

1) We have started with the dynamical model of a bio-
logical system consisting of a number of interacting bio-
polymer species (or ecological species). The study of 
dynamical stability and dynamical complexity is con-
fined to the local behaviour or analysis of the system 
around a stationary or reference state. 

2) A significant step in the characterization of the sta-
tistical and chaotic behaviours of the evolving system 
near a stationary or reference state lies in the use of a 
Boltzmann-like entropy (3.4) which is valid subject to 
the local character of the system around a stationary state 
or fixed point with a certain value of the control parame-
ter   [1,23]. A completely different approach to the 
Boltzmannlike entropy (3.4) is provided by the entropy 
of the evolution matrix [14]. 

3) Another significant result is the expression of 
Boltzmann-entropy production rate leading to the 
well-known Pesin-type identity which provides an ele-
gant and simple measure of the dynamical complexity 
(3.5) in terms of positive Lyapunov exponents.  

4) The dependence of the measure of complexity (3.5) 
on the positive Lyapunov exponents (or positivity of real 

parts of eigenvalues) makes it very easy to understand 
the relationship between the concepts of dynamical sta-
bility and dynamical complexity. This stability-com- 
plexity relationship is of significant importance in the 
study of evolution of the system. 

5) The expression of dynamical complexity (3.5) 
which is the sum of positive Lyapunov exponents is very 
helpful in the study of the increase of complexity with 
the instability resulting from the appearance of a new 
species into the system at stable steady state. This is an 
advantageous point with the expression of dynamical 
complexity (3.5). 

6) The increase of the number of species or increase of 
the number of differential equations describing the sys-
tem does not always imply the increase of the dynamical 
complexity. The increase of dynamical complexity is 
subject to two conditions to be satisfied. Violation of any 
one of these conditions results in the failure of the in-
crease of complexity. In Section 4 we have explained it 
with an illustrative example. 

7) In Section 4, using a simple competitive model sys-
tem we have illustrated the increase of dynamical com-
plexity with the successive instabilities. We have also 
shown how the increase of dynamical complexity leads 
to Gauss-Volterra “principle of natural selection” for the 
survival of the fittest [6]. The present study of biological 
evolution on the basis of concepts of stability, entropy 
and complexity is in the spirit of the principle of “order 
through fluctuation” [1-3]. 
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