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Abstract 
 
In this paper the Modified Equations of Emden type (MEE 0), 3x xx x      is solved numerically by 
the differential transform method. This technique doesn’t require any discretization, linearization or small 
perturbations and therefore it reduces significantly the numerical computation. The current results of this 
paper are in excellent agreement with those provided by Chandrasekar et al. [1] and thereby illustrate the 
reliability and the performance of the differential transform method. We have also compared the results with 
the classical Runge-Kutta 4 (RK4) Method. 
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1. Introduction 
 
The modified equation of Emden type (MEE), also called 
the modified Painleve-Ince equation, 

3 0x xx x                   (1) 

where over dot denotes differentiation with respect to 
time and   and   are arbitrary parameters, have re-
ceived attention from both mathematicians and physicists 
for more than a century [2-6]. The above differential 
equation appears in a number of mathematical problems 
such as univalued functions defined by second order dif-
ferential equations [7] and the Riccati equation [8]. Phy-
sicists have found this equation in the study of equilibrium 
configurations of a spherical gas cloud acting under the 
mutual attraction of its molecules and subject to the laws 
of thermodynamics [9-12], in spherically symmetric ex-
pansion or collapse of a relativistic gravitating mass [13] 
and in the modeling of the fusion of pellets [14]. The 
invariance and the integrability of this equation have been 
a subject of study for the past two decades by a number of 
authors [15-26]. This equation have been found to possess 
an explicit general solution for the following parametric 

choices,  

0  ,                  (2a) 

0  ,                  (2b) 

2

9

                   (2c) 

2                    (2d) 

However, the general solution of Equation (1) for arbi-
trary values of   and   was explored for the first time 
by Chandrasekhar et al. [1]. They have constructed the 
time-independent Hamiltonians from the time-inde- 
pendent integrals of Equation (1) and by the suitable use 
of canonical transformations, have converted these Ham-
iltonians to their standard forms. The general solutions are 
then obtained by integrating these new Hamiltonians. We 
present here a humble effort to arrive at the same by the 
Differential Transform Method [DTM]. 

The concept of differential transform was first intro-
duced by Zhou [27] in solving linear and nonlinear initial 
value problems in electrical circuit analysis. The tradi-
tional Taylor series method takes a long time for compu-
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tation of higher order derivatives. Instead, DTM is an 
iterative procedure for obtaining analytic Taylor series 
solution of differential equations and is much easier. In 
our previous work we have seen that the DTM provides 
the solution of the Duffing-Van der Pol oscillator equa-
tion in a rapidly convergent series [28] and that, it is in 
good agreement with the solution obtained by Chandra-
sekar et al. [29]. 
 
2. The Modified Emden-Type Equations 
 
As already mentioned, the modified equation of Emden 
type cannot be integrated straightforwardly for arbitrary 
values of   and  . The solution of MEE for the par-
ticular choice of parameters given by (2a) and (2b) can be 
obtained by simple integration and for the choice (2c), the 
equation is linearizable to a free particle equation. In the 
fourth case the general solution can be expressed in terms 
of the Weierstrass elliptic function [2-6,15-26,30]. It has 
also been noted that the MEE possess the Painleve prop-  

erty for certain values of  2 8
4

r
   


 
   
 

 [19, 

20,22].  
In [1] the authors have identified the first integrals of 

Equation (1) separately for each of the three ranges 1) 
2 8  , 2) 2 8  , and 3) 2 8  . The Hamilto-

nians are obtained from these integrals and are given by  
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   (3) 

For the case 2 8   the Hamiltonian  

24
log

4
H px

p

  
  

 
 reduces to the standard form  

2
2

1
log

2
H p

U
    
 

32
,            (4) 

under the canonical transformation 

4
,

P
x

U
  

2

8

U
p


  .           (5) 

The general solution thus obtained by integrating the 
new Hamiltonian (4) and by using the canonical equa-  

tions  and U P 2
P

U
  is given by,  

      21 18 1
exp 2

2
x t erf z E erf z

i
       

   (6) 

where, 
    02 exp

π

t it E
z




2
, 21

2 log
2

E U U  ,  

0  is an arbitrary constant of integration and erf is the 
error function [31].  
t

In our present work we have solved the modified equ-
ation of Emden type by the Differential transform method 
and we have compared the results with Equation (6) [1]. 
We have also compared the results with those obtained by 
Runge-Kutta 4 Method.  
 
3. The Differential Transform Method 
 
Differential transform of a function  is defined as 
follows  

)(xf

   
0

d1

! d

k

k

x

f x
F k

k x


 
  

  
.           (7) 

In (7),  f x  is the original function and  F k  is 
the transformed function. The Taylor series expansion of 
the function  f x  about a point  is given as  0x 

   
0

0

d

! d

kk

k
k

x

f xx
f x

k x
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Replacing 
 

0

d1

! d

k

k

x

f x

k x
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 
 
  

 by  F k , we have  

   
0

k

k

f x x F x




                (8) 

which may be defined as the inverse differential trans-
form.  

From (7) and (8) it is easy to obtain the following ma-
thematical operations: 

1) If      f x g x h x  , then      F k G k H k   
2) If    f x cg x , then    F k cG k , where c is 

a constant. 

3) If then    d

d

n

n

g x
f x

x
 , then 

     
!

!

k n
F k G k

k


n  . 

4) If      f x g x h x

   
0

k

l

, then 

 F k G l H k l


  . 

5) If  f x xn , then     ,F k k n   where   
is Kronecker delta. 

   
0

d ,
x

f x g t  t  then    1G k
F k

k


 ,6) If  where 

1k  . 
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7) If        f x u x v x w x
k k s

, then  

       
0 0s m

F k U s V m W k s
 

  m .  

w



here  F k ,  G k ,  H k ,  U k ,  V k ,  W k  
are the n   differe   the tial transform of functions  f x , 
 g x ,  h x ,  u x ,  v x ,  w x  respectively. 

 
4. Solu  o M ed e

Equations Using Differential Transform 
tion f the odifi  Emd n-Type 

Method 
 
The equation of the modified Emden type is given as 

2d dx x 3
2

0
dd

x x
tt

                (9) 

The initial conditions are (0) 0x   and (0)x 1   
(where prime denotes diff
time). 

rm (DT) t have 

erentiation with respect to 

Applying Differential Transfo o (9), we 

2
3d d

0
x x

DT x x 
 

     
2 dd tt
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 

2
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2

d d
0

dd

x x
DT DT x DT x
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, 

l

(10) 
The inverse differential transform of T(k) is defined as 

i.e. 
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x t T k
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  .t             (11) 

Using the initial conditions (0) 0x  ; 
d (0)

1
x

dt
  we  

have,  and 
For e ab on, we have 

(0) 0T 
k = 0 in th

(1) 1T  . 
ove equati

             2 0 0 2T T2 0 1 0 0 0T T T T T     . 

(12) 
For k = 1, we have 
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For k = 2, we have 
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For k = 3, 4, 5, 6, 7, we have 

 
2

5
30 20

T
 

  ,               (15) 

 6 0T  ,                  (16) 

 
317 2

7
2520 105

T
 

  ,            (17) 

 8 0T  ,                 (18) 

 
4 21395 379 2

9
1020600 30240

T
3

1440

  
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and  


 ,      (19) 

 10 0T  .                (20) 

For the case 2 8  , from Equa
have,   

tions (11) to (19) we 

 2 0T  ,                (21) 

 3
6

T

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 4 0T  ,                (23) 

 
2 213

20 60
T 5
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  
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 6 0T  ,                (25) 
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7
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T
 

 

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,   (28) 

 10 0T  .      

From Equation (11) we have  

        (29) 
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0

l
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5. Comparison of Results 
 
The solution plot of the Modified Equations o
type using DTM is given in Figure 1 for the parametric 
choice 

f Emden 

2 8   for different values of  . The graph-
ical represe tion of the solution
DTM in this paper is in good agreem
ta nd thereby illustrate the 
reliability and the performance of the differential trans-
form method. Figure 2 gives us a comparison of the so-
lution for MEE obtained by DTM with the so
tained by classical Runge-Kutta 4 Method. Table 1 gives 
the estimate of absolute error between the DTM-solu-

lear from Figures 1, 2 
ained by DTM is a bet-

nta  (30) obtained by the 
ent with those ob-

ined by Chandrasekar et al. [1] a

lution ob-

tions with RK4 solutions. It is c
nd Table 1, that the solution obta

ter approximation to the exact solution (as obtained in [1]) 
than the classical RK4 method. Therefore, the DTM is a 
very efficient and accurate method that can be used to 
provide analytical solution for nonlinear differential equ-  
 

 

Figure 1. Plot of solution (30) of Modified Equations of 
Emden type for the case α2 = 8β taking α = 4 and α = 5. 
 

 

Figure 2. Plot of solution of Modified Equations of Emden 
type for the case α2 = 8β taking α = 4 using DTM [Solid line] 
and RK4 method [Dotted line]. 

Table 1. Comparison of the DTM- solutions with RK4 solu-
tions and calculation of Absolute error. 

Time RK4 solution DTM solution x(t) Absolute error 

0 0 0 0 

0.1 0.09934 0.42503 0.32569 

0.2 0.1948 0.67042 0.47562 

0.3 0.28299 0.80679 0.5238 

0.4 0.36135 0.87702 0.51567 

0.5 0.42833 0.90712 0.47879 

0.6 0.48334 0.91287 0.42953 

0.7 0.52667 0.90384 0.37717 

0.8 0.55915 0.88584 0.32669 

0.9 0.58201 0.8624 0.28039 

1.4 0.59858 0.71514 0.11656 

1 0.59662 0.83567 0.23905 

1.1 0.60436 0.80693 0.20257 

1.2 0.60652 0.77697 0.17045 

1.3 0.60427 0.74628 0.14201 

1.5 0.5903 0.68373 0.09343 

1.6 0.

0.56852 

5801 0.65215 

0.62048 

0.07205 

0.05196 1.7 

1.8 0.55602 0.58874 0.03272 

1.9 0.54293 0.55697 0.01404 

2 0.52952 0.52517 0.00435 
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