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Abstract

Some aspects of anyon physics are reviewed with the intention of establishing a model for the quantization
of the Hall conductance. A single particle Schrodinger model is introduced and coupled with a constraint
equation formulated from the anyon picture. The Schrédinger equation-constraint system can be converted to
a single nonlinear differential equation and solutions for the model can be produced.
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1. Introduction

The quantum Hall effect is a recently discovered and
now well known phenomenon which appears in a two-
dimensional electron system which exhibits spectacular
phenomena when subjected to an intense transverse
magnetic field [1]. First encountered experimentally [2],
the integer quantum Hall effect has received much study,
and was subsequently followed by the fractional Hall
effect [3,4]. Referring to these two effects as the quan-
tum Hall effect, the Hall resistance is found experimen-
tally to exhibit plateaus at the quantized values
h

R, =— 1
Hofe? M

where f is either an integer or a simple rational frac-

tion. Thus (1) incorporates both of these effects. For the
integer case, f takes on integer values f =n=
1,2,3,---, and some prominent fractions for the fractional
n n
2n+l’ 4n+l’
The two effects show remarkable similarities despite the
differences in origin. In both effects, the localization of
electrons and quasiparticles is believed to be responsible
for the formation of the plateaus in the Hall conductivity.
At the transitions between successive plateaus in the in-
teger quantum Hall effect, scaling behavior has been
observed. Theoretically, the aim in understanding this is
to solve the many-body quantum mechanical problem
defined by the many body Hamiltonian given by
1[- e.-T 1 2 -
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“2m,| ' ¢ ' 25 e,

(&
€r

case appear in sequences such as f =
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The first term on the right-hand side is the kinetic
energy in the presence of a constant external magnetic
field; the second term is the Coulomb interaction energy;
and the third term is a one-body potential due to a uni-
form positive background. The electrons are constrained
to move in the two-dimensional xy-plane.

It is the intention here to set up and solve a simple
version of (2) subject to a physical constraint. Such pic-
tures occur often in this area, for example Landau levels
are determined by solving the Schrodinger equation with
a harmonic oscillator potential. Thus a simple physical
model which emphasizes geometry in the problem is
constructed for a Hall system and it is shown that solu-
tions can be found. A wavefunction is obtained under
some specific assumptions. It will be seen that some
physical properties that are very relevant can be estab-
lished from the model; in particular, the quantization of
the Hall resistance, (1) can be obtained. To begin to set
up the model some more physical concepts need to be
introduced. Let us proceed to this [5,6].

2. Setting up the Model-Composite Particles

Let lI’()‘() be the electron field. An anyon may be
thought of as a flux carrying a boson or fermion quantum

number. A composite-particle field ¢(5() is defined by
an operator phase transformation

#(x) = ™OP(x). (3)

The phase field ®( ;() is defined by
O(X) = [d*yS(x—=y)p(Y) , )
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where m in (3) is an integer and 3(;(—9) in (4) is the
angle made between the vector )—(—YI and the x-axis;

p represents anyon density. The effect of the operator

phase transformation (3) is to attach m flux quanta to
each electron. Composite particles experience the effec-

tive magnetic field B (;() described by the potential
A;(X), where A;(X) depends on the external vector

potential AJ?Xt (;() and a field C, (;(), which is an aux-

iliary field determined solely by the density p(;() ,
A, (X) = A (X)+C(X) . (5)
Therefore, from (5), it follows that
By (X) =—,0,A () =B, Mgy p(X),  (6)

and so the effective magnetic flux is the sum of the real
magnetic flux and a term which can be regarded as a
Chern-Simons flux.

Now suppose that A, (;() in (4) satisfies the Coulomb
gauge condition

0;A(x)=0. (7)

It is possible to express A, (;() in terms of a scalar

field A(X) as
- f -
A (X) = —EfjkakA(X) . (8)

This conclusion is only possible in a planar geometry.
Substituting (8) into B (X), the field A(X) can be

regarded as the scalar potential of the effective magnetic
field,
n

By (X) = - VZA(X) . ©)

This is basically the type of constraint we would like
to apply in order to solve (2); that is, by taking a particu-

lar reasonable form for B (;() .

The state vector ¥ is assumed to fully or very nearly
characterize the electronic state of the system. The total
free charge is given by

Q=ef[¥[ d’x. (10)
The steady state time-independent wavefunction is
given by
\|f — e—iEt/h\VO ,
where ¥, is time-independent and will have to satisfy
the time-independent Schrédinger equation
Hy, =Ey,. (11)

Let us incorporate an additional assumption into the
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construction of this model here. Let us suppose that we
can write B (;() = B(;() in the following form

B(x)=|k¥|", (12)

where k is related to the total magnetic flux through
the surface; that is, the number of flux quanta of the
magnetic field and other constants. The magnetic flux
density affects the electronic states as it modifies the
Hamiltonian. Of course, the Hamiltonian is modified by
the vector potential, which in a simply-connected domain

is given by the usual formula Vx A=B(x). For exam-

ple, suppose we write and use (12) in the form

- 2
B(x)=a|¥,[, (13)
and a is a constant which satisfies
— W2y — 2y _ g_
®= [ B()d*x=[ al¥,|d*x=a . =aN (14)

In (14), N is the number of relevant current carrying
charge quanta. Moreover, let M denote the number of
magnetic flux quanta, which means the total flux can be
written as

o=M h . (15)
2e

When the flux and charge are quantized, these results
imply that a is a fraction which can be expressed in
terms of the flux quantum

M h
a=——.
N 2e
On a simply connected region, the vector potential can

be represented as a one-form given in terms of a single
function ¢, which stands for A here, as

A=pdy—pdx. 17)

(16)

Using (17), the magnetic field can be calculated and
then (13) yields a constraint equation

Do + 0, = 2|0, (18)

3. Solution of the Schrédinger Equation

The main objective here is to solve the time-independent
Schrodinger equation coupled with Equation (18) to ob-
tain . Of course, vector potential (17) appears in the
Schrodinger equation, as can be clearly seen from (2).
This procedure will lead to a nonlinear equation; howev-
er, it will be found that solutions with the correct physi-
cal properties can be determined in closed form. Keeping
the first term in (2), the left hand side without the overall
multiplicative constant applying (17) leads to

e2

—(ai +0; ) ¥, + 2i%(—gpy‘}’0’x +p,¥,, ) + o

((0: +(p§)\110
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Therefore (11) written out in full takes the form,
.e e’
e {_(ag 00 ¥ 0, ) +¢;)qjo}

=2mEY,.

(19)

Now the problem takes the form of finding solutions

to (19) subject to the condition (18) This will not be done

in a completely general way, but with some assumptions
which will lead to a physically relevant result.

Suppose the electron system describes a rectangular

geometry in the Xy plane. Moreover, let ¥, have a

plane wave dependence in the x direction, so solutions
which have the structure

¥, (x,y)=e*0(y). (20)

is sought where G(y) is a real function of Y. Let us

take the function in the vector potential to be indepen-
dent of X,

o=0¢(y) (21)

The derivatives of ¥, can be calculated based on (20)
and then substituted into (19),
-1 (—k20(y)+ 0, (y)) + 2ehko () 0(y) +e@}0(y)
=-2mEQ(y).
(22)
This takes the form of a second order equation for
0(y), butitis coupled to ¢(y) in(17),

10, (y)+(k +ep, )0(y) =-2mE0(y). (23)

If ¢ is assumed to have the form (21), then ¢, =0
and (18) assumes the simple form

@, =ab’(y). (24)
Since the right-hand side of (24) depends only on Yy,
(24) can be integrated once to obtain¢, , which appears

in (23), in terms of O(y) as

goy(y)= aj‘yyodré’2 (z’) (25)

Imposing ¢, (0) =y, . Substituting (25) into (23), this

coupled system is reduced to the following nonlinear
eigenvalue problem

-0, (y)+(k+Za[’ dr0* (7)o (y) :_2;‘2E o(y). 26)

Therefore, the dependent variable in (26) is 6(y). In

addition to (26), it is useful to write down a decoupled
version which is obtained by introducing a new variable

o(y) givenby
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a(y)=k+%ajyyodfez(r). @7)

Equation (26) can be written in the form of a pair of
equations as follows,

0, (y) =520 (y).0, (y) +o” ()0(y) = -

hZ

o(y).

(28)
The Hall resistance for this two-dimensional system
can be calculated based on (28), in fact it can be written

in terms of o (y). The geometry is that of a rectangular

plate with edges which are parallel to the X and y-axes.
To be consistent with (20), where the X -dependence in
®, is assumed to be a plane wave, only the y dimen-
sion will be of significance here. The terminations for
integration localized at fixed y-coordinates, are termed
the left (L) and right (R) edges of the geometry. The Hall
potential is defined as the difference of potentials be-
tween these two edges of the rectangle. In fact, the Hall
potential can be obtained from (26), or better in terms of
the solution for o (y) by means of

hZ

V:
T ome

(6 (R)-o* (L)), (29)

where R and L refer to right and left. Only the longitu-
dinal X or plane wave component of the current density
contributes

& Reu (iR )y, — -k Eal deg? (0162
IR —mRe\VO(IhV+eA)\yO— o k+hafy0dr€ ()0 (y)

(30)
The potential V,, is transverse to the current. From
(28), since & can be related to o, , the current density
can be represented entirely in terms of the variable o
as
eh

. h /]
=—— 60 =—— =—— (&%) .
J; m 7 am % Zam(a )v

Integrating . and using the definition of V,, given

in (29), |, canberelated to V,; as follows,

L h2 L ) hZ ) ) e
I =|jdy=—— dy=—— R)— L))=—V,.
’ £JX g 2am£(g ), 2am(a( )= (L) a "
(€2Y)
By means of (16), the quantity a can be eliminated
from (31) to produce the following remarkable formula,
N2
X M h H-*
The result in (32) immediately implies the Hall resis-
tance is quantized according to,
Vg M h
R =-HH__" __ 33
T N 2¢? 33)

X

X

| (32)
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Finally, it will be shown that a wavefunction 1, can
be determined based on the coupled system (28). In fact,
the coupled equations in (28) can be combined into a
single nonlinear differential equation for the function

o(y), from which 6(y) can be determined. To begin
to do this, differentiate the first equation in (28) and then

divide thisby o, to obtain

0

Tw 22 (34)
o, 0

Differentiating both sides of this, there follows
0, 6’2 o ol
2 X o o W 35
0 192 o 2 (33)

o
y
Squaring both sides of (34), an additional expression
for Hyz /@ is obtained. Substituting this into the right
hand side of (35),

2
&:aﬂ_l Oy . (36)
0 20, 4(0

y

From the second equation in (28), upon dividing by 8,

it follows that
0 2mE
X =gt . 37
g P (37)
Substituting (37) into (36), a third order nonlinear eq-
uation in terms of the independent variable o results,

2
6 o g
G 1% | 052 0E, (38)
6, 2\o,
where we put
_ 2mE
E=- P 39)

A general solution to (38) may not be possible, how-
ever, something can be done. Note that upon omitting

(20> —2E) from (38), the equation can be integrated.

Thus, we have (ln(ayy ))y —%(ln(ay))y =0, and inte-

grating gives (ny)z —'c oy = 0. This can be integrated

as well to give G(y):i(clerc2 )3 +¢,. A specific
Cl

physically realistic solution to the general form of (38)

can be approached as follows. The first equation in (28)

implies that the sign of o(y) is determined by a,

therefore, when € does not vanish, o must be a mo-
notonic function. Consequently, one way in which a
class of solution can be obtained is to consider the case
in which o isonly a function of o,

o, =w(c). (40)
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In fact, g(o) can be determined explicitly. Diffe-
rentiating both sides of (40) with respect to y, we get

2
o, =0W, =WW, 0, = W(WU +Wng)- (41)

Substituting (40) and (41) into (38) gives rise to the
following equation for w,

WWw-i-%Wi :2(02—Ej, (42)

Clearly (42) is nonlinear, however, there is a way to
produce a solution which is physically reasonable. There
exists a quadratic polynomial solution for w which can
be expressed in terms of o as

w(o)=0a0o’ +fo+y

These constants can be specified upon substitution in
(42), and it will constitute a solution provided that
£ =0 and

w(o)= +Ta ~VZE. (43)

Taking (43) and replacing the result in (40), it is clear
the resulting equation can be separated to give

Iﬂ=y+c. (44)

+0*-2E

The negative sign gives a tangent function solution
which will be prone to have poles and can be written

G(y):—\/;tan(x/z(y+c)).

However, the other choice of sign in (44) gives rise to
the result,

—=1garctan(——=) =y +c.
TR

This can be solved explicitly for the function o (y),

o) By 20 o = el

1+Ce’2(
(45)
By differentiating (45), an expression for Hz(y) is
obtained. The function Q(y) which we need to write

the wavefunction (20) is found from the square root of
this, namely
1
(e} el
9(y)=i2-24 C,— —\f (46)
@) - Ce™'F

The wavefunction is then determined using (46) by
means of,
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W= e—iEt/heikXH(y)'

This is a bounded function on any right half axis and
square integrable over the rectangular area. Thus there
exists a solution with the desired physical properties.

Therefore, it has been seen how (1) emerges and that
physical classes of solutions to (2) can be investigated.
Most importantly, a link between the wavefunctions im-
plied by the model and the calculation of a corresponding
resistence for the model has been shown.

4. Conclusions

An elementary model for the quantum Hall effect has
been developed. It is known in this field that simple
models based on Schrodinger equations can be very use-
ful in studying the effect. For example, the equation is
solved with the harmonic oscillator potential to describe
and obtain the energies of Landau levels. The model
emphasizes several aspects of the geometry of the system
in obtaining the results (32,33). It is quite interesting that
a single particle Schrodinger equation can be obtained
and solved in closed form, and which incorporates a sig-
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nificant amount of the physics involved.
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