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Abstract 

The scattering of resonant radiation on an excited atom is considered. It is shown that the scattering cross 
section calculated with the help of quantum theory of radiation is five times larger than the one calculated 
using semi-classical theory. The quantum theory predicts, in general, the change in internal quantum statisti-
cal properties of light due to the scattering processes on excited atoms. 
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1. Introduction 

The quantum excited systems possess remarkable prop-
erties. They manifest themselves most prominently in 
lasers and masers, which were created in the middle of 
the last century. The theory of these devices was elabo-
rated by W. Lamb [1] on the base of a semi classical 
theory of radiation which deals with classical electro-
magnetic field. Later the quantum theory was proposed 
[2]. It is possible to state omitting the fluctuations prop-
erties that both the semi classical and the quantum theo-
ries result practically in the same results for quantum 
means values. Such a fact resulted in overestimation of 
the applicability of the semi-classical theory. In 1966 
year, Ch. Koester predicted the effect of light enhance-
ment [3] by selective reflection of resonant radiation 
from excited media. All efforts of quantitative explaining 
this effect on the base of semi-classical theory of radia-
tion discussed in monograph [4] were unsuccessful [5,6]. 
It was shown later that quantum field theory should be 
used instead [7], but the mathematically problems on this 
way occurred very difficult [8]. The consequences of 
such a theory manifest themselves on a macroscopic 
level. The correct description of stimulated radiation 
plays an especial role when the resonant reflection of 
light from excited media is considered. Nevertheless, 
there are recent works [9] which make use the semi- 
classical theory and Fresnel’s formulae to describe the 
reflection of light from enhanced media. 

Much attention has been paid recently to the effect of 
the enhanced transmission of light through the metallic 
films [10,11]. There is no agreement between theory and 
experiment. It is believed that the enhancement of radia-
tion may be explained through the interaction of light 

with induced standing surface—plasmon waves. Thus we 
deal with effects of stimulate radiation, which means that 
one should use the quantum field theory. 

Examples shown above made us revise the theory of 
resonant radiation scattering on excited systems. The 
conventional perturbation technique is not adequate to 
describe the resonant scattering and it is necessary to 
sum up (Dyson summation) the infinitely long subsets of 
Feynman’s ladder diagrams. It was V. Weisskopff and E. 
Wigner who constructed such a theory for the first time 
by considering the interaction of resonant radiation with 
atomic systems [12]. Such a summation of Feynman’s 
diagram proved to be useful for the shape of spectrum 
line of resonant radiation and effects of resonant light 
scattering on non excited systems. The difficulties 
emerge in the theory of combined resonant scattering 
processes when one of the photons after stimulation emi- 
ssion of excited atom undergoes of elastic scattering on 
the ground state of the same atom. Such combined scat-
tering is non-analytic in charge. The summation of the 
Feynman’s diagrams like this one is not performed up to 
now [8]. We propose indirect way to estimate this sum. 

Present work demonstrates insufficiency Weisskopff- 
Wigner’s method and Dyson’s method of summation 
Feynman’s ladder diagrams for the calculations the 
cross-sections of light scattering on resonant excited 
systems and failure of semi-classical theory of radiation.  

Let the resonant radiation scatters on some system the 
initial state of which in interaction representation is de-
scribed by wave function 0 . The total wave function 

of electromagnetic field and scattering system is denoted 
as  . The expansion of such function over a base of 
scattering system wave function i  is  
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We state that the first term of the right hand side of 
Equation (1) describes the so-called coherent scattering 
channel with medium returning to the initial quantum 
state after scattering (e.g. elastic scattering). The second 
term of the right hand side of Equation (1) describes the 
non-coherent scattering processes with the medium 
changing initial quantum state (Compton scattering, Ra-
man scattering and induced radiation of light). The latter 
is very important. We stress once again that the coherent 
Heisenber-Kramers scattering and induced radiation of 
light are described by different scattering channels. It 
means that if the scattering media consisted only of the 
non-excited atoms the first term of Equation (1) would 
describe the coherent Heisenberg-Kramers scattering 
while the second one would describe the diffusion scat-
tering. If the excited atoms are present in the medium 
then due to the induced radiation processes it is impossi-
ble to avoid the presence of the non-coherent channel 
even if only the selective scattering is under our investi-

gation. The total measured electrical strength ˆ ( , )t rE , 

that is the left hand part of Equation (1), may be evalu-
ated separately using the semi-classical theory of radia-
tion if one neglects the fluctuation optical processes and 

their influence on ˆ ( , )t rE . The region of validity of 

the semi-classical theory of radiation is very large but it 

does not mean that ˆ ( , )t rE  describes the bilinear 

field characteristics.  
Let us consider the energy characteristics of electro-

magnetic field described by normal operator product 

 2ˆ ˆN E . Such value should be estimated from below 

using the following procedure. One takes into account 
that 
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where ˆ k  and ˆ  
k  are the annihilation and creation 

photon operators in states describing by wave vector k  
and polarization index  . These operators obey the 
conventional commutation relations  

ˆ ˆ;     
      k k kk  

Consider electromagnetic field as a transverse 

one ( 1, 2)  , ke  denotes the unite linear polarization 

vectors, V  is the quantization volume. Since the op-

erators ˆ k  and ˆ  
k  are mutual conjugate than 
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If the electromagnetic field possesses the characteristic 
frequency 0  and characteristic wave length 0  and 

we are interesting in time and space values much larger 
then 01/  and 0  the following inequality occurs 
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Now it is non difficult to see that 
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Thus ˆE  proposes the opportunity to estimate 
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 2ˆ ˆN E from below. The validity of obtained ine-

quality does not depend on particular quantum state on 
which the averaging is performed and does nothing to do 
with perturbation theory. But if such inequality is applied 
to each term of right hand site of  

2 2
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We find that 
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The last formula can be rewritten in as 
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That stresses the importance of the coherent scattering 
channel when the scattered light is not classical and. 

2
2ˆ ˆ ˆ( )   N  E E . 

Inequality (4) allows to estimate 2ˆ ˆ( )   N E in the 

semi-classical approximation. The value ˆ   E E  

can be calculated using the conventional semi-classical 
theory operating with non quantum electromagnetic field. 

The calculation ( )
0 0 0 0

ˆ cf f   E E  can be per-

formed using only the coherent scattering channel. Even 
in extensive media such procedure may be performed 
with the help of wave functions [14]. Thus one can avoid 
of matrix density formalism specific for non coherent 
scattering channel. 
 
2. Principal Equations 
 
Let the electromagnetic field scatters on an atom situated 
at a point with radius-vector R and for the sake of sim-
plicity possesses only one orbital electron with coordi-
nate r . Let the atom possesses only two energy levels. 
Zeeman`s sublevels with different magnetic numbers are 
possible. Let the frequency of incident radiation   is 
in a quasi resonance 

0 0       with the atom 

transition frequency 0 . Let Schroedinger equation for 

atom and radiation is as follows 
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are the Hamiltonian of the non-interacting atoms and an 
interaction Hamiltonian in Schroedinger representation. 
Than 
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The following communitation relations are assumed  
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for the electron creation operator ˆ
jb  and annihilation 

operator ˆ
jb  in the state described by wave function j . 

The particular form of communication relations in our 
case of one electron in the atom does not play any role. 
By ( )U r R we denote the potential energy of atom 

electron. The Einstein summation rule is assumed over 
all repeating indices   throughout the paper. The Ham-
iltonian of free electromagnetic field and vector-potential 
operator are as follows 
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In order to realize the calculation project mentioned in 
introduction we switch to the interaction representation 
with the help of unitary operator  

1ˆ ˆ ˆ( ) exp ( )a phU t H H t
i
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. 

In this picture 
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where  0
ˆ ,S t t  is the scattering operator, j  is the 

atomic energy in state j , T̂  is the time-ordering op-

erator and  
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3. Coherent Scattering Channel 
 
Suppose that the initial state of the field was described 
by 0 0( , )k  and was in quantum coherent state [13] 
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We are interested in the radiation amplitude after scat-
tering in second order of perturbation technique. The 
problem of Feynman’s diagrams summation will be dis-
cussed below. In Equation (5) it is sufficient to consider 
the sum 
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If the photon scatters in the coherent channel then the 
atom rests in initial state. So in second order of perturba-
tion technique we are interested in the construction 
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where ÂT is the time-ordering operator acting only on 

the electromagnetic field operators and 
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If the atom undergoes the action of external random 
fields the finite width of its energy levels can be taken 
into account by replacing the term 0i by / 2ji  

with the same sign because it is governed by the causal-
ity principle. The same result follows from summing up 
(Dyson summation) the ladder Feynman`s diagrams for 
excited atoms due to their interaction with electromag-
netic vacuum. For the same reason formula (8) can be 
written as  
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where 1 2
1 2( , )D x x   is not the operator function. The 

first term in (9) does not play any role in electromagnetic 
field scattering process. Finitely 
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The right hand side terms of this equality are respon-

sible on scattering processes of electromagnetic field by 
both the non excited atom and excited one.  
 
3.1. Scattering on Non-Excited Atom 
 
Substituting (6) and (8) into Equation (10) and taken the 
limit t  , we find  
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Through 0j  one denote here the quantum number of 

initial state of atom. In dipole approximation 

0 2 0
ˆ( ) ( )j j jp p d    ρρ ρ ρ . 

The limit t   is not necessary but it makes the 
calculations simpler. According to (7) we need to calcu-
late the construction 
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Here we take into account only the term describing 
diverge wave. The neglected term turns into zero by infi-
nitely small interval of integration over 0k  that is sup-

posed. Finitely  
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3.2. Scattering on Excited Atom The second term in Equation (10) after the same type of 

transformation shown in part 3.1 yields 
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If one takes into account the width of atom’s energy 

level in state described by 
0j

  than it is necessary to 

replace 
2 0 2j j j       in Equation (12). The va-

lidity of Equations (11) and (12) are restricted by domain 
/ 1r    where r  is the radiation width of excited 

state of atom.      
 

4. Non Coherent Scattering Channel 
 
The second order perturbation technique gets 

0 0
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we have in explicit form  
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Following the procedures described in part 3.1 we  have 
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If we take into account the finite width of atom energy  level than in formula (13) it is necessary to change 
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Let us find now the total amplitude of electromagnetic field scattered by excited atom 
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5. Semi-Classical Theory of Radiation 
 

The set equations for field operators ( )x
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in Heisenberg representation is the following 
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This set equations is equivalent to the one mentioned 
at part 3. Now 
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Here 0 ( )A x
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 is given by the formula (6) and 
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(16) 

We are interested in the second order perturbation ex-

pansion. This mean that the ( )x


 operator has be 

evaluated in the first order of perturbation technique  
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Substituting (16) and (17) into (15) we find  
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For the mean values, the same result can be obtained 

either by averaging (18) with subsequent breaking up the 
correlators, or using the semi-classical theory. After re-
alizing in (18) the substitution 
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for the scattered field we have 
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The upper sign describes the scattering of electroma- 

gnetic field on the non-excited atom while the low one 
describes the scattering on excited atom. One should take 
into account the width of atomic energy level by replac-
ing in dominator 0i  with 

0 2
/ 2 ( ) / 2j ji i      . 

By comparing Equation (19) with Equations (11) and 
(14) we find that in the approximation we used both the 
quantum theory and the semi-classical theory result in 

the same expressions for the scattered amplitude ( )xA . 

Namely the necessary coinciding in such results leads to 
the equality of constants   in Formulas (19), (11) and 

(14). 

6. Bilinear Field Charasteristics 
 
In this part we are interesting in the following construc-
tion shown in introduction 

ˆ ˆ ˆ( ) ( )N x x    E E . 

In order to calculate this value in forth order of per-
turbation expansion it should use the Formula (3). But it 
is not worth to do it. The strait calculation shows that for 
resonant field scattering 0( )   the construction 

(1) (3)
0 0

ˆ ˆ ˆ ˆˆ ( ) ( )S NA x A x S   , 
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which appears in such approximation at non-coherent 
channel results in negative value. This fact evidently 
contradicts with the positive definition of expression 

2
0 0 0 0

ˆ ˆ( ) 0f N f     E  

Such contradiction was found before in Reference [25] 
where different model has been considered. In order to 
reconstruct the positive definition of the non-coherent 
channel using perturbation set it is necessary to average 

the product ˆ ˆ( ) ( )x x E E  over the wave function 
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0

ˆ ˆ ˆ1 S S S    . But doing this we find the 

terms proportional to the sixth order of charge. It means 
that such reconstruction may be achieved only by using 
higher order terms of perturbation technique. Thus one  

can not restrict oneself here by the terms of lover order 
of perturbation technique. So the conventional perturba-

tion theory for ˆ ˆ ˆ( ) ( )N x x  E E  is problematic. 

For these reasons we estimate the contribution of 
non-coherent processes using inequality (2) 
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Then we use the same method to estimate the contri-
bution of coherent channel. Thus according to the quan-
tum theory using Equation (12), Equation (13) and Equa-
tion (20) one gets for the scattering by excited atom in 
two level approximation the following formula; 
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While according to the semi classical theory one gets 
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The ratio of results of these two calculation methods 

for the resonant scattering frequency 0   is equal 

to 

ˆ ˆ ˆ

5
ˆ ˆ ˆ
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N

N

 

 


E E

E E
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The same value characterizes the ratio of scattering 
cross sections /qu scl  . This result does not depend on 

 . We note that for the scattering of electromagnetic 

field on non-excited atoms this ratio is equal to one. The 
dependence of ratio /qu scl   for scattering on excited 

atom as a function of scattering frequency by 0   is 

shown in the Figure 1. 
 
7. Conclusions 
 
The evaluations the scattered field amplitude of reso-
nance scattering electromagnetic field on an excited atom 
can be performed equally well using both the Heisenberg 
representation and Schroedinger one. In our approxima-
tion the both calculations lead to the same results. The 
same results follow also from the semi-classical theory 
of radiation, which deals with classical electromagnetic 
field. In general, the perturbation technique is not suffi-

cient to describe the resonance scattering process and we 
need to sum up the ladder Feynman diagrams. Such pro-
cedure is not difficult to be performed using any of theo-
ries mentioned above.  

In the other case we deal with calculation of the quan-
tum mean values of bilinear products of the field opera-

tors ˆ ˆ E E . Here it is more convenient to deal with Sch- 
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Figure 1. The typical dependence of ratio /qu scl   for 

scattering of electromagnetic field on excited atom as a 
function of scattering frequency 0 0/ck  . 

0 0/ck 

/qu scl 
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rödinger representation or with interaction representation, 
which give additional opportunities to sum up the Feyn-
man diagrams. The letter representations allow us to 
present the scattering process with the help of two com-
ponents: coherent (elastic) and non-coherent. Such com-
ponents could be evaluated independently. The analysis 
of non-coherent channel shows that the Dyson’s summa-
tion of ladder Fynman’s diagrams by scattering of reso-
nant electromagnetic field on excited atoms is not suffi-
cient. Other summation methods are very unwieldy [8]. 
In present work we propose the simple method of esti-
mation from below the results of the non-coherent scat-
tering channel. As a result we find that the semi-classical 
theory of radiation essentially underestimates the cross 
section of resonance scattering. The quantum theory in 
its turn shows the violation of equality ˆ ˆ ˆN   E E  

ˆ ˆ E E  in scattered radiation even if such equality 

took place in the incident electromagnetic field. So the 
quantum theory results in a change of quantum statistical 
structure of electromagnetic field due to scattering. This 
can not be obtained with the help of semi-classical theory 
of radiation. This change of internal quantum field stru- 
cture by its scattering on excited atom manifests itself on 
macroscopic level. Namely such effect makes impossible 
using here the semi-classical theory of radiation. 
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