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where ݉ in (3) is an integer and ( )x y 
 

 in (4) is the 

angle made between the vector x y


 and the ݔ-axis; 

  represents anyon density. The effect of the operator 

phase transformation (3) is to attach m  flux quanta to 
each electron. Composite particles experience the effec-

tive magnetic field B ( )eff x


 described by the potential 

Α ( )j x


, where Α ( )j x


 depends on the external vector 

potential ( )ext
jA x


 and a field ( )kC x


, which is an aux-

iliary field determined solely by the density ( )x


, 

( ) ( ) ( )ext
j jA x A x C x 
  

.           (5) 

Therefore, from (5), it follows that 

( ) ( ) ( )eff ij i j DB x A x B m x    
  

 ,      (6) 

and so the effective magnetic flux is the sum of the real 
magnetic flux and a term which can be regarded as a 
Chern-Simons flux. 

Now suppose that ( )jA x


 in (4) satisfies the Coulomb 

gauge condition 

( ) 0j jA x 


.               (7) 

It is possible to express ( )jA x


 in terms of a scalar 

field ( )A x


 as 

( ) A( )j jk kA x x
e

  
 

 .          (8) 

This conclusion is only possible in a planar geometry. 

Substituting (8) into ( )effB x


, the field A( )x


 can be 

regarded as the scalar potential of the effective magnetic 
field, 

2( ) A( )effB x x
e

  
 

.           (9) 

This is basically the type of constraint we would like 
to apply in order to solve (2); that is, by taking a particu-

lar reasonable form for ( )effB x


. 

The state vector Ψ  is assumed to fully or very nearly 
characterize the electronic state of the system. The total 
free charge is given by 

2 2

s
Q e d x  .           (10) 

The steady state time-independent wavefunction is 
given by 

/iEte
   , 

where 0Ψ  is time-independent and will have to satisfy 

the time-independent Schrödinger equation 

H E    .               (11) 

Let us incorporate an additional assumption into the 

construction of this model here. Let us suppose that we 

can write ( ) ( )effB x B x
 

 in the following form  

2
( )B x k 


,              (12) 

where k  is related to the total magnetic flux through 
the surface; that is, the number of flux quanta of the 
magnetic field and other constants. The magnetic flux 
density affects the electronic states as it modifies the 
Hamiltonian. Of course, the Hamiltonian is modified by 
the vector potential, which in a simply-connected domain 
is given by the usual formula  A B x  . For exam-

ple, suppose we write and use (12) in the form 
2

0( )B x a 


,              (13) 

and a  is a constant which satisfies 

2 2
0Φ = ( )

s s

Q
B x d x a d x a aN

e
    


     (14) 

In (14), N  is the number of relevant current carrying 
charge quanta. Moreover, let M  denote the number of 
magnetic flux quanta, which means the total flux can be 
written as 

Φ
2

h
M

e
 .              (15) 

When the flux and charge are quantized, these results 
imply that a  is a fraction which can be expressed in 
terms of the flux quantum 

2

M h
a

N e
 .               (16) 

On a simply connected region, the vector potential can 
be represented as a one-form given in terms of a single 
function  , which stands for A  here, as  

x yA dy dx   .            (17) 

Using (17), the magnetic field can be calculated and 
then (13) yields a constraint equation 

2

0Φxx yy a   .           (18) 

 
3. Solution of the Schrödinger Equation 

 
The main objective here is to solve the time-independent 
Schrödinger equation coupled with Equation (18) to ob-
tain Ψ . Of course, vector potential (17) appears in the 
Schrödinger equation, as can be clearly seen from (2). 
This procedure will lead to a nonlinear equation; howev-
er, it will be found that solutions with the correct physi-
cal properties can be determined in closed form. Keeping 
the first term in (2), the left hand side without the overall 
multiplicative constant applying (17) leads to  

     
2

2 2 2 2
0 0,x 0,y 02

2ix y y x x y

e e              
 
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Therefore (11) written out in full takes the form, 

     
2

2 2 2 2 2
0 0,x 0,y 02

0

2i

2 .

x y y x x y

e e

mE

   
 

            
 








   

(19) 
Now the problem takes the form of finding solutions 

to (19) subject to the condition (18) This will not be done 
in a completely general way, but with some assumptions 
which will lead to a physically relevant result. 

Suppose the electron system describes a rectangular 
geometry in the xy  plane. Moreover, let 0Ψ  have a 

plane wave dependence in the x  direction, so solutions 
which have the structure 

   0Ψ , .ikxx y e y            (20) 

is sought where  y  is a real function of y . Let us 

take the function in the vector potential to be indepen-
dent of x , 

( )y                    (21) 

The derivatives of 0Ψ  can be calculated based on (20) 

and then substituted into (19), 

          
 

2 2 2 2
yy 2e

2 .

yk y y k y y e y

mE y

    



    

 

 
 

(22) 
This takes the form of a second order equation for 
 y , but it is coupled to  y  in (17), 

       2
yy 2 .yy k e y mE y              (23) 

If   is assumed to have the form (21), then 0xx   

and (18) assumes the simple form 

 2
yy .a y                (24) 

Since the right-hand side of (24) depends only on y , 

(24) can be integrated once to obtain y , which appears 

in (23), in terms of  y  as 

   
0

2
y .

y

y
y a d               (25) 

Imposing   00y y  . Substituting (25) into (23), this 

coupled system is reduced to the following nonlinear 
eigenvalue problem 

       
0

2 2
yy 2

2
( ) .

y

y

e mE
y k a d y y         

(26) 

Therefore, the dependent variable in (26) is  y . In 

addition to (26), it is useful to write down a decoupled 
version which is obtained by introducing a new variable 

 y  given by 

   
0

2 .
y

y

e
y k a d    

      (27) 

Equation (26) can be written in the form of a pair of 
equations as follows, 

           2 2
y yy 2

2
, .

e mE
y a y y y y y         

 
(28) 

The Hall resistance for this two-dimensional system 
can be calculated based on (28), in fact it can be written 
in terms of  y . The geometry is that of a rectangular 

plate with edges which are parallel to the x  and ݕ-axes. 
To be consistent with (20), where the x -dependence in 
Φ଴ is assumed to be a plane wave, only the y  dimen-

sion will be of significance here. The terminations for 
integration localized at fixed ݕ-coordinates, are termed 
the left (L) and right (R) edges of the geometry. The Hall 
potential is defined as the difference of potentials be-
tween these two edges of the rectangle. In fact, the Hall 
potential can be obtained from (26), or better in terms of 
the solution for  y  by means of 

    
2

2 2
H ,

2
V R L

me
  


       (29) 

where R and L refer to right and left. Only the longitu-
dinal x  or plane wave component of the current density 
contributes 

     
0

2 2
x 0 0Re A .

y

y

e e e
j i e k a d y

m m
         

  


 

(30) 
The potential HV  is transverse to the current. From 

(28), since 2  can be related to y , the current density 

can be represented entirely in terms of the variable   
as 

 
2 2

2 2
x y .

2 y

eh
j

m am am
       

 
 

Integrating xj  and using the definition of HV  given 

in (29), xI  can be related to HV  as follows, 

      
2 2

2 2 2
x x H .

2 2

L L

y
R R

e
I j dy dy R L V

am am a
        

 

(31) 
By means of (16), the quantity a can be eliminated 

from (31) to produce the following remarkable formula, 
2

x H

2
.

N e
I V

M h
               (32) 

The result in (32) immediately implies the Hall resis-
tance is quantized according to, 

H
H 2

x

.
2

V M h
R

I N e
               (33) 
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Finally, it will be shown that a wavefunction ߰଴ can 
be determined based on the coupled system (28). In fact, 
the coupled equations in (28) can be combined into a 
single nonlinear differential equation for the function 

 y , from which  y  can be determined. To begin 

to do this, differentiate the first equation in (28) and then 
divide this by y  to obtain 

yy y

y

2 .
 
 

                 (34) 

Differentiating both sides of this, there follows 
2 2

yy yyy

2 2
2 2 .y yy

y

   
  

             (35) 

Squaring both sides of (34), an additional expression 

for 2 2/y   is obtained. Substituting this into the right 

hand side of (35), 
2

yy yyy yy

y y

1
.

2 4

  
  

 
    

 
          (36) 

From the second equation in (28), upon dividing by  , 
it follows that 

yy 2
2

2mE
.





 


              (37) 

Substituting (37) into (36), a third order nonlinear eq-
uation in terms of the independent variable   results, 

2

yyy yy 2

y y

1
2 2 ,

2
E

 


 

 
    

 


        (38) 

where we put 

2

2mE
.E  




              (39) 

A general solution to (38) may not be possible, how-
ever, something can be done. Note that upon omitting 

2(2 2 )E 


 from (38), the equation can be integrated. 

Thus, we have      yy y

1
ln ln 0

2y y
   , and inte-

grating gives ൫ߪ୷୷൯
ଶ
െ ฎܿ ୷ߪ ൌ 0. This can be integrated 

as well to give    3

1 2 3
1

1
y y

3
c c c

c
    . A specific 

physically realistic solution to the general form of (38) 
can be approached as follows. The first equation in (28) 
implies that the sign of  y  is determined by a , 

therefore, when   does not vanish,   must be a mo-
notonic function. Consequently, one way in which a 
class of solution can be obtained is to consider the case 
in which y  is only a function of  , 

 y .w                  (40) 

In fact,  g   can be determined explicitly. Diffe-

rentiating both sides of (40) with respect to ݕ, we get 

 2
yy y yyyw , w .w w w w w            (41) 

Substituting (40) and (41) into (38) gives rise to the 
following equation for w , 

2 21
w 2 ,

2
w w E      

 


          (42) 

Clearly (42) is nonlinear, however, there is a way to 
produce a solution which is physically reasonable. There 
exists a quadratic polynomial solution for w which can 
be expressed in terms of   as 

2w( )        

These constants can be specified upon substitution in 
(42), and it will constitute a solution provided that 

0   and 

  21
w 2 .

2
E   


         (43) 

Taking (43) and replacing the result in (40), it is clear 
the resulting equation can be separated to give 

2

2
y c.

2

d

E




 

 
           (44) 

The negative sign gives a tangent function solution 
which will be prone to have poles and can be written 

    2 tan 2 y c .y E   


 

However, the other choice of sign in (44) gives rise to 
the result,  

1
arctan( ) y c.

2E E


  

 
 

This can be solved explicitly for the function  y ,  

   
2 y

2 y

1 C
2 tanh y c 2 .

1 C

E

E

e
y E E E

e






  
     

  





  

(45) 

By differentiating (45), an expression for  2 y is 

obtained. The function  y  which we need to write 

the wavefunction (20) is found from the square root of 
this, namely 

 

1

21 y
4

1
2 y

1

2 2 C .

1 C

E

E

E e
y

ea
e






 
   
 

 








     (46) 

The wavefunction is then determined using (46) by 
means of,  
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 /Ψ .iEt ikxe e y   

This is a bounded function on any right half axis and 
square integrable over the rectangular area. Thus there 
exists a solution with the desired physical properties. 

Therefore, it has been seen how (1) emerges and that 
physical classes of solutions to (2) can be investigated. 
Most importantly, a link between the wavefunctions im-
plied by the model and the calculation of a corresponding 
resistence for the model has been shown. 

4. Conclusions 
 
An elementary model for the quantum Hall effect has 
been developed. It is known in this field that simple 
models based on Schrödinger equations can be very use-
ful in studying the effect. For example, the equation is 
solved with the harmonic oscillator potential to describe 
and obtain the energies of Landau levels. The model 
emphasizes several aspects of the geometry of the system 
in obtaining the results (32,33). It is quite interesting that 
a single particle Schrödinger equation can be obtained 
and solved in closed form, and which incorporates a sig-

nificant amount of the physics involved. 
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