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Abstract 
 
Review of the irreversibility problem in modern physics with new researches is given. Some characteristics 
of the Markov chains are specified and the important property of monotonicity of a probability is formulated. 
Using one thin inequality, the behavior of relative entropy in the classical case is considered. Further we pass 
to studying of the irreversibility phenomena in quantum problems. By new method is received the Lindblad’s 
equation and its physical essence is explained. Deep analogy between the classical Markov processes and 
development described by the Lindblad’s equation is conducted. Using method of comparison of the Lind-
blad’s equation with the linear Langevin equation we receive a system of differential equations, which are 
more general, than the Caldeira-Leggett equation. Here we consider quantum systems without inverse influ-
ence on a surrounding background with high temperature. Quantum diffusion of a single particle is consid-
ered and possible ways of the permission of the Schrödinger’s cat paradox and the role of an external world 
for the phenomena with quantum irreversibility are discussed. In spite of previous opinion we conclude that 
in the equilibrium environment is not necessary to postulate the processes with collapses of wave functions. 
Besides, we draw attention to the fact that the Heisenberg’s uncertainty relation does not always mean the 
restriction is usually the product of the average values of commuting variables. At last, some prospects in the 
problem of quantum irreversibility are discussed. 
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1. Introduction 
 
The concept of irreversible changes in physics is mani-
fold. First of all, it means a tendency to thermodynamic 
balance, but the irreversibility problem isn’t settled by it. 
In particular, in modern physics the important role plays 
an irreversible mixing (or collapses of wave functions) of 
quantum measurements results. Quantitative measure of 
an irreversibility is the entropy and connected with it 
characteristics. Some questions about dissipative quan-
tum systems were considered in [1]. From our point of 
view, in this sort of questions many doubtful interpreta-
tions have collected; therefore in the given work we dis-
cuss debatable moments. 

In Section 2 some properties of the Markov chains are 
specified and important property of the probability be-

havior to monotony is formulated. Using one thin ine-
quality, in Section 3 behavior of the relative entropy in 
classical case is considered. Further we pass to studying 
of the irreversibility phenomena in quantum problems. In 
Section 4 by new method we receive the Lindblad’s 
equation for density function, and for the first time a 
physical substantiation to this equation is given. In the 
same place a deep analogy between the classical Markov 
processes and development described by the Lindblad 
equation is given. In Section 5 using the method of 
comparison of the Lindblad equation with the classical 
linear Langevin equation we receive a system of differ-
ential equations, which are more general, than the Cal-
deira-Leggett equation. Further we consider quantum 
systems without return influence on a surrounding back-
ground. In Section 7 the quantum diffusion of a single 
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particle is considered. Possible ways of the permission of 
the Schrödinger’s cat paradox are discussed in Section 8. 
Then the role of an external world for the phenomena 
with quantum irreversibility is considered. In Section 10 
we conclude that in the equilibrium environment is not 
necessary to postulate the processes with collapse of the 
wave functions. In Section 11 ones draw attention to the 
fact that the Heisenberg’s uncertainty relation does not 
always mean the restriction is usually the product of the 
average values of commuting variables. At last, in Sec-
tion 12 we discuss some prospects in the problem of 
quantum irreversibility. 
 
2. Some New Remarks on the Markov  

Processes 
 
In the formulation of rules of asymptotic behavior of the 
Markov chains not to do without the condition, intui-
tively enough transparent, which we for brevity name 
here a connectivity condition. Its essence—in the impos-
sibility assumption to break set of conditions into two 
nonempty subsets I and II so that transitions from I in II 
were absent, that is that all corresponding transitive 
probabilities ij  are vanished. Subject to the condition 
of connection are only two possible types of asymptotic 
behavior: 1) or for any initial distribution is obtained in 
the limit—either directly or in sense of the Fejer arith-
metic mean—the same final steady—state distribution 
(reservation is needed about the arithmetic mean for the 
sake of a few exceptional cases, a periodic or almost pe-
riodic behavior in the limit ); 2) or also for any 
initial distribution all  tend to zero, the scattering 
takes place at infinity.  

p

 iP t
 iP t

At finite number of states there is, of course, only the 
first opportunity. 

The property of monotony formulated above can't be 
found in known managements on the Markov processes, 
see, for example, [2-6]. It can be considered as quantita-
tive expression of an asymptotics in the case 1). 

At transition to continuous time a basis of the Markov 
theory processes remains, but possibility of aforemen-
tioned recurrence disappears; but there are complications 
of type of distinction “simply Markov” and “strict Mar-
kov” properties, occurrences of singularities for final 
time etc., that, however, has not enough relation to the 
discussed theme. At continuity of transitions in space of 
conditions diffusive process (for example, in one-di- 
mensional case) is received 

   
2

2

1
,

2

f
af Df

t x x

  
  

  
         (1) 

where  a x  and —factors accordingly regular 
displacement and diffusion. For the process (1) monot-

ony of the relative entropy (see lower) is easily proved 
directly. For the Markov chains, symmetric or led by that, 
the proof (1) is in essence given in [5]. 

 D x

In symmetric case at final  the equiprobability  n

1 2

1
nP P P

n
     (the condition of connectivity en-  

tered above here is supposed) is limit, and at infinite n 
unlimited dispersion turns out . The symmetric 
variant of the diffusive process (1) is 

0iP 

 1
,

2

f f
D x

t x x

      

            (2) 

and besides there is the limiting uniform distribution, if 
the boundaries are entered from both parties obviously 
(with a condition not disappearances of the particles  

0
f

x





 on them) or indirectly, through vanishing  D x   

on final distance. For absence of the boundaries there is 
dispersion on infinity. 
 
3. The Relative Entropy in Classical  

Problems 
 
Let’s begin with random processes without feedback for 
which typical example are the classical Markov chains, 
having numerous applications in physics. The basic equ-
ation of such chains with final number  of the condi-
tions is [2,3] 

N

   1

1

,
N

m m
j i

i

P P 



  ijp

m



              (3) 

m—number of discrete step, indexes i and j number the 
conditions, i—probability of stay of system in the con-
dition i, and ij —the conditional probability of transi-
tion  The obvious conditions should be satisfied 
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For the system (3) should be the stationary solution  iQ

1

N

j i ij
j

Q Q


  p                 (6) 

with the same restrictions (5). On the each step it is possi-
ble to form the function of  real variables N 1 N   

   
1 2

1 1

, , , i
N N

m
m N i i

i i

.iF P Q e   
 

        (7) 

The minimum of this function is in the usual way at 

 
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Q
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It is equal 

 
 

  
1 1

min ln 1 ,
mN N

m mi
mm i i

i ii

P
F P P

Q 

      S    (8) 

where  is the relative entropy 
mS

  
 

1

ln .
mN

m i
m i

i i

P
S P

Q
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Let's prove that the sequence  monotonously in-
creases. From (3) and (7) follows 


mS

 1
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e .i
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i j i
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Enter the indications 
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As the exponential belongs to number of the convex 
functions, taking into account (5) from the Jensen’s ine-
quality follows [7] 

1

e e .j j
ij

i

p
 






               (12) 

From the equality (7) and the relation (8) we obtain 
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1
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1 i
N N

m
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S P e ,Q   
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where the last member is estimated by means of (12) and 
(6): 

1 1 1 1

e ej i i
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Q p Q
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eiQ . 
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So, after comparison with (11), from (13) we have 

  1 11 ,m m NS F ,       

where, in particular, the parameters  can be chosen so 
that they minimized the right part. Then  

 
1 ,mS S  m                (14) 

as was to be shown. 
Exact equality in (14) is reached in the stationary state 

i i. (By the way , thus in general case P Q  0S   0S  ). 
Limiting relation 

 lim m
i i

m
P Q


  

can be broken only in special cases of disintegration of 
set conditions on subsets, the transitions between which 
are absent. 

Let's underline that the monotonous change of the rel-
ative entropy doesn’t contradict possible sometimes to 
reduction of the usual (absolute) entropy 

1

ln .
N

i
i

S P


  iP              (15) 

The typical example is the diffusion of relatively 
heavy molecules in gas in the presence of cold wall. The 
molecules are eventually collected on this wall and the 
final distribution  takes a form of the Dirac Q  - 
function—this is clear example of reducing of the en-
tropy. Physically, it is obvious that the case is character-
ized by increase in the total entropy in the transfer of 
heat from the gas to the cold wall. Similarly, a massive 
test body (for example, globular stellar cluster) moving 
in the galaxy is experiencing dynamic friction [8] and 
eventually up to some fluctuations, gradually settles to its 
center. 

The relative entropy coincides with the absolute en-
tropy at the independence  of an index, i.e. when  iQ

1
,iQ

N
  for which enough (but it is not necessary) that  

there was symmetry of stochastic process: .ij jip p  
 
4. Irreversibility in the Quantum Case 
 
The irreversible processes in quantum mechanics can be 
studied either by setting a probability distribution for 
parameters of the wave function (in the case of pure 
states), or in terms of the density function (the states are 
mixed). However, in both cases, the irreversibility mani-
fests itself only in the interaction of a quantum system 
with exterior reservoir or bath. The wave function of a 
dedicated system, in principle, refused to serve when you 
can not ignore its inverse effect on the surrounding 
background—i.e. when takes place a link, or entangle-
ment of states of the system and the thermostat [9]. Re-
garding the density function believe that it is sufficient to 
completely describe a single system (as indicated below, 
also gave rise to some doubts), but it certainly is not 
enough when there are many individual systems in the 
general context [10]. 

Let’s start with the density function .  Lindblad [11] 
derived the most general law of evolution   ,t  com-
patible with conservation of normalization, positive defi-
niteness of the function, the lack of aftereffects (and 
some of the requirements of continuity and uniqueness). 
Should be 

   
1

, 2
n

v v v
v

i
,H L L L L L L

t  
     




     

  
  (16) 

where jL —any operators, H—the Hermit operator. 
(That circumstance that in (3) time was discrete, doesn't 
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t

play an essential role). 
But Lindblad hasn’t given a physical substantiation to 

the Equation (16). We eliminate this omission and will 
make this as follows.  

Let the chosen object interacts from time to time dur-
ing a short interval 0 t    with external field mak-
ing a part of the background and before not dependent on 
given object. Actually, it is the Boltzmann scheme, 
which though was studied earlier at quantum level, but 
only at private assumptions [12,13]. To derive Equation 
(16), we apply the general scheme. At the moment 0t   
there is a need to use the new density matrix   as a  

direct product of the density matrix   and the density 

matrix of external field. For simplicity, assume that 1  

has dimension . In diagonal form, hence, 2 2

  1
1 1 2 1

2

0
0 , 0, 0, 1.

0


   


 

    
 

2   (17) 

Accordingly,     has a usual form 
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0 .

0

 


 

 
 
 
 

For the Hamiltonian operating all system on interval 

 0, ,t  we take as much as possible general form 

11 12
21 12

21 22

, .
H H

H H
H H

 
  
 

H       (18) 

Then  

   e 0 e
iH t iH t

t .
 

  


           (19) 

Expansion on powers of t  do up to second order 
terms  

        
      
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  
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

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(20) 

After interaction stopping, by the general rule it is nec-  
essary to take “trace”  t   and to return to former 

dimension for  .t   As a result, with the same accu-

racy we obtain  
 

            
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2
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where m m  of the matrix   instead of (22) appears broader  

 
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set of the operators 

 
 

, ,

, 1 .

k i ii kk i k

k i

H H H

H i k m
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



  
       (23) 

The two-level system concerns to number of the sim-
plest examples. It is convenient to consider   as com-
bination from a scalar part and the Pauli matrix accepted 
further for the coordinate unit vectors. Then   it is 
possible to write down as  0 ,  , similarly in the vector 
form undertake H and L (their scalar parts don’t give the 
contribution). Obviously, 0  remains, and   evolves 
according to (15) under the law 

Let us imagine now that the whole process of evolu-
tion has described the same type of interactions. The 
background for this is stationary, but, generally speaking, 
with the internal nonequilibrium (anisotropy of the tem-
perature, etc.). It is easy to see that the return of (21) to a 
continuous smoothed time results with the same accuracy 
 2

t  to the Lindblad Equation (16). In larger dimension  
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1
2 .i

t


         
 
         H                        (24) 

 
In particular, if to consider   and   as small 

one order, and 0,H  in the right part (16) the second 
member prevails, and it can be oriented, for example, 

both in a direction  , and in the opposite. As a result, 
  can both to increase, and to decrease. Accordingly, 

entropy  as the density function equal in this case S
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also can change in any party.  

Pulè [14] gives the evolution equation, very similar to 
(24) and essentially equivalent to it, as he also high-
lighted and a systematic component, similar to the first 
two terms on the right side (24), and “damped” compo-
nent, similar the last two terms we have in (24). This 
correspon-dence is observed, despite the private nature 
of the model in [14]. 

Thus, there are foundations to consider (16) in general 
analog of the classical stochastic equation of evolution 
(1). 

The analogy between the quantum process of type (21) 
and the classical Markov chains is represented to us ra-
ther deep. First of all, for bounded n always there is a 
decision of the Equation (21). Really, at any initial posi-
tively defined  the arithmetic mean  0

   
0

1
d

T

g T
T

  t t             (26) 

preserves properties of positive definiteness and the unit 
trace, and consequently, the uniformly regular bounded 
elements. Moreover, if denote by A superoperator on the 
right side (21), that 

     
0

01 d
d

d

T T
A g t

T t T

  
        (27) 

tends to zero, and thus, in the limit of at least some in-
creasing sequence of values of T is obtained the steady- 
state solution (21).  

Use of the logarithmic function of the matrices in this 
context is formally inconvenient. Instead of, it can make 
the quadratic measure of closeness, which varies mono-
tonically. Let’s present the stationary matrix B   to 
diagonal form:  

1

2

0 0

0 0
.

. . . .

0 0 n

b

b
B

b

 
 


 
 





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

           (28) 

Similarly, the elements of any density matrix  t  
we will designate as ik . We define the functional 

 
2

,

2 ik

i k i k

w
b b


 

 1.          (29)  

Term (–1) in (29) is introduced only to the particular 
case B   to have . For 0w   w   we will make 
the variational definition which is simultaneously a gen-
eralization on any choice of basis, 

   max 2 1,w Sp B           (30) 

where the maximum undertakes on any Hermit matrixes 
  of the same dimension .n n  For check it is varied 

the functional in the right part (30), replacing   on 
  . A corresponding increment is opened as 
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If concretely to choose the matrix   with elements 

2
,ik

ik
i kb b


 


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then the matrix 
2

B
N

B  
   is zero and in the  

right part (31) remains the last, negative or zero, mem-
ber. So, the maximum in (29) is reached at a choice of 
elements   according to (32). Simple calculation 
shows that the magnitude of this maximum coincides 
with (30). 

The proof of monotony for  it is enough to 
give for the elementary case 
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In (33) we uncover dependence   and  from a  B

time according to (19), though actually 
d

d

B

t
0 . De-  

pendence   on a time can be at first arbitrary if only 
the admissible set of Hermit   was saved. Concretely, 
we assume 

2L L L L L L
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Then, in particular,  
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(35) 

and it is easy to be convinced by a rule of circular per-
mutation. Analogously after differentiation    in 
each term it is done such circular permutation that matrix 

 has appeared at centre fivefold product. As a result, B

      *d
2 2 , ,

d
Sp B Sp L B L

t
     0.     (36) 

Let in instant t t  matrix B t t 

 t

 is selected so 
that to maximize a track in (36). Then, in the moment, 
has just been proved, the matrix  associated with 
the previous equation (36), the value of the track must be 
more   t1 w t  . This  will not be, gener-
ally speaking, maximized, but when taking the maximum 

 t
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the inequality will only intensify:  

     ,w t w t t               (37) 

as was to be shown. 
In deciding whether the standard solution is nonde-

generate, i.e., whether it has full rank , again shows 
the analogy with the Markov chains: degeneration occurs 
only at infraction of the connectivity condition. We set 
off such violation, when at suitable unitary transforma-
tion, common for all v , it is possible to select two 
nonempty groups of states I and II so that in all  
transitions 

n

L

vL
I II  miss. 

For the demonstration we will result again the station-
ary matrix  in diagonal form. If, in former labels, B

 0 1 ,ib   i  s n but , it is com-  1 0s nb b s    

puted in 
d

dt

B
 the diagonal elements with i , that 

gives 

s

2

1 1

d

d

N s
vi
ik

v k

b
l

t  

              (38) 

(  - elements of matrix v ). The requirement of sta-
tionarity is fulfilled, only if all ikl  with  

v
ikl L

,i s k s  
are vanished, and this means precisely disintegration of 
set of states on two groups. 

At performance of the connectivity condition also eas-
ily proved that  is aimed to a stationary state at 
least at terminating . Really, let’s will look, when  

 t
n

inequality 
d

0
d

w

t
  becomes exact equality. For this  

purpose at nondegeneracy  commutation B   with all 

v  is necessary. We will realize, for a moment, reduc-
tion 
L

  to the diagonal form. If among eigenvalues of 
this matrix are various ones, on a commutation require-
ment in v  there can not be transitions between states 
of corresponding groups, i.e. the connectivity condition 
is broken. Could be considered that the matrix 

L

  is 
proportional the unit matrix, but then   and  are 
proportional each other and if to regard normalization, it is  

B

simple B  . In any other case the condition 
d

0
d

w

t
   

is fulfilled, and from here it is already easy to conclude 
about an attraction of any state  t  to stationary  
(obviously, thus to the only state). 

B

 
5. Generalization of the Caldeira-Leggett 

Equation 
 
Many authors were engaged in obtaining of a kinematic 
quantum equations for the case of continuous set of 
states. Partial survey is given in [1]. However, the prem-
ises and conclusions in some cases raise doubts; to trace 
the cause of contradictions is sometimes difficult. Here 

we have selected other path: at once we will apply the 
Lindblad equation in such shape that it could be com-
pared with the linear classical Langeven equation. For 
this purpose it is possible to take 


2 2 2

,
2 2

p mw q H L p i
m

q          (39) 

(  is the complex parameter, the magnitude   is real). 
In [1] author uses similar equation taken from Stenholm, 
however these arguments are represented to us a little 
convincing. From a point of sight of symmetry and ease 
of check our Equation (39) has advantage. 

The idea to search Gaussian solutions arises 

  2 2 2, ,x x xxx x ce   
              (40) 

where   is real, c- also real normalizing coefficient 

 2 Re
c

 



 , 

and Re  . Last requirement is necessary and 
enough for positive definiteness   owing to the Me-
ler’s formula [15], see also (in less convenient shape) 
[16] 

 
 



   
2 2

2 2 2

22

2

0

4 11
exp

2 11

e 2
!

x y n
n

n n
n

.

xyt x y t

tt

t
H x H y

n

  



   
 
   

 

    (41) 

Then after substitution (41) in the evolutionary Lind-
blad equation in our case the system of the ordinary dif-
ferential equations for   ,t 

2

t  is gained and the 
normalization should be fulfilled automatically. However 
more simply to come to the purpose as in [1], composing 
(linear) equations for the moments of the second order, 
immediately multiplying the left and the right members 
(40) on  and taking matching tracks. So, 
for the time functions 

2 , , ,q qp pq p

 

   

   

 

     

 

2 2

2

2
2 2 2

2

22 2

1
, d ,

4 Re

, d

,
Re

,1
,

2 2

Im

2 Re

x x

x x

f t q Spq

x x x x

t p Spp x x x
x

x x
t pq qp i x x x

x




 

  

 

 


 


 





 

 


        






       














(42) 
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we obtain following equations  

 

 
 

2 2

22 2 2

2 2 2

d 2
2 4 Re ,

d
d

2 2 4 Re ,
d
d

2 Im 4 Re .
d

f
v f

t m

m v
t

m f v
t m

 

     

   

   

    

      

 

 

  

 (43) 

The physical treatment of the system (43) is not diffi-
cult. The first terms of right members define a character-
istic evolution of object. The first terms in brackets give 
diffusion. By the way, as it is clear and in [1], it is possi-
ble to set diffusion preferentially on coordinate if   it 
is great. Certainly, the subsequent terms in brackets give 
a systematic swing of oscillation, if Re 0  , and a 
damping, if Re 0  . 

For the stationary solution of system (43) it is enough 
to write out 

 22 2

2 2 ,
2Re

m
m f

 
 




  


        (44) 

as becomes clear that at Re 0   it is physically unac-
ceptable and even is formally incompatible with any ad-
missible parameters   and   in the density function. 
On the contrary, at Re 0   the system (43) has the 
unique stationary solution which is simultaneously and 
limiting one, as at characteristic indexes of matching 
homogeneous system a real parts are negative. 

To build a measure of proximity to stationary state by 
a common rule - enough bulky operation, but an expres-
sion with similar properties is easy enough find immedi-
ately. Concretely 

     22 2
2 2 0

0 0 2 2
,

2 2

m
x f f

m

  



        (45) 

( 0 0 0, ,f    - the stationary solution). At Re 0   we 

have 
d

0
dt





. 

At the arbitrary non-Gaussian shape of a density func-
tion the problem on its evolution becomes more compli-
cated. But if to be interested only qualitative asymptotic 
behavior  , ,x x t  , the answer is gained at once: at 
Re 0   in view of a nondegeneracy of steady state   
there should be a monotone degree of proximity and 
consequently the limiting   must be always the Gaus-
sian, at least the initial  0  and was not that. 
 
6. The Systems without Feedback 
 
The evolutionary equation for the systems subject to ca-
sual exterior action was inferred many times [11]. Here 
we prefer the following common approach. At the regu-
lar affecting the evolution of physical system would sub- 
mit to the law 

   e 0 e
iHt iHt

t 


  .           (46) 

Let concrete affecting lasts a small interval of time 
 0, t  then decomposition of a right member (46) on t as 
to within  2O t  gives to small parameter 

   

     

2 2 2 2

2 2

2
2 2

2

2

2

1 0 1
2 2

0
2

iHt H t iHt H t
t

it t
H H H H

t
H H

 

    



   
       
  

    

 


  

 







(47) 

If in H  there is a randomness, in the right member 
(47) it is necessary to exchange operators 2,H H  and 
H H  their statistical averages (is marked out by angu-
lar brackets). We will compare effect to what would be 
gained if affecting was spotted at once by average H . 
The difference as it is easy to see, consists only in terms 
of the second order on t 

 

   
2 2

2 22 2
2 2

0 ...
2

i H t i H t
t t

t e e H H H H H H H H       
            

 

 
     (48) 

 
Let's uncover average in an explicit form through 

probabilities j  and implementation of matching op-
erators: 

   

 2 2

e 0 e

2 ,

i H t i H t

ij ij ij ij
i j

t

H H H H

 

  

 





  
 

 (49) 

1

,
n

j j
j

H H


   etc., 
with 

 .ij i j i jH H   H            (50) 
where . After some rearrangement of 

terms the expression (48) it is reduced to  
1

0, 1
n

j j
j

 


  
Going over to the averaged time, we obtain the Lind-

blad formula (16) from [11], but with one important 
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limitation: the operator jL

jiq

 can only be Hermitian. 
There is reason to see here an analogy with symmetry of 
the Markov chain . Anyway, as we now show, 
the entropy in our example increases monotonically. In-
deed, it is easily seen that the first term on the right side 
(16) has no relation to the change in entropy. If we re-
strict the discrete set of states, then 

 ijq  

  can be reduced 
to diagonal form 

1

2

0

0
.

0 n








 
 


 
 

 
 

   
 




          (51)  

In the same representation the elements v  we mark 
as ij . For example, at 

L
l 2 0n   

ii

 calculation of 
the diagonal elements M  of the matrix in brackets in 
(16) gives 

22

11 1 1 1 1
2

2 , 2
n

i jj j
i

.M l M l


         (52) 

The trace 11 nnM M 

, , , n

, as one would expect, is 
equal to zero. From (52) it is clear that the diagonal ele-
ments 1 2    as time functions submit to the 
symmetrical system of the evolutionary equations of the 
Markov processes. On proved above, the combination 

   
1

ln
n

i i
i

t t 


  

monotonically increases. According to the Schur theo-
rem [7] the union of the diagonal elements i  is ma-
jorized in Hardy, Littlewood and Pais sense by charac-
teristic numbers i  of the same matrix  . From here 
follows 

         

   

1 1

1

ln ln

0 ln 0 ,

n n

i i i i
i i

n

i i
i

S t t t t t   

 

 



   

 

 


 

i.e. 

   0 ,S t S                (53) 

as was to be shown. 
From the physical point of view lack of inverse influ-

ence of a system on background is characteristic namely 
for very hot background - after that not so surprisingly 
that different states of the system are aimed to gain an 
equal weight. The univalent asymptotic effect, naturally, 
is gained only at a finite number of states of the system. 
Similarly, in the classical case of symmetrical diffusion 

 1

2

f f
D x

t x x

   

   

           (54) 

nonzero limit for the density function f at  is 
gained, only if diffusion is artificial is restricted by walls 
(or tending of the diffusion coefficient  to zero on 
final distance). 

t 

D

 
7. The Quantum Diffusion of Free Particle 
 
For a free particle on the background of an infinite set of 
oscillators in [17,18] found the evolution equation 

     2
, , , , ,

i D i
H q q q p

t

   


           
 (55) 

(«+» means anticommutator). The Equation (55), gener-
ally speaking, does not fulfill to a requirement of con-
servation of positive definiteness   (and consequently 
is not the special case (16)). For check it is possible at 

0, 0H D   to substitute at values in the right side (55) 
the “pure” state expressed through some even function 
 x  

       1 1, ,x x x x t    0 .  

At usual representation entering into (55) operators  

   
  

1

1 1

, ,

,

q x x x x x

p x x i x x





 

   
1

..

         (56) 

we obtain 

 

                   

                 
1 1 1 1 1 1

2
1 1 1 1 1

0 .

.

t t x x x x x x x x x x x x

x x x x tx x tx x x tx x x O

          

            

  

   

        
 

           

     (57)  

 
Last two terms in the right member (57) always it is 

possible to present in the form 

       

       

* *

* *

t x x x x x x

x x x x x

       

      

 

 

   
  
    
  

x






  (58) 

with complex coefficients   and  , selected so that 

the functions 

   x x      x           (59) 

were crossly orthogonal; an orthogonality of both func-
tions to  x  follows from difference of parity. Then 
in the right member (57) it is had standard decomposition 
with one negative coefficient, i.e. obtained a sign-inde- 
finite form, contrary to the instructions in [1]. 
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
Exclusion makes a case when one of combinations (59) 

is equal to zero, i.e. at Gaussian shape  1,x x . Then, 
apparently, contradictions do not originate and at least in 
case  the functional Equation (55) is reduced to 
system of the ordinary differential equations. Indeed, let 

0H 

2 2
1 12 ,x x xxce   

              (60) 

where on the norming condition should be 

2
.

π
c

  



            (61) 

For an regularity behavior of the function (60) it is 
necessary to induct restrictions  

Re 0, Re .             (62)  

Using (56), we uncover (55): 
 

      22 2
1 1 1 12

d d d
2 .

d d d

c D
c x x xx c x x c x x x x

t t t t

       


                 
1


          (63) 

 
Function  c t  of a special role does not play, as is 

automatically defined by the norming condition. From 
the common Equation (63) remains 

 

 

2

2

d
2 ,

d
d

2 .
d

D

t
D

t

   

     

  

    





        (64) 

The decision of the linear Equation (64) is easy 

 

 

2 4
2

4
2

,
4

, con
4

t t

t

D
t i e ge

D
t ge c

 


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

 


 



   

   




st,

     (65) 

where  , g ,   are the integration constants. 
On the other hand,  0P x  should be the solution for 

(1) without the left part, so after multiplication on  
 
 

0ln
P x

P x
 and integration 

 

   
       

       
 

 
   0 0 0 1

0 1 1 1 0 1 1 0 1 1 1
0 1

ln , d d ln , d d ln , d d 0.
P x P x P x P x

P x q x x x x P x q x x x x P x q x x x x
P x P x P x P x

      

Subtraction gives 


       

     0 1
1 0 1 1

0 1

d
ln , d d .

d

P x P xS
P x P x q x x x x

t P x P x
    1                         (66) 

2
d dd 2 d2 d dd 1 d 1 d 1 dd d 0.             (67)  

d d 2 d 2 d 2

b fb a f b xa x xS f b fx a f x
t b f x x x bf

                            
 

 

 
8. About Paths of Solution of the  

Schrödinger’s Cat Paradox 
 
The previous notes prepare for thought that a solution of 
the problem of transition from quantum world in classi-
cal world inherently cannot be simple. About it we will 
underline that in this problem it is impossible to look 
back. Different versions of “the latent parameters” (in 
classical sense), still seriously considered in the middle 
of the XX-th century [19], are now rejected by all de-
velopment of the quantum mechanics, its interior logical 
organization and doubtless successes. Now it is neces-
sary to take simply unusual of the microworld which in 
the general-theoretical sense can be interpreted as con-
siderably greater, in comparison with a macrocosm, an 
information capacity [20]. In particular, the Bell’s ine-

qualities [21] hardly deserve their so frequent analysis in 
up-to-date controversies [22] just because in the devel-
oped apparatus of quantum mechanics in them there is no 
necessity. If the Bell’s inequalities nevertheless were 
carried out, it would mean not simply strangeness, and 
any full illogicalness of the quantum world that, fortu-
nately, doesn’t happen. 

The transition from micro- to macro world, figura-
tively speaking, can be represented by a narrow neck of 
the bottle, through which one capacious in the informa-
tion regarding a microcosm of our macrocosm can leak 
only a very small piece of information. Note also that 
choice of the one variant among many ones means a de-
crease in entropy, in contrast to its increase, which is 
characteristic of the process, incidentally, is also reversi-
ble, microscopic interaction with the background of an 
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infinite temperature.  
Clearly, the equation describing the transition from 

micro- to macro world must be non-linear one, otherwise, 
according to Schrödinger, would be possible superposi-
tion of the states of live and dead cat. But the search for 
appropriate nonlinearity randomly or blindly [23] is not 
productive—an experiment all such attempts quite easily 
refutes [24,25]. 

And already now we can tell confidently enough that 
nonlinear members should have, first, all-round influence, 
secondly, smooth in space and time, as a result to be al-
most or not so not found out within the limits of the mi-
crocosm. More precisely, the first condition means that 
there should not be a regular preference which could 
collect eventually and deform known statistical regulari-
ties. In particular, apparently, it is necessary to be careful 
not to introduce members which would break the law of 
conservation of energy. Under the smoothness of the 
action we mean the absence of unmotivated scattering 
centers and a sufficiently large characteristic time greater 
than the most common atomic and molecular transfor-
mations. The essence of the nonlinear interaction we see 
a slow non-directional change of the phases and ampli-
tudes of the basis wave functions, for example, charac-
terizing the standard motion of individual molecules in a 
gas. Stealth aftereffects then follows simply from the fact 
that these nonlinear effects have “to sink”, i.e. disguised 
among ordinary perturbation (collision of gas molecules, 
etc.). 

Another matter—the states that include the change of 
macroscopic objects, for example, the “Schrödinger’s 
cat”. Conventional thermodynamic fluctuations do not 
connect them and do not interfere with nonlinear effects. 
The choice is ultimately one of the macroscopic state of 
the two, or many, and the resulting decrease in entropy 
achieved in all probability, only one way: assumptions 
that nature doesn’t suffer superposition of macroscopic 
states of a certain type, and that among them there is a 
diffusion, as in the well-known simplified the problem of 
the “gambler’s ruin” until the matter is not reduced to a 
single, macroscopically admissible states. Sketch of such 
theory is given in [27]. But with non-linear equations do 
not get exact performance of the Born postulate: “the 
probability of a macroscopic event is proportional to the 
square of the amplitude of the wave function”. However, 
it should be noted: experimental verification of the Born 
postulate - not out of the circle of those results for which 
the successful testing of many decimal places is a matter 
of pride physicists. In fact, exactness of the Born postu-
late in treatment of the electron diffraction experiments, 
etc., in general, although satisfactory from the standpoint 
of practical needs, but in the long term it is necessary to 
consider possibility of essential infringement of the Born 

postulate in some special experiments. 
The widespread objection that nonlinearity destroys all 

habitual apparatus of the quantum mechanics, is substan-
tially based on fear before new and unusual which in the 
twentieth century beginning in the same way prevented 
to recognize and the general theory of relativity—after 
all the gravitational field equations on Newton are linear, 
remarkably convenient and symmetric. On the other 
hand, are known examples when even sharply nonlinear 
in itself phenomenon outwardly acts as effect of certain 
linear forces [28]. Similar things—a harmonious and 
statistical linearization of control systems [29]. 
 
9. The Cosmic Factors  
 
For us, it is clear that the source of the diffusion trans-
formation of the wave function should be not in itself 
(otherwise it would be a regular evolution for no ran-
domness), but something external. After all, even ordi-
nary diffusion of an atom or an electron has its own ran-
dom factors in the form of aftershocks of the neighboring 
particles. In problem of the “Schrödinger’s cat” should 
look for this external factor in the macroscopic condi-
tions? In principle, perhaps, but a few plausible, because 
the macroscopic parameters, in general, varies smoothly 
and in a regular manner, then the result of the process as 
even the act of radioactive decay clearly would depend 
on the macro environment, which is not observed. It re-
mains to assume that it is a factor at all parties for the 
bodies involved in the experiment. It is likely the effect 
of cosmic factors. Confirmation is found correlations in 
geographically separate experiments with macroscopic 
fluctuations: the correlation as a mutual, and with the 
astronomical factors [30,31]. 
 
10. Whether the Collapse of Quantum States 

in the Equilibrium Environment Is  
Necessary?  

 
An important conclusion from the foregoing is, we think, 
very similar tending to statistical equilibrium of many- 
particle system on the one hand, and single particle or 
even a small system surrounded by a stationary back-
ground, on the other side. In any case, statistical equilib-
rium (if it exists) corresponds to the “potential well”, to 
which the system and aims to be simple, monotonous 
way.  

While we did not talk about any collapse or splitting 
of the wave packets. But there is a need for equilibrium 
systems (e.g., gases) to consider processes with collapses 
of the wave functions? For example, in [1], it seems, 
allowed the existence of such processes with the collapse 
of a wide range of phenomena closer to equilibrium. In 
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contrast to [1], we are inclined to answer this question in 
the negative if only because it the carefully grounded 
quantum statistical mechanics [32,33] does not rely on 
anything like a collapse that would only interfere. To 
describe the same macroscopic characteristics of the 
body are, in principle, clearly defined rules, practically 
independent of the general theoretical views on the na-
ture of the relationship between classical and quantum 
worlds. In each thermodynamic equilibrium body an 
entanglement of the quantum states has already reached 
the maximum extent possible, and continues to move just 
nowhere. But it is not clear why this should interfere 
with normal communication with macroscopic bodies as 
a whole with the classical objects.  

You can certainly raise the issue of fluctuations. But 
the fluctuations in equilibrium systems are not available 
to our perception. For example, there is no contradiction 
to say that the fine particles (although the virus) under-
goes Brownian motion is completely under the laws of 
quantum mechanics. But to see this movement, it is nec-
essary to put the object beam, i.e., to create a highly 
non-equilibrium conditions. Likewise, for example, 
fluctuations in electrical resistance are a thing in itself, 
until a sample is not omitted current, and fluctuations in 
atmospheric density can not be noticed until after it did 
not get addressed, i.e., again, non-equilibrium radiation, 
etc. But with creation of non-equilibrium, the problem of 
fluctuations is transferred to another plane. 
 
11. The Systems with Large Dispersion 
 
It must say little about interesting case where the equilib-
rium state is not reached at least once until the disper-
sions of the values  and , under a certain typical 
frequency 

q p
 , not to exceed substantially the Heisenberg 

limit. The formal apparatus of quantum mechanics this 
did not prevent. For example, for Gaussian density func-
tion of the product  

 

2 22
2 2

2
,

4 Re
q p

 

 


 




        (68) 

bounded below the certain limit 
2

4


, but the rise to in-  

finity occurs const, Re    . Authors [1,34], fac-
ing with like examples seems to be thinking about action 
of sertain supplementary law, which automatically con-
verts corresponding states in the category of classic ones. 
However, this can hardly agree. Indeed, in statistical plan 
the states with high values of dispersion (that practically 
equivalent growing of the temperature of the background) 
with good accuracy obey to the classical mechanics laws. 
But that is not directly related with the issue of choosing 

a line of the macroscopic development, and does not 
solve the Schrödinger’s cat paradox. The very same sim-
plest (in words) assumptions: “the wave packet splits in 
achieving of sufficient randomness” is clearly not held, 
as seen from the inconsistency of the various phenomena 
of this kind in [9] and from experimental fact of the ma-
nifestation of interference to account disguised correla-
tions under, seamingly, the chaotic density function of an 
atom. In this regard, there are illustrative examples of the 
photon [35] and plasma [36] echo.  
 
12. Prospects 
 
The instances specified above underline that the logic of 
development of the physical science demands in proxi-
mal years of assimilation of the nonlinear quantum me-
chanics. Such point of view has been stated and justified 
by us in [27]. There is the mathematical instance of con-
struction of the nonlinear quantum mechanics and con-
sidered set of partial cases on description of evolution of 
the wave function in intermediate zone (the mesoworld) 
between the microworld and the macroworld. Essential 
there is an understanding of processes of scattering of the 
wave packet, and also that the Born’s postulate has re-
stricted character. In this connection remains to add the 
following. Apparently, the important role in processes of 
a decomposition of the wave packets is played the ran-
dom character of an energy spectrum on the intermediate 
stage of the mesoworld. According to instances given in 
[37], the randomness often originates at interacting of 
highly exited particles or molecules with environmental 
small collectives, that is typical for the mesoworld. Dis-
persion of the wave packets happens, apparently, on 
clusters of atoms or molecules with characteristic sizes 
103 - 104 Ǻ. From the physical point of view the disper-
sion on cluster corpuscles is presented by the formula 
[38]  

  6 ,SDI                   (69) 

where I —the intensity of scattered radiation, S —the 
fractal dimension of the cluster scattering surface. We 
pay attention to random character of energy spectrums 
also because the systems with regular spectrum are stud-
ied enough: their quantum properties corresponding to 
the usual theory are often prolonged in the macrocosm in 
the form of various macroscopic quantum appearances. 
Therefore the greatest chances to find out the quantum 
nonlinearity are available there where for an interference 
of wave packages earlier didn’t search. 

D

The reference to quasi-stationary states in [1] also 
serves, inevitably at first, to simplification of an essence 
of the matter. Most likely, at more exact analysis it is 
necessary to connect external world influences with tran-
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sitions between different conditions. Otherwise is not 
absolutely clear, as it is possible to register quantum 
jumps [39] in a state of separate or several atoms. In de-
scribing the atom simply the density function without 
taking into account the dynamics of interaction with the 
background would have been a simple stationary, does 
not give grounds for splitting. 

Let's address now to effect of Sokolov. In Sokolov’s 
experiments [40]—here we enter on shaky grounds— 
confuses independence of the effect in an aspect of “the 
Demon field” from a beam intensity of atoms so the 
nonlinearity of the Schrodinger equation vanishes. We 
offer several other interpretation of the Sokolov’s ex-
periment: apparently, the surface of the sample of metal 
by which microparticles (atoms of hydrogen) flew by, in 
these experience was in the special, hardened state when 
in surface layer a quantum superposition of collective 
states gradually are destroyed by interacting with sepa-
rately flying atoms, which execute role of a certain cata-
lytic process. Then each atom of hydrogen calls the ef-
fect, and effects are simply summed up. If our assump-
tion of the reason of the effect is truly, has to be observed 
a gradual “aging”, or effect exhaustion at the long-term 
use of installation with the same piece of metal (from the 
published reports of Sokolov’s effect not clearly, 
whether there is such process of an aging actually). By 
the way, finiteness of a time of “viability” of equipment 
detecting cosmic impacts (not quite us comprehensible) it 
is underlined in [41].  

With under discussion by complex of the problems, 
probably, are bound events of the enigmatic delay to 
registrations of the effect in absolutely different experi-
ments. Here pertains emission of Rydberg’s atoms in 
resonator [42], and also the quantum effect of Zeno [43] 
and registration of wide atmospheric showers with en-
ergy  эВ [44]. Here should be adding on and es-
tablished experiments with macroscopic fluctuations in 
the registration of radioactive decay, etc. What has 
shown, in particular, the following debate in UFN, results 
on explanation of macroscopic fluctuations do not pack 
nor in what rules of the statistics if consider that registra-
tion goes in mode of the realtime—thence need to postu-
late the delay of the order of the second. At last, though 
here it is not visible to connection with quanta yet, there 
is a problem of rare “delayed echo” in a radio communi-
cation [45], not explainable, on condition of observation, 
reflexion from something. Thus, the impression is made 
that sometimes the nonlinear quantum process detain on 
intervals of the order of second an information exit in our 
usual world. Perhaps these facts are actually more, but 
they are hidden in small editions available or not pub-
lished under the pretexts of strangeness. 

1610

In summary, unlike [23], we will underline objective 

character of a problem of the transition a microcosms- 
macrocosm. Just research in recent decades clearly 
demonstrate the reality of the processes occurring in the 
intermediate scale, in contrast to the era of birth of 
quantum mechanics, where the transition from the proc-
esses of the microworld seemed something of a jump 
across the gap. Now this gap is gradually filled. Continue 
to close our eyes to mezoworld as important as physi-
cally real band—then advance to build barriers to learn-
ing. In experiments with microobjects we deal with facts 
as real as the phenomena that surround us. A suitable 
analogy might be a statistical statement: malaria inci-
dence is higher in wetlands. Very poor would have been 
in our time, one epidemiologist, who announced to the 
swamp “of the primary accident” and thus would have 
missed the most important factor—the mosquito! 
 
13. Conclusions 
 
Some characteristics of the Markov chains (processes) 
are specified and the important property of monotonicity 
of a probability is formulated. It is entered notion to rela-
tive entropy and is found monotonous nature its behaviour 
in classical case. For study of irreversibility phenomena 
in quantum problems by new methods is received the 
Lindblad’s equation and its physical essence is explained. 
Deep analogy between the classical Markov processes 
and development described by the Lindblad’s equation is 
conducted. Using method of comparison of the Lind-
blad’s equation with the linear Langevin equation we 
receive a system of differential equations, which are 
more general, than the Caldeira-Leggett equation. We 
consider quantum systems without inverse influence on a 
surrounding background with high temperature. Quan-
tum diffusion of a single particle is considered and pos-
sible ways of the permission of the Schrödinger’s cat 
paradox and the role of an external world for the phe-
nomena with quantum irreversibility are discussed. In 
spite of previous opinion we conclude that in the equilib-
rium environment is not necessary to postulate the proc-
esses with collapses of wave functions. We draw atten-
tion to the fact that the Heisenberg’s uncertainty relation 
does not always mean the restriction is usually the prod-
uct of the average values of commuting variables. It is 
discussed row new experiments, in accordance with under 
discussion problem of the quantum nonlinearity. We 
underline that the logic of development of the physical 
science demands in proximal years of assimilation of the 
nonlinear quantum mechanics. 
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