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Abstract 

In this paper, it showed that the orthodox version of quantum mechanics contradicts the idea that conservation laws are 
valid in individual processes of measurement. 
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1. Introduction 

The Schrödinger evolution of a system leads, in some 
circumstances, to coherent superpositions of macros- 
copically distinct states. This is dramatically illustrated in 
Schrödinger’s cat paradox, and constitutes the great puzzle 
of quantum measurements. 

To explain this fact, several hypotheses have been 
proposed. The best known is the projection postulate, an 
ingredient of the so-called orthodox interpretation of 
quantum mechanics (due to von Neumann), which is at 
present almost the only version taught. The projection 
postulate establishes that when a measurement is per- 
formed, the system’s state jumps to an eigenstate of the 
operator representing the dynamical variable measured, 
and the pointer of the measuring device is led to a definite 
position; i.e., it breaks down the coherent superposition of 
macroscopically distinct states. 

This postulate has been criticized on several grounds:  
– it introduces a subjective element into the theory [1,2],  

– it conflicts with the Schrödinger equation [2,3], and 
– it implies a kind of action-at-a-distance [2,4]. 

The traditionally opposed approach faces the conceptual 
difficulties of the measurement problem by assuming that 
the state function |S is no more than a tool to calculate 
probabilities. Differing from the orthodox version, in this 
view |S is not an attribute of an individual system S but 
of an ensemble; hence a process state reduction is not 
required [1]. Nevertheless, many physicists think that |S 
refers to an individual system, so the ensemble inter- 
pretation of |S that allows rejection of the projection 
postulate is, paradoxically, the main reason that this 
approach is frequently discarded. 

In order to find a solution to the measuring problem 
keeping as valid the individual interpretation of |S, other 
theories close to, but different from, quantum mechanics 
have been proposed. In these theories, the Schrödinger 
equation is modified in a way that leads to spontaneous 
collapses. This is the case of those developed by Ghiradi, 
Rimini and Weber [5], Diosi [6], and Joos and Zeh [7]. 

Ballentine [8] has demonstrated that these theories violate 
energy conservation and are incompatible with the ex- 
istence of stationary states. 

Several authors [9-13] have studied the role of conser-
vation laws in quantum measurements. It has been shown 
that the presence of an additive conserved quantity im-
poses restrictions on the measurement of dynamical vari-
ables incompatible with this quantity. The main object of 
the present paper is to point out an even deeper conflict 
between conservation laws and the orthodox version of 
quantum mechanics: if the individual interpretation of |S 
and the projection postulate are taken as valid, then con-
servation laws cannot be satisfied in measurement proc-
esses, except in cases where the initial state of S is an ei-
genstate of the operator representing the quantity to be 
measured. 

2. Conservation Laws in Processes Involving  
an Individual System 

In the framework of classical physics, in principle, the 
application and test of conservation laws does not present 
any difficulty. This is mainly due to the fact that physical 
quantities have definite values. So if the numerical value a 
of a physical quantity A does not change during the whole 
process, we can assert that A is conserved in this process. 
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The same is valid in the statistical version of quantum 
mechanics [1]. 

On the contrary, in the framework of orthodox quantum 
mechanics, in general, dynamical variables (or physical 
quantities) are not sharp. “A popular working rule of 
pragmatic quantum mechanics says that an observable has 
no value before a measurement.” [14] But nobody has 
stated, to our knowledge, in which way a conservation law 
should be applied or tested in those cases where the 
dynamical variable A does not have a definite value. So if 
the orthodox interpretation is adopted, it is not evident in 
which way it could be decided whether A is conserved or 
not. This means that in this version of quantum mechanics, 
a priori it does not make any sense to say that a dynamical 
variable which is not sharp, is conserved, even if the 
process follows the Schrödinger equation.  

This radical conclusion can be avoided in the following 
way: If the operator AS represents the dynamical variable 
AS referred to the individual system S and HS is its 
Hamiltonian, in processes that are ruled by the Schrödinger 
equation, the conditions 

AS/t = 0                  (1) 

and 

[AS, HS] = 0                 (2) 

ensure that 

AS = S|AS|S                (3) 

remains a constant in time for every state |S of S.  
Messiah postulates that the mean value of the 

dynamical variable AS is AS [15]. Taking into account 
this postulate we shall claim that if AS is conserved, then 
AS cannot change with time for every state |S of S. 
Hence, in those processes that are governed by the 
Schrödinger equation, the statement “AS is conserved” can 
be given a meaning, whether AS is sharp or not. 

On one hand, let us stress that a necessary condition for 
the dynamical variable AS to be conserved is that AS be a 
constant (observe, nevertheless, that this does not imply 
that AS takes on the value AS). On the other hand, it 
should be emphasised that in the framework of the version 
of quantum mechanics that we are analysing, both |S 
and AS refer to the individual system S. As a consequence, 
the quantity AS given by (3) cannot concern something 
different from this individual system. This quantity is 
called expectation value by some authors and mean value 
by other authors. Since some people do not conceive that a 
mean value can be related to an individual system, let us 
quote some orthodox authors saying that AS refers to an 
individual system.  

a) According to von Neumann, the main architect of 
orthodox quantum mechanics, “everything which can be 
said about the state of the system must be derived from its 
wave function . What pronouncements can now be made 

regarding a system which is in the state ?... For the 
expectation value of R in the state , we have (R, ) [= 
|R|] (emphases added).” [16] 

b) In Messiah’s words, “the mean value of the 
dynamical variable A when the system is in the dynamical 
state defined by the [normalised] function  is A = , 
A (emphasis added).” [15]  

c) Merzbacher calls expectation value the quantity X = 
|X|. This author points out that “in quantum mechanics 
the term ‘expectation value’ is preferred when it is 
desirable to emphasise... the fact that the behaviour of a 
single particle is involved rather than that of an ensemble 
of particles (emphasis added).” [17] 

d) Cohen-Tannoudji et al. use expressions like “the 
mean value X(t) of the position of the particle at time 
t...” and “the mean value of the energy of the particle in 
the state |(t)... (emphases added).” [18] 

The precedent list of authors considering that the ex-
pectation (or mean) value refers to an individual system is 
not exhaustive. But it suffices, we think, to show that in 
general authors adopting the individual interpretation of 
|S assert that AS = S|AS|S refers also to the indi-
vidual system S. In the following we are going to use the 
term mean value for individual systems, and the term av-
erage when some set or ensemble is involved. 

3. Conservation Laws in Processes of  
Measurement (Case of a Discrete  
Spectrum) 

Now we shall address the problem of the validity of 
conservation laws when a measurement of AS is performed. 
In this section we shall deal with the discrete case and, in 
the next one, with the continuous case. Let ak (k = 1, 2,…) 
be an eigenvalue of AS, g its degree of degeneracy and 

i
k| a   (i = 1. 2,… g) an eigenvector corresponding to the 

eigenvalue ak. We shall assume that |m0 represents the 

initial state of a measuring device M of AS, and i
k| ψ   the 

orthonormal states of S+M when the measurement process 
is over. In the ideal measurement scheme, the transition 

i i
k 0 k| a | m | ψ                    (4) 

has a probability of one. This scheme is supposed to be 
valid in cases where the measured dynamical variable is 
compatible with every conserved quantity referred to S+M 
[9-13]. 

Let A be the operator representing a dynamical variable 
A referred to S+M, and H be its Hamiltonian. We can then 
write 

H = HS + HM + Hint               (5) 

where HM refers to M, and Hint is due to the interaction 
between S and M. We assume that the conditions  
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A/t = 0                     (6) 

and 

[A, H] = 0                    (7) 

are fulfilled.  
To ensure that measurements of AS can be performed 

according to the ideal scheme, we suppose that AS 
commutes with every operator representing another 
conserved quantity referred to S+M; and, since the 
transition (4) has a probability of one, it can be assumed 
that it is a result of the Schrödinger evolution. 

If at t0 (when the interaction between S and M starts) it 
is possible to write 

A = AS + AM                   (8) 

(where AM refers to M), we have 
i i i
k 0 k S k 0 M 0 k 0 M 0A (t ) a A a m A m a m A m           

(9) 

And, since at tf (when the interaction between S and M is 
over) 

i i i
k f k kA (t ) ψ A ψ                  (10) 

the validity of (6) and (7) implies that i
k fA (t )    

i
k 0A (t )  , and hence 

i i
k k k 0 M 0ψ A ψ a m A m               (11) 

for every i. As i i
k kψ A ψ   does not depend on i, it can 

be written  

Ak(tf) = i
kA  (tf) = ak + m0|AM|m0      (12) 

This relation must necessarily be fulfilled in the ideal 
measurement scheme. As a consequence, it can be said 
that in those cases where the initial state of S is an 
eigenstate of the operator AS representing the dynamical 
variable AS to be measured, the corresponding con- 
servation law is valid. This result can also be seen as a 
natural consequence of the hypothesis that the process 
described by (4) is governed by the Schrödinger equation. 

Now, if the initial state of S is  

i i
s r rr,i

t c a  0（ ）                 (13) 

(where at least two coefficients cr
i and cr'

i’ with r  r’ are 
non-null) and the Schrödinger equation rules the 
measurement process, then the Hamiltonian H, referred to 
S+M, induces the evolution  

i i
r r 0r,i

c a m  i i
r rr,i

c ψ           (14) 

Making  

A(t0) = (S(t0)| m0|) A (|S(t0) |m0)     (15) 

and  

, ,

,
i* i i i

f r r rr i r r
A c ψ | c | ψ  ， ’，i’

(t )=（ ）A( )   (16) 

the validity of (6) and (7) allow us to ensure that A(t0) = 
A(tf). Nevertheless, the linear superposition on the r.h. of 
(14), mentioned in Section 1, constitutes the great puzzle 
of quantum measurements.  

On the contrary, the projection postulate states that in 
measurement processes coherent superpositions break 
down. According to this postulate, the evolution of S+M is 
not given by (14) and the transition 

i i i i
r r 0 k kr,i i

c a m c ψ               (17) 

has probability 2i
ki

c to happen. In this last case,  

2i
0 k r 0 M 0i

A (t ) c a m A m          (18) 

and, as stated in (12),  

Ak(tf) = ak + m0|AM|m0            (19) 

As a consequence, it results 

A(t0)  Ak(tf)                 (20) 

for every k, even though conditions (6) and (7) are fulfilled.  
It is worth noticing that inequalities (20) are obtained 

under the assumptions that the individual interpretation of 
the state vector and the projection postulate are valid. In 
this case the condition that A be a constant, a necessary 
condition for A to be conserved, is not satisfied. We are 
thus forced to conclude that if the initial state of S is not an 
eigenvector of AS, the dynamical variable A is not 
conserved in processes of measurement of AS. In other 
articles we have given examples of processes of measure- 
ment of the type analyzed in this section [19-22]. 

A similar conclusion resulting from a different analysis 
has been obtained by Pearle [23]. He says that “it should 
first be noted that quantum theory itself, with the reduction 
postulate indiscriminately applied, does not necessarily 
satisfy the conservation laws...” In his view, “this is a 
serious problem for quantum theory with a reduction 
postulate.” 

We have said that A(t0) =  r,i
2i

rc  ar + m0|AM|m0. 

Now we are going to calculate the average of Ak(tf) 
when the process of measurement of AS is repeated N 
times. Let fk be the frequency corresponding to the 
possible results ak (k = 1, 2,…) and to the mean value 
Ak(tf). If the process is repeated N times, the resulting 
average is 

Ā = k fk Ak(tf)               (21) 

and, taking into account (19), 

Ā = k fk ak + m0|AM|m0.           (22) 

Now, if N is big enough, we can assert that fk ≈
2i

ki
c . 

As a consequence, we obtain 
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2i
k k 0 M 0k i

A c a m A m  ，
           (23) 

2i
0 k k 0 M 0k i

A (t ) c a m A m  ，
        (24) 

and 

Ā ≈ A(t0)                  (25) 

So we can say that conservation laws still have a statistical 
sense. 

4. Conservation Laws in Processes of  
Measurement (Case of a Continuous  
Spectrum) 

Let α be an eigenvalue included in the continuous part of 
the spectrum of AS; we shall assume that α can take any 
value in the interval (0, ∞). If the ket |α is 

/2
/2 dac a a 

  
  （ ）              (26) 

where δ is a small interval in the α semi-axis (if ∆α is the 
error in the measurement of α, the condition δ < ∆α should 
be fulfilled), we shall say that |α is a “quasi-eigenstate” of 
AS corresponding to the eigenvalue α. We shall call |m0 
the ket that represents the initial state of a measuring 
device M of AS, and |(α) the orthonormal states of S+M 
when the process of measurement is over. If the initial 
state of S is |α, according to the ideal measurement 
scheme, the transition 

|α |m0  |(α)                (27) 

has a probability of one. 
Let A be the operator representing a dynamical variable 

A referred to S+M, and H be its Hamiltonian. We can then 
write 

H = HS + HM + Hint              (28) 

where HM refers to M, and Hint is due to the interaction 
between S and M. As previously, we assume that the 
conditions (6) and (7) are fulfilled.  

If at t0 (when the interaction between S and M starts) it 
is possible to write 

A = AS + AM                 (29) 

(where AM refers to M), we have 

Aα(t0) = α|AS|α + m0|AM|m0        (30) 

And since at tf (when the interaction between S and M is 
over) 

Aα(tf) = (α)|A|(α)             (31) 

the validity of (6) and (7) implies that Aα(tf) = Aα(t0), 
and hence 

Aα(tf) = α|AS|α + m0|AM|m0         (32) 

This relation must necessarily be fulfilled in the ideal 
measurement scheme. As a consequence, it can be said 
that in cases where the initial state of S is a “quasi- 

eigenstate” of AS, the corresponding conservation law is 
valid. 

Now, if the initial state of S is  

s 0t dac a a  0（ ） （ ）              (33) 

where c(a)  0 outside the interval (α-δ/2, α+δ/2), and the 
Schrödinger equation rules the measurement process, then 
the Hamiltonian H induces the evolution  

0 0 0dac a a m dac a ψ a  （ ） （ ） （ ）  

/2 /2
0 /2dac a ψ a dac a ψ a   

 
 

  （ ） （ ） （ ） （ ）  

/2dac a ψ a 

 （ ） （ ）                    (34) 

As a consequence, making 

A(t0) = (S(t0)| m0|) A (|S(t0) |m0)     (35) 

and 

f 0 dac* a ]A ψ a （) [ ）= （( ）t 0 da c a ψ a ] ’ （ ’） （ ’）  

       (36) 
the validity of (6) and (7) allow us to ensure that A(t0) = 
A(tf). But, as it happened in the case of the discrete 
spectrum, we obtain a linear superposition in the r.h. of 
(34), previously mentioned, and that constitutes the great 
puzzle of quantum measurements. 

On the contrary, the projection postulate states that in 
measurement processes coherent superpositions break 
down. According to this postulate, the evolution of S+M is 
not given by (34), and the transition 

/2
0 0 /2dac a a m dac a ψ a 

 
 

 （ ） （ ） （ ） 0
  

(37) 

has a probability close to |c(α)|2 δ to happen. So, since 

A(t0) = 0
 da |c(a)|2 a + m0|AM|m0     (38) 

and  

Aα(tf) = /2
/2

 
 

 da |c(a)|2 a + m0|AM|m0 

= α + m0|AM|m0                 (39) 
it results 

A(t0)  Aα(tf)                (40) 

for every α, even though conditions (6) and (7) are fulfilled. 
It is worth noticing that inequalities (20) and (40) are 

obtained under the assumptions that the individual 
interpretation of the state vector and the projection 
postulate are valid. In this case the condition that A be 
a constant, a necessary condition for A to be conserved, 
is not satisfied. We are thus forced to conclude that if the 
initial state of S is not an eigenvector of AS (in the 
discrete case) or a “quasi-eigenvector” of AS (in the 
continuous case), the dynamical variable A is not 
conserved in measurement processes of AS. The proof 
that also in this last case conservation laws still have a 
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statistical sense is straightforward. 

5. Concluding Remarks 

We have seen that during Schrödinger evolutions, the 
validity of (6) and (7) ensures that the expectation value 
A referred to the individual system S and its measurement 
device M remains constant in time. But if the rule governing 
the process is replaced with a law different from 
Schrödinger equation, the validity of conservation laws 
cannot be guaranteed a priori [19-24]. Ballentine points 
out that some theories that modify the Schrödinger 
equation in order to include spontaneous state reductions 
lead to the non-conservation of the energy [8]. Our study 
shows that projections induced by measurements, as they 
are considered in the framework of orthodox quantum 
mechanics, conflict with the conservation laws.  

However, the results of these two analyses have a 
difference worth noticing. In the theories Ballentine refers 
to, energy is continuously gained, although its magnitude 
is too small to be detected [8]. In collapses occurring in 
the framework of orthodox quantum mechanics, the 
change A(tf) - A(t0) is not necessarily small but, when 
the process of measurement of AS is repeated many times, 
the average of A(tf) is close to A(t0). This is why we 
claim that in measurement processes, conservation laws 
still have a statistical sense. 

In an approach to quantum mechanics previously 
formulated we have included, as an essential ingredient, a 
postulate that ensures the statistical sense of conservation 
laws in every process involving projections [25,26]. In this 
approach no reference to the subject or to measurement 
devices is made. We there assume that in nature two kinds 
of spontaneous processes occur: those ruled by the 
Schrödinger equation, which is a deterministic equation, 
and those ruled by the rules of probability, where 
projections happen. 

Let us conclude by pointing out that, in our view, there 
is nothing sacred about conservation laws. Like every oth-
er scientific law, they could be false. The same is true of 
the orthodox interpretation of quantum mechanics. The 
intent of our contribution is to show that there is a contra-
diction between these two ideas, both of which are 
adopted, perhaps, by the majority of physicists. 
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