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Abstract 
 
Boozer addressed the role of magnetic helicity in dynamos [1]. He pointed out that the magnetic helicity 
conservation implies that the dynamo action is more easily attainable if the electric potential varies over the 
surface of the dynamo. This provided motivated us to investigate dynamos in Riemannian curved surfaces 
[2]. Thiffeault and Boozer [3] discussed the onset of dissipation in kinematic dynamos. In this paper, when 
curvature is constant and negative, a simple laminar dynamo solution is obtained on the flow topology of a 
Poincare disk, whose Gauss curvature is K = –1. By considering a laminar plasma dynamo [4] the electric 
current helicity λ ≈ 2.34 m–1 for a Reynolds magnetic number of Rm ≈ 210 and a growth rate of magnetic 
field |γ| ≈ 0.022 are obtained. Negative constant curvature non-compact H2 manifold, has also been used in 
onecomponent electron 2D plasma by Fantoni and Tellez [5]. Chicone et al. (CMP (1997)) showed fast dy-
namos can be supported in compact H2. PACS: 47.65.Md. 
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1. Introduction 
 
Earlier Boozer [1] has investigated magnetic helicity 
driven dynamos, where the magnetic helicity constraint 
is enhanced if the electric potential varies over surface of 
the dynamo. He argues that in the case of the Earth, the 
north-south pole variation posseses an electric potential 
which varies a hundred volts. Recently helicity constraints 
have also been investigated by Thiffeault and Boozer [3] 
where the dissipation is taken into account. In their case, 
they found that helicity generation terms are exponential 
smaller than energy dissipation, so that large amounts of 
energy are dissipated before any helicity can be created. 
In this paper, use is made of the Riemannian geometry of 
Cauchy metric in the chaotic plasma flows, where the 
magnetic field is stretched in the plasma flow [6]. In their 
case the high conducting fluid, with high magnetic Rey-
nolds numbers Rm of the order 108-1015, and conse-
quently very low dissipation is used. 

Here one addresses the converse issue and considers 
the case of a non-ideal plasma where the dynamo action 
survives on the Riemannian manifold of negative con-
stant curvature in the form of a Lobachevsky plane. As it 
is wellknown a compact surface can be given by a torus 
and sphere, while noncompct srfaces can be given by 

paraboloids or the Lobachevski plane discussed here. 
This kind of negative Riemann curvature geometry in the 
form of a paraboloid can be easily shown to focusing the 
magnetic field orthogonal to its surface. It is important to 
stress that this does not happen in the Euclidean plane, or 
the spherical surface where the magnetic field lines or-
thogonal to their respective surfaces remain parallel or 
diverge. This provides also another strong fountain of 
motivation for investigating the magnetic flows in geo-
desic dynamos in Riemannian spaces of negative con-
stant curvature. Since as shown by Chicone et al. [7] 
even fast dynamos can be supported in Riemannian 
compact 2D manifolds of constant negative curvature, 
the Cowling anti-fast dynamo theorem for 2D surfaces is 
not violated here. 

Anti-fast dynamo theorems have also been addressed 
by Garcia de Andrade [2]. The slow dynamo flows ob-
tained here are shear flows, which can also be obtained 
by the stretch-fold-shear dynamo mechanism investi-
gated previously by Bayly, Childress [8] and Gilbert [9]. 
In this paper the absence of advection terms is due to the 
presence of a comoving term which makes the spatial 
flow vanishes. This kind of frame is very well known in 
cosmology and can be used in near future to investigate 
cosmological dynamos. The dynamo flow used here is 
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certainly more complex that the simple uniform stretch-
ing dynamo flow investigated by Arnold et al. [10]. An-
other motivation for the use of negative constant Rie-
mann curvature dynamo plasma surfaces, has been the 
one-component two-dimensional plasma by Fantoni and 
Tellez [5] in the realm of electron plasmas in 2D. Here, 
as happens in general relativity the plasma undergoes a 
Coriolis force which is given by the presence of the cur-
vilinear coordinates effects present in the Riemann- 
Christoffel symbol in the MHD dynamo equation. In 
their non-relativistic plasma limit, this geometry has 
been used by Fantoni and Tellez [5] in the context of 
plasma physics. They have used a Flamm’s paraboloid, 
which is a noncompact manifold which represents the 
spatial Schwarzschild black hole, to investigate one- 
component two-dimensional plasmas. 

Restoring forces and magnetic field reversals possibil-
ity are also discussed in 3D slow dynamo curved sur-
faces. Recently another sort of slow dynamos in liquid 
sodium laboratory has been modelling by Shukurov at al 
[11], by embedding a Moebius strip flow in the three- 
dimensional space. The paper is organized as follows: 
Section 2 presents the mathematical formalism necessary 
to grasp the rest of the paper. In the next section the slow 
dynamo solution is presented as well as the non-geodesic 
equations is computed. In this Section 3, the sign of 
magnetic helicity in the exponential growth of the slow 
dynamo is shown to be important to the slow dynamo 
action. Both helicities are computed on the hyperbolic 
Poincare disk. Discussions and conclusions are presented in 
Section 4. 
 
2. Slow Dynamo Plasmas in Curved Surfaces 
 
In the Euclidean three-dimensional space R3 described 
by Lobachevsky plane geometry can be presented here 
for the benefit of non-mathematically inclined reader. 
The Lobachevsky metric is given by  

2 2 2 2ds y dx dy                 (1) 

where H2 = (w = x + iy; y > 0) is the hyperbolic plane in 
its half-upper part. Here 1 i   is the imaginary unit 
of the complex plane C. The Ricci ten Lobachevsky met-
ric 
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Riemann curvature tensor is given by 
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The Kretschmann scalar invariant, so much used in 
GR to determine whether a singularity is not a true sin-
gularity or a horizon, just in Schwarzschild black hole 
geometry, is given by 

1212
1212 1R R R                (8) 

which shows that the line y = 0 represents a fake singu-
larity or an event horizon of the 2D section of the uni-
verse. The process by which the particles are stretched in 
the plasma flow to give rise to dynamo, is the geodesic 
equation 
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whose solution for the negative curvature hyperbolic 
space is 

 
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Note that the force-free dynamo equation yields 
2( )B curl curlB B              (11) 

where 
curlB B                 (12) 

is the force-free Beltrami equation. From the assumption 
that the comoving frame is used here, one obtains 

  0cur l V B               (13) 

The expression for the self-induction equation is 

 B B V B   


           (14) 

where 2    is the Laplacian in general curvilinear 
coordinates. Therefore the calculation of this term shall 
be fundamental in our case. Let us expand this term in 
terms of Cartesian coordinates Laplacian 
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and the Riemann-Christo_el connection 
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where (i; j = 1,2,3). Now let us consider the above MHD 
dynamo equation in curvilinear coordinates. Since the 
advection term is in principle not present, our first worry 
should be to compute the first 
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Here, the rate of the ampli_cation of the magnetic field 
from the ansatz 

0 ( ) rtB B x e               (18) 

The covariant expression for the Laplacian operator 
then becomes 

2
ij j

i j F
g                  (19) 

here F  is the at gradient in Cartesian (x,y) coordinates. 
Here 

 :i ij i
j jkg Tr                 (20) 

is the trace of the above Riemann-Christoffel symbol. To 
derive the expression (19) one used the Riemannian ge-
ometry identity for the trace of Riemann-Christoffel sys-
tem 
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By taking the solenoidal constraint on the magnetic 
field divB = 0 one obtains the form of the field as 

2
0

i i rtB B e y                (22) 

Note that this expression shows that, unless the y co-
ordinate is bounded the magnetic field grows spatially 
without bounds. Since the only constraint on y is that it is 
positive, this certainly may be the case. If one uses the 
Riemann-Christo_el connections of the above Lo-
bachevsky-Poincar? hyperbolic disk, one may find the 
first two terms in the general Laplace-Beltrami operator. 
By using the force-free condition above one obtains the 
dynamo equation as 

2i iB B                  (23) 

The Maxwell magnetic two-form F is 

: i j
ij x y zF F dx dx B dy dz B dz dx B dx dy          

(24) 

where   symbol means the wedge skewsymmetric 
product. Note that the Bz is the component of the mag-
netic field orthogonal to the Lobachevsky plane. Focus-
ing of the negative curvature surface magnetic field can 
be done by the orthogonal magnetic fields to its surface. 
A simple drawing of the paraboloid can show that these 
magnetic lines converge to some focusing point outside 
the paraboloid. It is easy to check that the expression (21) 
yields a solution for the dynamo Equation (22) as long as 

2                   (25) 

which shows that by the slow dynamo condition 
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Of course in fast dynamos expression (26) would be 

positive. Here Re represents the real part of the growth 
rate scalar. Note that from this expression the constraint 
0 implies that either the dynamo slowliness is enhanced 
or the dynamo is marginal ( 2  = 0). This result is ob-
tained since the slow dynamo criteria predominates over 
magnetic field decay. 
 
3. Electric and Magnetic Helicities and  

Force-Free Slow Dynamos 
 
Now let us compute the electric current helicity   
which in the force-free dynamo case is given by 

2

.j B

B
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here by Maxwell equations the electric current j is given 
by 

j B                  (28) 

From the closed two form dB = 0 of the magnetic field 
yields 

:  x y z z yB A A                 (29) 

:  y x z z xB A A                (30) 

:  z x y y xB A A                 (31) 

From this definition one is able to determine the elec-
tric helicity and the magnetic helicity H [6] 
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Since 
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and Bx the electric helicity vanishes while the magnetic 
helicity can be expressed in terms of the magnetic vector 
potential as 
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which since the electric helicity   vanishes reduces to 
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By considering that only Az and By vanish and that the 
gauge vector magnetic potential is given by 

1
A 


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where   (y,t) is the electric potential, the magnetic 
helicity may be computed as 
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whose electric potential is given by 
245 ty e                    (39) 

This shows that the electric potential on non-compact 
Riemannian surfaces of negative curvature, which can be 
bound in the boundary of the Poincare discs, and decays 
in time. One also notes that in the ideal plasma case 
where the resistivity   vanishes the gauge condition 
does not lead to the Weyl condition 

0A                    (40) 

unless at the center of the Poincare disc. The magnetic 
helicity also vanishes very fast as one approaches y = 0. 
However this is forbidden in the Lobachevsky-Poincare 
plane, since there y > 0. Thus not only electric potential 
but also magnetic helicity never vanish spatially at the 
Poincare disc, unless as t → ∞. 
 
4. Conclusions 
 
In general, fast dynamo are investigated in compact 
Riemannian manifolds, as has been shown by Arnold et al. 
[10] and by Chicone and Latushkin [7]. In this paper, 
slow dynamos have been investigated in non-compact 
Riemannian manifolds. Here a toy model for a spatial 
hyperbolic section of a possible astrophysical dynamos 
in Lobachevsky plane is considered in 3D. This can 
serve as a disc dynamo in astrophysics or hyperbolic 
section of a cosmological model or even to investigate 
disc plasmas in laboratory as done by Fantoni et al. In 
the cosmological model the magnetic helicity can be 
investigated along with current helicity in the case of 
dynamos. These quantities are also useful in laboratory 
dynamos [11]. Slow cosmic dynamos in plasmas can be 
obtained in laboratory as has been shown by Colgate et 
al. [12]. The investigation of restoring and viscous forces 
in the model may also serve as models for the geodyna-
mos. Note that here, despite of the fact that both mag-
netic and electric helicities vanish, the slow dynamo ac-
tion in non-compact Riemannian manifolds of constant 
negative curvature. From the geodynamo and convection 
point of view in an interesting paper H Busse [13] 
showed that the presence of curvilinear coordinates in-
troduce new features on the rotating spherical shells that 
could be considered as Riemannian surface of positive 

Gaussian curvature. By considering that the plasma dy-
namo ow topology of the Poincare disc has a treshold in 
the growth rate of   0:022, performed in the laminar 
plasma dynamo experiment by Wang et al. [4], from a 
Rm ≈ 210. From the expression 2    one obtains 
that the electric current helicity can be determined as   
≈ 2.34 m-1. In this computation, the inverse relation be-
tween the diffusion constant   and the magnetic Rey-
nolds number Rm was used. All these physical applica-
tions make the model presented here useful in physical 
realistic situations and deserve further study. 
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