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Abstract 
 
Based on a suitable linear combination of the physical and un-physical electromagnetic potentials, the radia- 
tion reaction potentials have been calculated. Through the near zone expansion of the potentials, it has been 
shown that in either of the relativistic and non-relativistic cases the outgoing (radiated) energy of the elec- 
trons orbiting the nucleus is substituted by incoming (electromagnetic radiation reaction) energy. This means 
that energy is conserved and the classical hydrogen-like atoms are stable.  
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1. Introduction 
 
The interaction of a particle with it’s own field produces 
the phenomenon of radiation reaction. This phenomenon 
results in an extra force on the particle; a self-force 
which changes the equations of motion. The non-rela- 
tivistic equation of motion for a point charge including 
radiation reaction was found by Lorentz [1]. Its relativis- 
tic generalization was first derived by Abraham [2] and 
later covariantly by Dirac [3]. A modern review of Abra-
ham-Lorentz-Dirac equation has been presented in Ref. 
[4]. The generalized version of the Abraham-Lorentz- 
Dirac equation to the curved space times has been de- 
rived by De Witt and Brehme [5], which was corrected 
by some additional terms by Hobbs [6].  

The Abraham-Lorentz-Dirac equation is not without 
its problems: a third order rather than of second order 
differential equation, allowing self force in the absence 
of an external force and appearance of runaway solutions. 
A corrected version of Abraham-Lorentz-Dirac equation 
has been given by Rohrlich [7]. By the consideration of 
emitted radiation from the magnetic moment in addition 
to that of electric charge of an accelerating electron, 
Heras showed that Abraham-Lorentz-Dirac equation 
predicts non-runaway solutions provided that suitable 
initial conditions are proposed [8].  

However, the radiation reaction phenomenon is a more 
interesting subject and it has been studied extensively in 
the frameworks of classical electrodynamics, quantum 
electrodynamics and quantum field theory by many au- 

thors [9-15]. 
In this article, I study the stability of the relativistic 

and non-relativistic hydrogen-like atoms from a different 
point of view. The method utilized is based on a suitable 
linear combination of the retarded and advanced solu- 
tions of the Maxwell equations, introduced by Poisson 
[4,16]. 

A point electric charge moving in flat space-time pro- 
duces an electromagnetic potential A  that satisfies the 
wave equation 

4π
,A J

c
 

                 (1.1) 

together with the Lorentz gauge condition . 0A
 

The four-vector J   is the charge’s current density 
which is formally written in terms of a four-dimensional 
Dirac’s delta function supported on the charge’s world 
line. An immediate difficulty is that the electromagnetic 
potential, and also the electromagnetic field tensor di- 
verge on the particle’s world line because the field of a 
point charge is necessarily infinite at the charge’s posi- 
tion.  

The situation in which the radiation is propagating 
outward and the charge is spiraling inward, breaks the 
time-reversal invariance of Maxwell’s theory. A specific 
time direction was adopted when, among all possible 
solutions to the wave equation, we choose retA , the re- 
tarded solution as the physically-relevant solution. Choos- 
ing instead the advanced solution advA , would produce a 
time-reversed picture in which the radiation is propagate- 
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ing inward and the charge is spiraling outward. Alterna- 
tively, choosing the linear superposition [16] 

1
,

2S ret advA A A               (1.2) 

would restore time-reversal invariance, outgoing and 
incoming radiation would be present in equal amounts, 
there would be no net loss nor gain of energy by the sys- 
tem, and the charge would not undergo any radiation 
reaction. In Equation (1.2) the subscript S stands for 
symmetric, as the vector potential depends symmetrically 
upon future and past.  

On the other hand, while the potential of Equation (1.2) 
does not exert a force on the charged particle, it is just as 
singular as the retarded potential in the vicinity of the 
world line. This follows from the fact that retA , advA  
and SA  all satisfy Equation (1.1), whose source term is 
infinite on the world line. So while the wave-zone be- 
haviors of these solutions are very different (with the 
retarded solution describing outgoing waves, the ad- 
vanced solution describing incoming waves, and the 
symmetric solution describing standing waves), the three 
vector potentials share the same singular behavior near 
the world line. Thus the subscript S in Equation (1.2) 
stands for singular as well as symmetric. Because SA  is 
just as singular as retA , removing it from the retarded 
solution gives rise to a potential that is well behaved in a 
neighborhood of the world line and because SA  not to 
affect the motion of the charged particle, this new poten- 
tial must be entirely responsible for the radiation reaction. 
Now we introduce the new potential  

1
,

2R ret S ret advA A A A A               (1.3) 

and postulate that it, and it alone, exerts a force on the 
particle. RA  is nonsingular (regular) on the world line. 
This property can be directly inferred from the fact that 
the regular potential satisfies the homogeneous version 
of Equation (1.1). Since RA  satisfies the homogeneous 
wave equation, it can be thought of as a free radiation 
field, and the subscript R could also stand for radiative. 
Thus the radiation reaction part of the electromagnetic 
fields can be written as [4,16]  

     1
, ,

2rr ret advt t   A x A x A x, ,t       (1.4) 

     1
, , ,

2rr ret advt t t     x x x .       (1.5) 

In the following, using the radiation reaction electro- 
magnetic potentials, I will calculate the rate at which the 
work is done by the radiation reaction force, or the rate at 
which energy comes in, and show that it is equal to the 
outgoing energy through the electromagnetic radiation. 

The results show that in either of the relativistic and 
non-relativistic cases, the energy is conserved and the 
classical hydrogen-like atoms are stable.  
 
2. Non-Relativistic Hydrogen-Like Atoms 
 
A classical electron orbiting the nucleus emits electro- 
magnetic radiation. As a result the non-relativistic hy- 
drogen-like atoms loss energy in a rate determines by 
Larmor’s formula [17,18],  

220 .
6π

dE
p q

dt c


  a           (2.1) 

The physical solution to Maxwell’s equations is the 
retarded solution,  

    30
,

, d
4ret

t c
t x




  
,


J x x x

A x
x x

   (2.2) 

where J is the current density. This describes waves that 
are outgoing in the wave zone. These waves remove en- 
ergy from the system, and the radiation reaction drives 
the electron inward. A so-called un-physical solution to 
the Maxwell's equations is the advanced solution,  

    30
,

, d
4adv

t c
t x




  
,


J x x x

A x
x x

   (2.3) 

and this describes the waves that are incoming the wave 
zone. These waves bring energy to the system, and the 
radiation reaction drives the electron outward. For the 
scalar potential we have also the two solutions,  

    30
,

, d
4adv adv

t c
t x






  
.


x x x

x
x x

  (2.4) 

we need to evaluate adv retA  and adv ret  near the elec- 
tron. We can therefore take x x  to be small, and 
Taylor-expand current and charge densities  

     , ,t c t t
c t

        


x x J
J x x x J  (2.5) 

     

   
2 32 3

2 2 3 3

,

.
2 6

t c t t
c t

t t
c t c t

 

 

     


   
  

 

x x
x x x

x x x x
  

  (2.6) 

We have for the retarded and advanced vector poten- 
tials, 

     3 30 0,
, d ,

4 4ret adv

t d
t x

c dt

 
 

  
 

J x
A x J x

x x
d .t x  

(2.7) 

The second term is of order v c  and this mean that 
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we are working in the non-relativistic regime. The radia- 
tion reaction part of the vector and scalar potentials are  

2
0 ,

6πrr rr

q
q

c


 F E a            (2.13)  

    30 ,
, d

4πrr

td
t

c dt

     


J x
A x

x x
,x      (2.8) As the charge moves with velocity V this force does 

work at a rate 

   
3

2 30
3

1
, ,

4π 6rr t t
c t


       

 x x x x d .x  (2.9) 

For a point charge q we set     ,t q t   x x r
 ,  tr

 
and  where  is the par- 
ticle’s trajectory and 

   ,t q t  J x V x r
.dtdV r  Substituting these into 

Equations (2.8) and (2.9) we have  

 
2 2

2 20 0 ,
6π 6πrr

q qd
w p

c dt c

            
F V a V a a  

(2.14) 

where p is the power radiated by the point charge, as 
given by Larmor’s formula (2.1). The work done by the 
radiation reaction force therefore matches the energy 
taken away by electromagnetic radiation, and we have 
energy conservation.  0 ,

4πrr

q

c


 A a               (2.10) 

 
3. Relativistic Hydrogen-Like Atoms 

0 1
,

4π 3rr c


       

 
R a V a     (2.11)    ,t R x r  

The relativistic generalization of the Larmor’s formula is 
known as the Lienard’s formula [17,18]  

where 
d

dt


V
a  and .

d

dt


a
a  The radiation reaction 

part of the electric and magnetic fields are 

2
2 260

2 2 2

1 1
, .

6π 1

qdE
P

dt c c v c


       

  
a V a  

(3.1) 0 ,
6πrr

q

c


E a           (2.12)  0.rr B

To study the relativistic regime, the upper terms in 
Equations (2.5) and (2.6) must to be taken into account,  The radiation reaction force is therefore rr rrqF E , or 

 

       

   

2 32 3

2 2 3 3

4 54 5

4 4 5 5

,
2 6

,
24 120

t t t t
c c t c t c t

t t
c t c t

              
  

   
  

 

x x x x x x x xJ J
J x J

x x x xJ J

t



J

             (3.2) 

         

     

2 3 42 3

2 2 3 3 4 4

5 6 75 6 7

5 5 6 6 7 7

,
2 6 24

.
120 720 5040

t t t t t
c c t c t c t c t

t t t
c t c t c t

   

  

                  
   

      
     

  

x x x x x x x x x x
x

x x x x x x

4

t



      (3.3) 

 
Substituting Equations (3.2) and (3.3) in Equations 

(2.2), (2.3) and (2.4), and then in Equations (1.4) and 
(1.5), we obtain the radiation reaction vector and scalar 
potentials as 

 

     
3 5

2 40
2 3 4 5 6

1 1
,

4π 6 120rr

q d d
t Ο

c c dt c dt c

   
       

   
A x a V R V R

6v
                 (3.4) 

 
3 5 7

2 4 60
3 2 5 4 7

1 1 1
, ,

4π 6 120 5040rr

q d d d
t Ο

c dt c dt c dt c




  
       

   
x R R R

6

6

v
              (3.5) 

After taking the limit , we obtain (Appendix-A)  0R

   
2 4

0
2 4 2

, , 1 2
6πrr rr

q v v
t t O

c c c c

   
,

       
   

V a
B x A x                        (3.6) 
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   22 4
0

2 2 4 4 6
, 2 3

4π 3
rr

vq v v
t O

t c c c c c c

                  

a VA a V
x a a V a V

  
6

,
v

                (3.7) 

   22 4
0

2 2 4 4 6

2
, .

4π 3 3 3rr

vq v v
t O

c c c c c c




           
   

a Va a V
x a V a V

  
6v

                 (3.8) 

Combining these relations, we have 

22 4 6 2
40 0

2 4 6 2
1 2 3 1 ,

6π 6π 6π
rr

rr rr

q qv v v v
O

t c c cc c c c

  0q
 

    
                   

 A E a a a            (3.9) 

 
where, we have used the binomial expansion relation 

     21
1 1 1

2
n 3x nx n n x O x      . The radiation 

reaction force acting on the charge q is  

 ,rr rr rrq  F E V B           (3.10)  

and the rate at which the work is down on the moving 
charge q is  

2
240 ,

6πrr

q
W

c


     F V a P      (3.11) 

where P is the radiated power by a relativistic point 
charge, given in (3.1). This means that the work done by 
the radiation reaction force (incoming energy), is equal 
to the energy taken away by electromagnetic radiation, 
and we have energy conservation, once again.  
 
4. Conclusions 
 
Based on a suitable linear combination of the physical 
and un-physical electromagnetic potentials, with the 
properties: 1) not diverging (i.e. regular) on the charge's 
position, 2) preserving the time-reversal symmetry of the 
Maxwell’s theory of electromagnetism, and 3) satisfying 
the homogeneous (i.e. radiative) wave equation, the ra-
diation reaction vector and scalar potentials are calcu-
lated for the electrons orbiting the nucleus in the relativ-
istic and non-relativistic hydrogen-like atoms. Through 
the near zone expansion of radiation reaction potentials, 
it was shown that for the non-relativistic hydrogen-like 
atoms the incoming (electromagnetic radiation reaction) 
energy is equal and opposite sign to the outgoing (radi-
ated) energy given by Larmor’s formula. Also, in the 
relativistic case the radiated energy of the electron orbit-
ing the nucleus, which is given by Lienard’s formula, is 
substituted by incoming (electromagnetic radiation reac-
tion) energy. This means that energy is conserved and 
the classical hydrogen-like atoms are stable. This method 
can be generalized to the gravitational waves and the 
consideration of the gravitational radiation reaction.  
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Some Useful Mathematical Formula 
 
In obtaining the radiation reaction electromagnetic fields 
given in Equations (2.12) and (3.6)-(3.9) the following 
relations have been used 

2
2

d

dt
  R V ,R              (A.1) 


2

2 2
2

2
d

v
dt

   R a R  ,          (A.2) 

3
2

3
2

d

dt
  R a


4

2

4
2

d

dt
    R a V a   ,R         (A.4)  

 
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  
2

4 22 2
2

4 2 ,
d

v
dt

      R V R R a R   (A.7) 

    
3

4 22
3

4 6 ,
d

v
dt

       R V R a R R a R  (A.8) ,R             (A.3) 

 

     
4

2 24 2
4

4 6 8 ,
d

v R
dt

            
R a R V R a R a R a V 


                      (A.9) 

      
5

24 2
5

4 20 10 2 ,
d

v R
dt

                 
R a R a R V R a R a V a R a V a a 


                (A.10) 

         
6 2

4 22 2
6 2

4 20 30 12 2 .
d d

R v R
dt dt

 
                   

 
a R a R a V a R V R a R a V a a a R a V

 
           (A.11) 

Copyright © 2011 SciRes.                                                                                 JMP 

http://dx.doi.org/10.1016/S0375-9601(02)01311-7

