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Abstract 
 
The evolution of the Robertson-Walker type universes consisting of radiating perfect fluid distribution cou-
pled with zero-mass scalar field in which the gravitational parameter G varies with cosmic time t are studied. 
Unified descriptions of the early evolution of the universe consisting of different phases are investigated. The 
different properties of the cosmological solutions are discussed and the physical behaviour of the model uni-
verses during the radiation-dominated era and also during the big bang scenario are studied. Here we obtain 
models which are geometrically closed and are thereby ever expanding and evolve from rest from a non- 
singular hot origin with maximum (finite) energy density and temperature and a small minimum (non-zero) 
gravitational coupling G. 
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1. Introduction 

Though it is generally accepted that the Newtonian con-
stant of gravity G plays the role of a coupling constant 
between geometry and matter in the Einstein field equa-
tions, it appears natural to look at this constant as a func-
tion of time in an evolving universe. There are exten-
sions of Einstein’s theory of gravitation in which G is 
taken to vary with time [1]. In general relativity G plays 
the role of a coupling constant between geometry and 
matter in Einstein’s field equations. The value of G is to 
be constant, since G—constancy is in-built as a manifes-
tation of the principle of equivalence. A breakdown from 
the principle of equivalence, in any form, would consti-
tute a departure from Einstein’s general relativity. The 
time-dependence of G follows as a natural consequence 
of Dirac’s large number hypothesis [2]. The implication 
of time-varying G will become more important at the 
early stage of the evolution of the universe. 

[3] studied the homogeneous and isotropic cosmologi-
cal model in which the parameter gamma of “Gamma- 
law” equation of state p = (γ–1) ρ varies continuously 
with cosmic time t. He studied the evolution of the uni-
verse as it goes from an inflationary phase to a radiation- 
dominated phase. [4] obtained a singularity-free model 

of the evolving universe with matter and studied the 
transition from the beginning to the radiation-dominated 
and matter-dominated periods of the universe. 

Some workers studied the problem of the universe by 
linking the variation of G with that of the cosmological 
constant Λ leaving the form of the field equations un-
changed and preserving the conservation of the energy- 
momentum tensor of the matter content by [5-8]. The 
possibility of an increasing G was also suggested by [9]. 
The possibility of the creation field with G varying as 
some powers of t discussed by [8]. [10] also presented 
exact solutions for zero pressure Robertson-Walker cos- 
mological models with G varying as some powers of R. 
A spatially flat FRW model wherein the vacuum energy 
density has been taken to vary as the radiation energy 
density discussed by [11,12] discussed about the effect of 
bulk viscosity on the early evolution of universe, [13] 
discussed about early universe with variable cosmologi-
cal and gravitational constants in higher dimensional space 
time. [14,15] discussed about the cosmology of the very 
early universe and structures in the Universe by exact 
methods. 

Here in this problem we study the evolution of the uni-
verse taking the Robertson-Walker models of radiating 
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perfect fluid distribution in the presence of zero-mass sca-
lar field in which the gravitational parameter G varies with 
cosmic time t. Solutions are obtained for inflationary phase 
and radiation-dominated phase. The physical behaviors of 
the cosmological solutions are discussed. Also we study the 
effects of incorporating a zero-mass scalar field which is 
operative during an instantaneous phase transition, and it is 
found that the presence of the scalar field is instrumental 
in avoiding the initial singularity and gives freedom to the 
choice of initial conditions, thus giving advantage of 
studying different scenarios. Its presence also results in 
particle creation and thereby influence the subsequent evo- 
lution of the universe find Robertson-Walker models 
starting either from a non-singular origin with a minimum, 
non-zero G or from a singularity with a vanishing G, 
where G increases continuously in the radiation dominated 
era and approaches a constant value as the universe turns 
matter-dominated, finally the models approaching the 
standard model. Such study of the evolution of the uni-
verse will be of great importance in revealing the many 
mysteries of the different astrophysical objects in general 
and the universe in particular. 

2. Field Equations 

The line element considered for this problem is  
2

2 2 2 2 2 2 2 2
2

d
d d ( ) d sin d

1

r
s t R t r r

kr
  

 
     

 (1) 

where R(t) is the scale factor and K, the curvature index 
which takes values +1, 0 and –1. 

Considering perfect fluid distribution coupled with 
zero-rest mass scalar field the energy-momentum tensor 
takes the form 

ij ij ijT P S  , 

where Pij is the energy-momentum tensor due to a per-
fect fluid given by  

  , 1i
ij i j ij iP p u u pg u u             (2) 

And Sij is the energy-momentum tensor due to zero- 
mass scalar field given by 

1 1

4 2 ijij i jS g 
        

           (3) 

Where the scalar potential   satisfies the equation 

0ij
ijg                    (4) 

Thus from the Einstein field equation 
1

8 ( )
2ij ij ijR g R G t T     

We get 
2

2
2 2

2 8
R R k

Gp G
R R R

     
 

        (5) 

and 

2
2

2 2

3 3
8 .

R k
G G

R R
    

           (6) 

Now Equations (5) and (6) give 

  24 2
3

3 3

R
G p G

R
     

          (7) 

and 

   2 22 4RR R k G p R             (8) 

From Equation (4) we have 

3
0,

R

R
  

   

Which give us 
3R                     (9) 

where   is an integration constant. 
Again from Equations (7) and (8) we have, eliminating 
,R  

2
2

2 2

8 1

3 3

R k
G G

R R
    


         (10) 

For the radiating universe we have the relation 

3
p


                  (11) 

Thus Equations (8)-(10) give 

2

2 2
2 2 8

R R k
Gp

R R R
   

 
         (12) 

and 
2 2

2 2 6
8

3

R k G
Gp

R R R
   

 
.         (13) 

Now from Equations (12) and (13) we have 

2 2 41

3
RR R k GR     

 
           (14) 

We consider underneath the different phases and sce-
nario in the course of evolution of the universe. 

Case I  

 
   

2
2

2

2

2
2

3 4

,                      0
3

                                                                  (15)

,
3

                                          

l c

c c c f

N
M t k t M t t

R t
N

M t t k t t M t t t

 
     
 


 

       
 





                        (16)











with 

G 4 .NR                   (17) 

Thus we have here 
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where in this paper ct means the time at which the criti-
cal temperature occurs, that is at which a phase transition 
occurs and ft the time at which that particular phase 
ends. 

Case I (a): An Inflationary Phase  
Now taking the initial condition as R = Ro at t = 0, we 

obtain from Equation (15) 
2

2oR M                   (20) 

And from relation (18) we get 

22
l

o
o

M
H

R
                  (21) 

but  

0
0

0

0
R

H
R

 


 as 0 0R  , 

since 0R  is a particular value of R at t = 0. 
Thus Equation (10) with 0oH   reduces to 

 2 23 8 0o ok B R G     

which shows that 
2

0
3

Bk   and thus k = 1. 
Therefore we get  

23 0B                 (22) 

Equation (16) with the condition R(t) = Rc, at t = tc 

gives M4 = 2
cR . And the continuity for R(t) across t = tc 

implies 

2
2 2 21 .

3o c c

N
R R t

 
   

 


           (23) 

Now relations (18) and (19) give, in the limit ct t  

2

2

1
3

( )
c

c
c

N
t

H t
R



 
 

  



           (24) 

and 

3
2

( )
2c

c

M
H t

R
                  (25) 

Thus the continuity in H due to phase transition, which 
arises due to presence of scalar field, is found to be 

   

2

3

2

2 1
3

2

c

c c
c

N
A t

H H t H t
R

 

 
  

    



   (26) 

Since  H must vanish in the limit, we have 

2

3 2 1
3 c

N
M t

 
   

 


. 

Hence Equations (15) and (16) reduce to (see (27)-(28)).  
Equations (27)-(28) show that the expansion is en-

dowed with a generalized inflation  0R  as long as 
R  remains greater than 

1
2 2

1
3

N 
 

 


 

and turns deflationary as R  becomes smaller than 
1

2 2

1
3

N 
 

 


. 

Case I (b) A Radiation—Dominated Phase 
Now Equation (4) gives 

 

1 1
2 22 2

2 2 2 2 2

1
22

2

1 1 ( ) , 0 (27)
3 3

( )

1 ( )( ) , (28)
3

o c c c

c c c c

N N
R t R t t t t

R t

N
R t t t t t t

                              
  

        
    

 


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3 0.
R

R
  


                (29) 

Also Equations (7) and (10) respectively give  

 2 24 2
3

3 3
H H G p G                (30) 

and 

2 2
2

8 1

3 3

k
H G G

R
                (31) 

where H = 
R

R


 is the Hubble’s parameter. 

Thus from Equations (11) and (30) we get 

2 28 2

3 3
H H G G                 (32) 

Now eliminating   between Equations (31) and (32) 
we have 

2 2
2

1
2 0

3

k
H H G

R
               (33) 

which can be rewritten as 
2

2
3

2 1
0

3

H H k G

R R RR
   

   

i.e. 
2

2
3

1 2 1
0

3

H H k G

R t R RR


   


  

i.e. 
2

2
3

1 2 1
0

3

H R H k G

R R t R RR
 

   
 

  

i.e. 
2

2
3

1 2 1
0

3

H k G
H R

R R RR
      

i.e. 
2

2
3

2 1
0

3

R H k G
H

R R RR
   

   

i.e. 
2 2

3

2
0,

3

H k G
HH

R RR

    


       (34) 

where a dash denotes differentiation w.r.t. R. 
Considering zero-curvature Robertson-Walker metric, 

Equation (34) takes the form 

2

2 0.
3

H G
H

R HR

   


             (35) 

Now from relation (29) we get 
3 ,R                        (36) 

where   is integration constant. 
Making use of relation (36) in Equation (35) we get 

2

7
2 0.

3

H G
H

R HR
   


              (37) 

Without loss of generality we take the solution of 

Equation (37) as 

 23 ,G m HR                 (38) 

with 
2

2
3

m

H cR

 
  
  



                (39) 

where m and c are arbitrary constants. 
If then weget, from Equation (39)o oH H for R R    

C =

2
2

3

o

m

oH R

 
  
 



               (40) 

Thus Equation (39) takes the form 
l

co
o

o

l

c
oH H R R ,              (41) 

where 
2

2
3 o

m l

c

 
  

 


, 

Now Equation (40) gives 

oc
l

c
o o t

o

l
R H R t c

c

  
       

            (42) 

Thus we have 
1

o o

l l

c c
o o o o l

o

l
H H R H R t c

c


  
   
    

          (43) 

And from relations (38), (41) and (42) we get 
6 2

2

2

o

o o

c
l

c c
o o o o l

o

l
G mH R H R t c

c


  
   
    

      (44) 

Also we have 

 
( 3 )

13 1 3

o

o o o

l cl l

c c c
o o o o o o lc c H R H R t c



  
   
 
 

    (45) 

and 
6

21

8 3

o

o

c
l

c
o o l

o

l l
p H R t c

m c


   
             


    (46) 

6
23

8 3

o

o

c
l

c
o o l

o

l l
H R t c

m c



   
             


    (47) 

Here in this case, G is found to be an increasing func-
tion of time, whereas  is seen to be a decreasing func-
tion of time. In this phase or episode the pressure and 
density of the universe are found to decrease along with 
the increase of the cosmic age (of course, if the constants 
  and m are so related that 23 m  ). For this era R is 
seen to be an increasing function of time thus showing 
that during this era the universe is expanding. 

Case II 
Now another solution of Equation (14) is 
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 

 

2
2

2

2

2
2

3 4

, 0 48
6

( )

( ) ( ) , 49
6

l c

c c c f

A t k N t A t t

R t

A t t k N t t A t t t

  
      

   
          




 

 
with 

1
2

52
6 lG B k N t A R R


  

    
   

        (50) 

This solution is quite different from the solution in 
Case-I; more particularly the value of G in this case is  

very much different from that value of G in Case-I. Thus 
in this case we will be getting another type of solution 
(universe) where the big bang scenario, the inflationary 
phase and the radiation-dominated phase will be quite 
distinct from that of the universe in Case-I. 

From relations (48) and (49) we get 

2

2
2

2

2

3

2
2

3 4

2
6

, 0 (51)

2
6

2 ( )
6

, (52)

2 ( ) ( )
6

l

c

l

c

c f

c c

A k B t

t t

A t k B t A
R

H
R

A k B t t

t t t

A t t k B t t A

  
   

      
     
      

         
   

       
   










 

 
Case II (a) An Inflationary Type Solution 
Taking the initial condition 0,oR R at t  we ob-

tain from relation (48) 
2

2 .oR A                        (53) 

And from relation (51) we get 

2
22 2

l l
O

o

A A
H

A R
                  (54) 

Equation (10) with 0oH   reduces to 

2
2

8 1

3 3
l

o l o
o

k
G BA H

R
      

Thus     
2

8
0.

3 o
o

k
G

R
                   (55) 

This shows that k > 0 which implies k = l. 
Again Equation (49) with the condition R(t) = cR  at t 

= ct  give 2
4 cA R . 

And for continuity of R(t) across t = ct  we must have 

2
2 2 21

6o c cR R B t
 

   
 


            (56) 

Now in the limit ct t and relations (51) and (52) 
become 

2

2

6
( )

c

c
c

B l t

H t
R



 
 

 



           (57) 

and 

3
2

( )
2c

c

A
H t

R
                   (58) 

Thus the discontinuity in H due to the phase transition, 
which arises due to the presence of scalar field is found 
to be 

   

2

2

2
6

2

c

c c
c

A B l t

t H t
R

   

 
  
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

 (59) 

Now we can speculate that  must vanish in the 
limit and this gives 

2

3 2
6 cA B l t

 
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 

              (60) 

Then Equations (48) and (49) give  

 

1 1
2 22 2

2 2 2 2 2

1
22

2

1 1 ( ) (61)
6 6

1 ( )( ) (62)
6

o c c

c c c

R B t R B t t

R t

R B t t t t

                            
   

      
    

 


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Thus showing that the expansion is endowed with a 

generalized inflation ( 0)R  as long as R remains 
smaller than 

1
2 2

1
6

B
 

 
 


 

and turns deflationary as R becomes larger than  

1
2 2

1
6

B
 

 
 


 

Also from Equation (61) we see that R as t   
although k = l. It may be taken as a significant deviation 
from the standard model which is resulted from the cou-
pling of the scalar field. 

Also in this case the radiation density is found to be   
1 122 2 2 2

2 2 2 2 2

2
2 2

2 2
2 2

3 3 1 ( ) 1 2 1
6 6 6 63

, 0 , (63)
8

3 1 ( )
6

( )

3 3 1 1
6 63

8

c c

c

c c

c

B
B t R B l t t l B B

t t
G B

R t t

t
B B

t R

G







                                                               
   

     
   

   



 
1 1

2 2
2

2
2

( )( ) 1 2 1
6 6

, , (64)

3 1 ( )( )
6
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c
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B B
t t t t B t

t t
B

R t t t t

 










                                                        

 



 

 
Case II (b) Big Bang Scenario 
Considering the condition R(t) = 0 at t = 0 and R(t) = 

cR at ct t ,Equations (48) and (49) give  

2 0.A                     (65) 

and 
2

4 .cA R                   (66) 

Thus for the continuity of R(t) at ct t we must have 

2
2 2 1

6l c c c

B
A R k t t

  
    
   


           (67) 

Therefore for the limit ct t relations (51) and (52) 
become 

 

2
2 1

2

6

2

c c c

c
c

B
R t k t

H t
R





 
  
 



         (68) 

and 

3
2

( )
2c

c

A
H t

R
                 (69) 

Thus the continuity in H(t) due to the phase transition 
follows from  

   

2
2 2

3

2

6

2

c c c

c c
c c

A t R B t

H H t H t
R t

 

 
   

    



 (70) 

Therefore for 0H   we obtain 

2
2 2 2

3 6c c cA R k B t t
  

    
   


           (71) 

Hence we have 

1 1
2 2 2

2

1
2 2 2

2 2 1 2 2

( ) , 0 (72)
6

( )

( ) ( ) , (73)
6 6
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R k B t t t t t
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R t

R k B t t t t k B t t R t t t


                   
                            



 
 

 
Underneath we shall study two different types of evo-

lution one having the phase transition in the expanding 
phase and other in the collapsing phase depending upon 
whether c c c cR t or R t  . 

Case II (b)* 
We see from Equations (72) and (73) that the universe 

reaches its maximum radius at 

2
2 2

max 2

6

2
6

c c

c c

c

R l B t

t t t

l B t

      
     

 
 

 



          (74) 

and 
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1
2 22

2 2

2
max 2

2

6

4
6

c c

c

c

R l B t

R R

l B t

                    




          (75) 

Then after that it collapses to a singularity at ft t  
give by 

1
2 22 2

2 2 2

max 2

4
6 6

2
6

c c c

f

c

R l B t l B R

t t

l B t

                      
 
 

 

 


 

 (76)  

Here we see that the phase transition occurs in the ex-
panding phase of evolution (before reaching the maxi-
mum radius) at ct t when there is a sudden rise in the 
rate of expansion. And the subsequent evolution is af-
fected by the presence of the scalar field. The larger the 
value of   or in other words greater the strength of the 
scalar field the longer it will take for the universe to 

reach its maximum radius, and in this way the final col-
lapse will be prolonged. 

Case II (b)** 
Here we take up the case  

2

6
0 B 


with 

1
2 2

6c cR l B t
 

  
 


. 

In this case we see that the radius reaches a maximum 
before the transition takes place, as is clear from the ex-
amination of the Equations (72) and (73). This gives  

2

max 22
2

6

c c
c

c

t R
t t

l B t

  
 
 

 


                 (77) 

and  
1

2 22 2
4 4 2 2

max 2
2
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6 6

4
6
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c

R t l B R t l B

R

l B t

    
       
            

 


 (78) 

Here the universe seems to collapse to a singularity at 

1
2 22 2 2

2 2 2 2 2 2

2

4
6 6 6

2
6

c c c c c c

f c

c

B B B
R l t l R t l t R
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                                         
 
 

 

  


                 (79) 

It is observed that the transition takes place in the col-
lapsing phase of evolution ( 0)  and the presence of 
scalar field therefore adds to the hydrostatic pressure (as 

0p   in the collapsing phase), and thereby to the iner-
tial effects which make the universe to collapse back to  

singularity at a faster rate as clear from Equation (70).  
Moreover, the time variation of energy density in the 

different models may be obtained from Equation (10) by 
using the time dependence of the functions R(t) and H(t).  

Thus we have here 

 
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where                                                                               0 ct t   (80) 
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where 

c ft t t                   (81) 
Therefore, the discontinuity in the energy due to the 

phase transition occurring at ct t is given by  

        
    

12 1 1 2 2 2 4 1 4 2 2
4

2 2 2

3 6 2 2 2 6 2

32 9 3 6 1 6

c c c c c c c c c c
c

c c c

R t t l B t B R R t l t t B RR

G R B t B t


   


                    

  

 
     (82) 

3. Conclusions 
 
The models we obtain here are interesting as they ulti-
mately evolve to the standard big bang models in the 
present era though their early scenarios are altogether 
different. Here solutions are obtained for spatially homo-
geneous and isotropic perfect fluid cosmological model in 
the presence of zero-mass scalar field which is one of the 
most acceptable models of the present universe. A uni-
fied description of early evolution of the universe is 
studied for two different periods where the gravitational 
constant is allowed to depend on cosmic time t. The 
models are expanding ones in each phase of evolution, 
and the solutions obtained in each phase are identically 
satisfied.  

In case II (b)* we see that the phase transition occurs 
in the expanding phase of evolution (before reaching the 
maximum radius) at ct t when there is a sudden rise in 
the rate of expansion. And the subsequent evolution is 
affected by the scalar field. The larger the value of   or 
in other words greater the strength of the scalar field the 
longer it will take for the universe to reach its maximum 
radius; and in this way the final collapse will be pro-
longed. 

In Case II (b)** the model for  

2

6
B 


 

with k = l is an interesting one where the evolution for 

ct t is akin to that of a standard Big Bang model with 
flat special sections. At ct t , the Hubble parameter 
suffers a sudden rise in its value which is due to a de-
crease in the hydrostatic pressure arising out of the pres-
ence of the scalar field. The subsequent evolution, there-
fore, starts with an increased rate of expansion. Here it is 
the presence of the scalar field which is instrumental in 
making the geometrically closed models ever expanding. 
Moreover relation (82) indicates that there is an instan-
taneous rise in the energy density after the phase transi-
tion in all ( k = 1,–1,0) big bang models, which may be 
interpreted as on account of generation of particles due to 
presence of scalar field. 

In case II (b) where a radiation-dominated phase is 
considered we see that both R and H are increasing func-
tions of time thus showing that our universe is an ex-
panding one. And also G is seen to be continuously in-

creasing in this radiation-dominated phase.  
Here the scalar field is found to exist only for 01 3c . 

Moreover the condition 01 3c  implies that the decel-
eration parameter q is greater than 2. Also in this case the 
pressure and energy density are found to be decreasing 
functions of time which shows that the evolving universe 
comes out to be one of the realistic models. 
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