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Abstract 
We introduce a previously unused numerical framework for estimating the 
Black-Scholes partial differential equation. The approach, known as the Pow-
er Series Method (PSM), offers several advantages over traditional finite dif-
ference methods. Our objective is to highlight the advantages of the PSM over 
traditionally used numerical approximation approaches. To meet this we 
deploy a numerical approximation scheme to illustrate the PSM. The PSM is 
more stable than explicit methods and thus computationally more efficient. It 
is as accurate as hybrid approaches like Crank Nicolson and faster to com-
pute. It is more accurate over a far wider spectrum of time steps. Finally, and 
importantly, it can be expressed analytically thus offering the capability of 
performing comparative statics in a far more stable and accurate environ-
ment. For a more complex application this last advantage may have wide im-
plications in producing hedge ratios for synthetic replication purposes. 
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1. Introduction 

Numerical approaches to solving contingent claim based partial differential equ-
ations (PDE) have focused on finite difference method (FDM) approaches. Spe-
cifically, these have centered on explicit FDM (EFDM) approaches and 
Crank-Nicholson methodologies (CNM) and modification of these methods. 
Here we consider the approach introduced by Parker and Sochacki (1996, 2000) 
[1] [2] that uses a power series approximation based upon the Picard method. 
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The former methods provide solutions at grid points determined by the user. 
The method introduced by Parker and Sochacki provides a function that is de-
fined over an entire time interval and is an accurate approximation to the solu-
tion to the contingent claim problem. Since one has a function that approx-
imates the solution accurately, one can differentiate, integrate or use this func-
tion to solve at what time a certain value is achieved. These advantages become 
more apparent as the contingent claim becomes more complicated. The objec-
tive here is to illustrate the advantages relative to plain vanilla options in an ef-
fort to present why this approach may be a superior framework for complicated, 
nonlinear, or less stable contingent claim PDE’s. In the literature this method is 
also known as automatic differentiation (Gofen [3] (2009) and Neidinger [4] 
(2010)), differential transform method (Mirzaee [5] (2011)), the Parker-Sochacki 
method (Stewart and Bair [6] (2009) and Rudmin [7] (1998)) and the power se-
ries method. In this article, we will use the terminology power series method 
(PSM) for the method that was discovered by Parker and Sochacki through Pi-
card iteration.  

Our paper follows Anwar and Andallah [8] (2018) and Cen and Le [9] (2011) 
by introducing PSM as an alternative and improved numerical scheme to esti-
mate the Black Scholes PDE. The PSM approach offers advantages over tradi-
tional FDM that produces both operational and estimation improvements. 
Moreover, it enables the user to better approximate solutions to the PDE in far 
greater levels of precision. Also, PSM does not have to be limited to an FD mesh. 
We demonstrate this below in some examples that highlight these points. The 
highlights will be emphasized in our examples. We also point out that PSM is 
easy to program in both Matlab and Maple and is a natural extension of EFDM. 
In future papers we will show that it works for variable rates, dividends and vo-
latility including those that produce a nonlinear PDE. 

Since this method is not common in the mathematical financial community, 
we will demonstrate it through some examples and compare it to EFDM and 
CNM. As the reader goes through the examples, some important concepts 
should become clearer. One is that we are determining the coefficients of the 
power series solution to the differential equations by two approaches. One me-
thod is simpler and easier to program than the other. However, the second me-
thod is also valid and gives us the ability to do mathematical analysis on the dif-
ferential equation, the solution and the properties of the approximate solution. 
By having a polynomial estimate, we are able to analyze the discontinuity in the 
derivative at the strike price and study oscillations in difference methods noted 
by many researchers, including Cen and Le [9]. One can also generate compara-
tive statics commonly referred to as the Greeks using calculus. The polynomial is 
easily differentiated at any combination of underlying variables and thus offers a 
framework where analytics on the contingent claim valuation is greatly facili-
tated.  

In this article, our goal is to show that the method is a powerful method for 
obtaining approximate solutions to contingent claims and is superior to discrete 
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methods like EFDM and CNM in many cases. The method also allows thorough 
analysis of the solution and its properties.  

2. Introduction of the PSM Approach to Estimating  
Differential Equations 

In this section, we introduce the general approach of PSM to differential equa-
tions. This is necessary in order to develop the approach as it specifically applies 
to the contingent claim partial differential equation presented in section 3 of the 
paper. To introduce the framework we start with a simple asset, V, that increases 
over time (t) due to continuous compounding at a constant rate (r). The ordi-
nary differential equation (ODE) describing this process is 

( ) ( ) ( ) 0, 0V t rV t V V′ = =                     (1) 

where V0 is the initial value (IV) or initial condition. The solution to this ODE is 
( ) 0ertV t V= . Note that the solution depends on V0, r and t. That is, we can write  

( ) ( )0 0e ; ,rtV t V V t r V= =  

to highlight the dependence of the value of the solution on V0, r and t.  
In EFDM and CNM one discretizes time to approximate the solution to this 

problem. That is, one chooses specific time values at which an approximation for 
V will be obtained. We assume these times are nt n t= ∆  for 1,2,3, ,n N=   
where t∆  is a fixed time interval and N is a counting number. Let nW  be our 
approximation to ( )V n t∆ .  

The EFDM approximation to IV ODE (1) is determined from 
1

.
n n

nW W rW
t

+ −
=

∆
 

Solving for the “future” gives 
1 .n n nW W rW t+ = + ∆  

That is, the approximation at 1nt +  for V is given by nW  (approximation to 
( )V n t∆ ) plus t∆  times the approximation of the slope V rV′ =  at nt  

which is nrW . We emphasize this because one iteration of PSM gives this same 
result and PSM extends this result. In particular, note that  

1 0 0
0 0   W W rW t V rV t= + ∆ = + ∆  

since 0
0W V= . 

The CNM approximation for IV ODE (1) is obtained from 

( )
1

1 1
n n

n nW W arW a rW
t

+
+−

= + −
∆

 

which is a linear combination of the explicit and implicit FDM with 0 1a≤ ≤ . 
For the PSM, note that if 0a =  the EFDM arises from CNM. To obtain 1nW +  
the approximation for ( )( )1V n t+ ∆  from CNM, one has to solve an algebraic 
equation. This will be highlighted and demonstrated in our numerical analysis 
below.  
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From calculus, it is well known that we can express the solution ( )V t  for the 
IV ODE (1) in power series (PS) form as 

( ) ( )0 0
0

0 0 0
e

! !

j
jrt j j

j
j j j

V r V
V t V rt t V t

j j

∞ ∞ ∞

= = =

= = = =∑ ∑ ∑  

where 0

!

j

j
r V

V
j

=  for 0,1,2,3,j =   It is also well known that by choosing a 

large enough counting number J that 0
J j

jj V t
=∑  will be as accurate an approx-

imation as one desires to ( ) ( )0 0e ; ,rtV t V V t r V= =  over an interval 0 t t≤ ≤ ∆  
for an appropriate time interval t∆ . That is, one has a function of 𝑡𝑡 that accu-
rately approximates the true solution ( )0; ,V t r V  on the interval 0 t t≤ ≤ ∆ . 

We now demonstrate two methods for obtaining the PS form for ( )0; ,V t r V . 
Picard used the fact that the ODE (1) solves the integral equation (IE) 

( ) ( )0 0
d

t
V t V rV τ τ= + ∫  

and vice versa by the Fundamental Theorem of Integral Calculus to generate a 
function solution. Picard’s method was to define a sequence of functions that 
converge to ( )0; ,V t r V , the solution to the ODE. First, choose [ ] ( )0P t  to be 
the constant function given by the IV, [ ] ( )0

0P t V= . Now define the remaining 
functions in the sequence by the IE as 

[ ] ( ) [ ] ( )1
0 0

 d
tk kP t V rP τ τ+ = + ∫  

for 0,1,2,3,k =  . To demonstrate, some iterates are presented. 
[ ] ( ) [ ] ( )1 0

0 0 0 0 00 0
 d d

t t
P t V rP V rV V rV tτ τ τ= + = + = +∫ ∫  

[ ] ( ) [ ] ( ) ( )
2

2 1 20
0 0 0 0 0 00 0

d d
2!

t t r V
P t V rP V r V rV V rV t tτ τ τ τ= + = + + = + +∫ ∫  

[ ] ( ) [ ] ( )
2 3

3 2 2 30 0
0 0 00

d .
2! 3!

t r V r V
P t V rP V rV t t tτ τ= + = + + +∫  

One can now determine that  

[ ] ( ) 0

0 !

jk
k j

j

r V
P t t

j=

= ∑  

which is the solution to the ODE (1). 
The second method is to substitute 0

j
jj V t∞

=∑  into the ODE (1). Doing this 
leads to 

( ) ( ) ( )1
0 0

1 j j
j j

j j
V t j V t r V t rV t

∞ ∞

+
= =

′ = + = =∑ ∑  

( ) 1
0 0

1 .j j
j j

j j
j V t rV t

∞ ∞

+
= =

+ =∑ ∑  

Equating like powers of t in this last equation gives the iterative sequence 

( ) 11 j jj V rV++ =  

or  
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1 1j j
rV V

j+ =
+

                         (2) 

for 0,1,2,3,j =  . Writing out a few of the iterates gives 1 0V rV= , 
2

2 12 2!
r rV V V= = , 

3

3 2 03 3!
r rV V V= =  and so on. Again, one can determine that  

these are the coefficients of the PS for the solution to the ODE (1). The recur-
rence relation (2) is easily programmed in either a symbolic or numerical com-
puting environment. Therefore, one can, in principle, generate as accurate a po-
lynomial solution to the true solution as desired by generating enough coeffi-
cients using recurrence relation (2). That is, one code, as will be demonstrated in 
this article, can generate as high an order of accuracy as one desires. 

One important item to note is that if 1J =  then the approximation for 
( )V t  using PSM is given by 

1

0 1
0

j
j

j
V t V V t

=

= +∑  

and the corresponding approximation to ( )V t′  given by the derivative of the 
above expression is 1V . The PSM then gives the approximation 

( )1 0 1 0 1V r V V t rV rV t= + = +  

which means 1 0V rV=  with error given by 1rV t . Therefore, the first PSM ite-
rate gives 

0 0V rV t+  

as the approximation to the solution ( )V t  over the interval 0 t t≤ ≤ ∆ . In par-
ticular, at t t= ∆ , this approximation is 0 0V rV t+ ∆  which we noted above is 
the EFDM approximation. This is an important result as we now can generate a 
single framework that includes PSM and EFDM as a special case ( 1J = ). If 

2J = , one obtains 
2

2 2
0 1 2 0 0 02!

rV V t V t V rV t V t+ + = + +  

as the approximation of ( )V t  over the interval 0 t t≤ ≤ ∆ . To extend to the 

time interval over the interval 2t t t∆ ≤ ≤ ∆ , one updates 0V  to be 

( )
2

2
0 0 02!

rV rV t V t+ ∆ + ∆  (the approximation to ( )V t∆ ) and then generates a  

new 1 2,V V  with this 0V  and obtains an approximation for ( )2V t∆ ). One 
continues for any desired N. Of course, the process is similar for any J. The larg-
er J is or the smaller t∆  is the better the approximation will be. Warne P.G. et 
al. [10] use the Picard iterates and PS to derive an a-priori error bound for PSM 
using this fact. This is how a PSM approximation for a plain vanilla option will 
be derived in our numerical analysis below.  

It is important to mention a few other points. Picard showed that his iterative 
method works for a large class of ODEs. That is, the Picard iterates will converge 
to the solution to the ODE for many ODEs. This is important for our purposes 
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and why offering the Picard approach as a polynomial solution. Parker and So-
chacki [1] used this fact to generate solutions to nonlinear ODEs. In fact, the 
second method also works for nonlinear ODEs which was shown by Parker and 
Sochacki and exploited to give convergence and error results by Carothers et al. 
[10] [11] [12]. The important point is that we now have two methods for devel-
oping algorithms and proving theorems for solutions to linear and nonlinear 
ODEs. Also we point out that since the two methods are computational and 
based off the ODE, they can compute either a symbolic solution which can be 
analyzed in terms of the parameters defining the ODE, like V0 and r in ODE (1) 
or strictly numerically for visualization and numerical analysis. This offers tre-
mendous advantages over the traditional FDM approaches as it enables us to 
work with the actual solution of the PDE not only discrete numerical approxi-
mations of the PDE. This is not a subtle distinction but a meaningful shift in 
how to understand the valuation dynamics of contingent claims. Now we can 
actually operate on a time continuum and almost any space dimension required 
with more accuracy. By operating in this framework we are able to more accu-
rately understand the PDE dynamics and corresponding first and second order 
hedging or replication applications. This will be demonstrated for plain vanilla 
options using the Black-Scholes model in this article and on various other op-
tions, including nonlinear options in future papers. We now demonstrate the 
two methods on a nonlinear ODE in order to indicate how we will use PSM on 
nonlinear options in our future papers. 

We modify the IV ODE (1) to  

( ) ( ) ( ) ( )2
0, 0V t rV t lV t V V′ = − =                  (3) 

for r, l positive. This dynamical system puts a bound on the growth of ( )V t  for 

0
rV
l

< . The closed form analytic solution to this IV ODE is 

( ) ( )
( )
0

0
0 0

e
; , ,

e

rt

rt

rV
V t V t r l V

lV lV r
= =

− −
 

Note that if 0l = , this is the solution to ODE (1). That is, 
( )0 0; ,0, ertV t r V V= . Determining the PS form of ( )0; , ,V t r l V  is not an easy 

task. However, if one uses the two methods presented in our first example, it is 
straightforward. First, we note that if we have two PS 

0 0
,j j

j j
j j

A A t B B t
∞ ∞

= =

= =∑ ∑  

then the PS product of A and B is given by Cauchy’s formula  

0 0 0 0
.

j
j j j

j j i j i
j j j i

AB A t B t A B t
∞ ∞ ∞

−
= = = =

 
= =  

 
∑ ∑ ∑ ∑  

This fact, allows us to solve nonlinear ODEs using either Picard iterates or 
solving for the coefficients in the PS form of the solution. For this example, this 
leads to 

[ ] ( )0
0P t V=  and then 

https://doi.org/10.4236/jmf.2019.94031


G. W. Buetow, J. Sochacki 
 

 

DOI: 10.4236/jmf.2019.94031 622 Journal of Mathematical Finance 
 

[ ] ( ) [ ] ( ) [ ] ( )( )21
0 0

d
tk k kP t V rP lPτ τ τ+ = + −∫  

for 0,1,2,3,k =   for the Picard iterates. Again, writing out a few iterates 
produces 

[ ] ( ) [ ] ( ) [ ] ( )( )
( ) ( )

21 0 0
0 0

2
0 0 0 0 0

2
0 0

d

d

t

t

P t V rP lP

V rV lV V rV lV t

τ τ τ

τ

= + −

= + − = + −

∫

∫
 

[ ] ( ) [ ] ( ) [ ] ( )( )
( )( ) ( )( )( )

( ) ( )( ) ( )

22 1 1
0 0

2
2 2

0 0 0 0 0 0 00

22
0 0 0 0 02 2 3

0 0 0

d

d

2
2 3

t

t

P t V rP lP

V r V rV lV k r V rV lV

V lV r lV r lV lV r
V rV lV t t t

τ τ τ

τ τ τ

= + −

 = + + − − + − 
 

− − −
= + − + −

∫

∫  

[ ] ( ) [ ] ( ) [ ] ( )( )
( ) ( )( )

( )( ) ( ) ( )

( ) ( )

( ) ( ) ( )

23 2 2
0 0

0 0 0 2
0 0

22 2 2 2
0 0 0 0 0 0 03 4

22 2 2 2
0 0 0 0 5

3 42 3 3 4
0 0

2

6

0

0 0 0 7

d

2
2!

6 6 2
3! 3
20 3 20

 
60

2
   

18 63

t
P t V rP lP

V lV r lV r
V rV lV t t

V r lV l V rlV l lV r lV r lV
t t

lV r lV rlV r l V
t

l V r lV lV r l V r lV
t t

τ τ τ= + −

− −
= + − +

− − + − −
+ +

− − −
+

− − −
+ −

∫

 

We note that the Picard iterates are much more complicated than the Picard 
iterates in the linear IV ODE of our first example, but that a pattern is arising. 
Even for this complicated example, Picard showed that 

[ ] ( )1

0

k j
j

j
P t V t

∞
+

=

= ∑  

solves the IV ODE (3). Parker and Sochacki noted that  
[ ] ( ) [ ] ( )2 1 terms higher in order than 2 inP t P t t= +  

[ ] ( ) [ ] ( )3 2 terms higher in order than 3 in P t P t t= +  

and in general that 
[ ] ( ) [ ] ( )1 terms higher in order than in k kP t P t k t+ = +  

not only for this IV ODE, but for a large class of nonlinear IV ODEs. Therefore, 
using a computer one can generate all the Picard iterates iteratively with a single 
program code.  

Using the second method, one assumes 

( )
0

j
j

j
V t V t

∞

=

= ∑  

and generates a recurrence relation like in Example 1 that gives all the coeffi-
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cients in the PS for ( )0; , ,V t r l V  using Cauchy’s formula for the product of PS. 
Doing this, one has 

( ) ( ) ( ) ( )
2

2
1

0 0 0
1 .j j j

j j j
j j j

V t j V t r V t l V t rV t lV t
∞ ∞ ∞

+
= = =

 
′ = + = − = − 

 
∑ ∑ ∑  

Therefore, using Cauchy’s formula we have that 

( )
2

1
0 0 0 0 0

1 .
j

j j j j
j j j j i j i

j j j j j
j V t r V t l V t rV l VV t

∞ ∞ ∞ ∞

+ −
= = = = =

   
+ = − = −   

   
∑ ∑ ∑ ∑ ∑  

This gives the recurrence relation 

( )0
1 .

1

j
j i j ii

j

rV l VV
V

j
−=

+

−
=

+

∑
 

(We leave it to the reader to verify that 1 2 3, ,V V V  given by this recurrence re-
lation agrees with the coefficients in the Picard iterate [ ]3P  above. Therefore, 
the solution to the IV ODE (3) is given by 

( ) ( )
( )

( )00
0

00 0

e
; , , .

1e

j
rt j i j ii j

rt
j

rV l VVrV
V t V t r l V t

jlV lV r

∞ −=

=

−
= = =

+− −

∑
∑  

Again, we can approximate ( )V t  to any accuracy desired over an interval 
0 t t≤ ≤ ∆  for some chosen t∆  and counting number J using 

( )0

0 1

j
J j i j ii j

j

rV l VV
t

j
−=

=

−

+

∑
∑  

on that interval. Note that the coefficients, once again, depend on V0, r and l. 

3. Black Scholes Plain Vanilla Option 

Using the development in section 2 we can now turn our attention to option 
valuation. In a plain vanilla option, the value of the option, V depends on the 
price of an underlying asset, S and time, t. Therefore, one wants to determine 
( ),V S t  for any S and t for a reasonable range 0 MS S≤ ≤  and 0 t T≤ ≤ .  
Now we turn to the Black-Scholes (1973) and Merton (1973) PDE 

( ) ( ) ( ) ( )
2

2 2
2

1          , ; ,
2

V S V r q S V rV F S t V S T Q s
t SS

σ∂ ∂ ∂
+ + − − = =

∂ ∂∂
 

where V represents the value of the option, σ  the standard deviation of re-
turns on the underlying asset, S, and r is the risk-free borrowing and lending 
costs over the life of the contingent claim, and q is cash flow emanating from S. 
All rates are continuous. F is the value of the PDE at any given combination of 
asset value or time and is zero for simple contingent claims. In this article, we 
will assume F is zero, but in a future paper we will consider arbitrary F. ( )Q S  
is the expiration value of the option and can be a continuous or discontinuous 
(binary) relationship as well as path dependent. For our purposes here it is 
simply ( )max 0, S K−  where K is the strike price. 
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Since there is a closed form solution of this IV PDE, we will use that closed 
form to compare the accuracy of EFDM, CNM and PSM. We have shown how 
one can determine V for a time interval. We now choose an increment value 

S∆  for the interval 0 MS S≤ ≤ . We let iS i S= ∆  for 0,1,2,3, ,i I=   so 
that 0 0S =  and I MS I S S= ∆ = . We will determine a PS for ( ),iV S t  for 
each i as was done in Example 1.  

Making the standard time variable change T tτ = −  into the plain vanilla 
option IV PDE (with 0F = ) gives the following IV PDE 

( ) ( ) ( )
2

2 2
2

1    ; ,0
2

V S V r q S V rV V S Q s
SS

σ
τ
∂ ∂ ∂

= + − − =
∂ ∂∂

 (4) 

where ( ) ( ), ,V S t V S T τ= − . 
Numerical routines to evaluate Equation (4) can be found in Duffie [13], 

Brennan and Schwartz [14], Company, Lodar and Pintos [15], Forsyth and La-
bahn [16], Tangman, Gopaul, and Bhuruth [17], Buetow and Sochacki [18] [19] 
[20], Wang and Forsyth [21], Anwar and Andallah [8], and Cen and Le [9] to 
name a few. Nonlinearities are introduced within the diffusion term. Leland [22], 
Boyle and Vorst [23], and Hoggard, Whaley, and Wilmott [24] introduce trans-
action costs that manifest nonlinearly through the diffusion term. Risk adjust-
ment pricing is similarly introduced into the framework. See Kratka [25], Jan-
dacka and Sevcovic [26] and Barles and Soner [27] who combine both concepts. 
Kutik and Mikula [28] and Lesmana and Wang [29] use various numerical ap-
proaches to solve these types of problems. Frey [30], Frey and Patie [31] and 
Frey and Stremme [32] introduce illiquidity. Liu and Young [33] extend [30] [31] 
[32] and Bakstein and Howison [34] combine illiquidity and transaction costs 
into the framework.  

We will compare the EFDM, CNM and PSM for IV PDE (4) to the closed 
form solution. Again, since PSM gives us a function of t, we can compare PSM to 
the closed form solution at any t for a given iS .  

As for the two IV ODEs above, Equation (4) can be written equivalently as 

( ) ( ) ( ) ( ) ( ) ( )
2

2 2
20

1, , , , d .
2

V S Q s S V S r q S V S rV S
SS

τ
τ σ τ τ τ τ

 ∂ ∂
= + + − − ∂∂ 

∫  (5) 

One can then build a Picard iterative process for V using this IE. The Picard 
iterates are given by 

[ ] ( )

( ) [ ] ( ) ( ) [ ] ( ) [ ] ( )

1

2
2 2

20

,

1  , , , d
2

k

k k k

P S

Q s S P S r q S P S rP S
SS

τ

τ

σ τ τ τ τ

+

 ∂ ∂
= + + − − ∂∂ 

∫
  (6) 

for 0,1,2,k =   together with 
[ ] ( ) ( ) ( )0 , ,0 .P S V S Q Sτ = =  

As pointed out earlier, the mathematical theory for the Picard iterates [ ]kP  
to approximate the solution ( ),V S τ  is well developed. Parker and Sochacki [1] 
[2] have shown that if the IV PDE is polynomial then computers can easily gen-
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erate [ ] ( ),kP S τ  iteratively for any k. Equation (4) falls into this category and 
thus can be solved using this framework. In fact, we can enter the Picard method 
into any symbolic package and obtain a symbolic approximation for [ ] ( ),kP S τ  
very easily. An example of this is included in the appendix using Maple. We 
emphasize that if one does this, one has an approximation to ( ),V S τ  for any 
( ),S t  in the region of interest. As mentioned above this is extremely useful in 
performing comparative statics including hedging ratios for synthetic trading 
replication. 

To demonstrate, we choose ( )Q S S K= −  where K is a fixed value for S. 
With these, the first four Picard iterates are 

[ ] ( ) ( )( ) [ ] ( )

( )( ) ( ) ( ) [ ] ( )

( )( ) ( ) ( ) ( ) ( ) [ ] ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( )

1 2

2 32

2 3 42 3

2 32 3

4 4

, 1 ,
11 1 ,
2
1 11 1 1 ,
2 6
1 11 1 1
2 6

1 1
4!

P S S K r q S P S

S K r q S r q S P S

S K r q S r q S r r q S P S

S X r q S r q S r q S

r q S

τ τ τ

τ τ τ

τ τ τ τ

τ τ τ

τ

= − − − +

= − − − + + − +

= − − − + + − + − − +

= − − − + + − + − − +

+ − +

 

One sees the repeating pattern in these Picard iterates and realizes that 
[ ] ( ),kP S τ  converges to  

( ) ( )
0

1    1 .
!

j j

j
S K r q S

j
τ

∞

=

− + − +∑  

In options pricing, this would be the solution for S K>  under a simplifica-
tion, but this presentation demonstrates the process. One should appreciate that 
this approximate solution is a polynomial and one can observe the dependence 
of the solution on S and τ for any ( ),S τ  of interest. Now that we have this so-
lution, we can analyze the dependence of V on not only on S, but also σ, q, r and 
K.  

Note that this method will generate a power series solution (polynomial) ap-
proximation for V for more complicated situations, including a polynomial F, an 
r that depends on S and/or t or even V and other Q. Thus, this approach can be 
used for the aforementioned nonlinearities. This allows one to do a thorough 
parameter analysis on K, r, q, σ, F and Q in a very wide-ranging set of applica-
tions. We will leave the more complex applications to future research. Here, we 
want to introduce the approach and compare it to the aforementioned common 
numerical approaches found in the literature. 

Since the EFDM and CNM are discrete methods, we let 

( ) ( ) ( ), ,i iV S t V S vτ τ= =  

and we let n
iW  be the approximation to ( )iv n t∆ . We mention that PSM can 

be used in the non-discretized case as shown above and an example generated in 
Maple will be given below.  
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The discretized version of Equation (4) that we consider is 

( ) ( ) ( ) ( ) ( )2 2 21
2i i i i i iv S D v r q S Dv rvτ σ τ τ τ′ = + − −            (7) 

with ( ) ( )0i iv Q S= , D is a discretized approximation for 
S
∂
∂

 and 2D  is a 

discretized approximation for 
2

2S
∂
∂

. For example, if we use the centered differ-

ence approximations 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 12
2

2
,

2
i i i i i

i i

v v v v v
Dv D v

S S
τ τ τ τ τ

τ τ+ − + −− − +
= =

∆ ∆
 

then Equation (7) in discretized form becomes the ODE 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 12 2
2

1 1

21
2

2

i i i
i

i i
i i

i

v v v
v S

S

v v
r q S rv

S

τ τ τ
τ σ

τ τ
τ

+ −

+ −

− + 
′ =  

∆ 
− 

+ − − 
∆ 

            (8) 

with the initial conditions ( ) ( )0i iv Q S= . Therefore, if 1,2, ,i I=   for some 
counting number I, we have a system of I IV ODEs that we can solve using PSM. 
That is, we assume 

( ) ,0
J j

i i jjv vτ τ
=

= ∑                        (9) 

for each I and some user chosen J. The larger J is the more accurate an approxi-
mation ( )iv τ  will be to ( ),iV S τ . We can use the PSM in either a symbolic or 
numeric computing environment. This bypasses the restriction of using only 
time discrete approaches like EFDM and CNM. For our purposes here, we will 
contrast the PSM approach to these two numerical approaches to illustrate its 
strengths. We will use only the PS approach for PSM because of its ease to pro-
gram. Since the first PSM polynomial (PSM 1) was shown to be equivalent to 
EFDM, we can generate EFDM with our PSM code.  

The Picard method is a useful tool for analysis, ( )iv τ  can be used to deter-
mine properties of ( ),iV S τ  through differentiation, integration and equation 
solving. It is also important to remember that the ,i jv  are functions of , ,r qσ  
and ( )iQ S . Therefore, they can be analyzed to determine the impact of these 
variables on the solution regarding sensitive dependence, stability, growth, etc. 
The PSM effectively offers a more robust framework for contingent claim valua-
tion and a corresponding analysis.1  

We will demonstrate that the PSM framework is a powerful setting to be ap-
plied to numerically understanding contingent claim valuations and more im-

 

 

1In other words, Equation (6) can be used to create polynomial estimates to the solution to Equation 
(4) over the entire valuation spectrum. These polynomials are then easily manipulated to produce 
estimates to all of the Greeks throughout the same spectrum. These will be more accurate than any 
FDM approach and also require a single computation. FDM requires computations over several in-
put variations to obtain the Greeks or any kind of comparative static analysis. These repeated nu-
merical computations may introduce a propagation of errors and may result in a compounding er-
ror. PSM does not suffer from this issue. 
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portantly the corresponding comparative statics relationships often used in 
practice by risk managers and traders. This is an important development since 
most contingent claim-based valuation models do not have analytical solutions 
so having another numerical approach like PSM may prove invaluable. 

The EFDM approximation to Equation (8) that will be used is 

( )1 2 2 1 1 1 1
2

21   .
2 2

n n n n n
n n ni i i i i

i i i i i
W W W W W

W W S r q S rW
SS

σ τ+ + − + −
    − + −

= + + − − ∆     ∆∆    
 (9) 

This form shows the slope term multiplied by τ∆ .  
The CNM approximation to Equation (8) that will be used is 

( )

( )

( )

1 1
1 2 2 1 1

2

1 1
11 1

2 2 1 1 1 1
2

211
2

2

21   .
2 2

n n n
n n i i i

i i i

n n
ni i

i i

n n n n n
ni i i i i

i i i

W W W
W W a S

S

W W
r q S rW

S

W W W W W
a S r q S rW

SS

σ

τ

σ τ

+ + +
+ + −

+ +
++ −

+ − + −

 − +
= + −  

∆ 

 −
+ − − ∆ 

∆ 

    − + −
+








+ − − ∆     ∆∆    




 

This form shows the slope term multiplied by τ∆ . The equation we code is 

( )( ) ( )( )( )

( )( )

( ) ( ) ( )( )

2 2 1 2 2 1
1

2 2 1
1

2 2 2 2
1

2 2
1

1
2

2
11 1
2

1 ( ) .
2

n n
i i

n
i

n n
i i

n
i

a i i r q W a i r q W

a i i r q W

a i i r q W i ir W

i i r q W

σ τ τ σ

σ τ

σ τ σ τ

σ τ

+ +
−

+
+

+

−

 − − − ∆ + + ∆ + − 
 
 − + − ∆ 
 

 = − + − ∆ + − + ∆ 
 

 + − − ∆ 
 





     (10) 

We solve this system of linear equations using a tri-diagonal matrix solver.  
We compare EFDM, CNM and PSM for polynomials of various degrees with 

the closed form solution 

( ) ( ) ( )( ) ( )1 2, e r q TV S t SN d K N dτ− − −= −              (11a) 

for a call ( ( ) ( )max ,0Q S S K= − ) option and 

( ) ( )( ) ( ) ( )2 1, e r q TV S t K N d SN dτ− − −= − − −             (11b) 

for a put ( ( ) ( )max ,0Q S K S= − ) option where 

( )

( )

2

1

2

2

1
2ln

1
2ln

r q T
Sd
K T

r q T
Sd
K T

σ τ

σ τ

σ τ

σ τ

 − + −    = +  − 
 − − −    = +  − 

 

to IV PDE (4). For PSM we will determine an accurate PS solution for the ODEs 
in Equation (8). We will demonstrate the power of being able to choose J with-
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out writing a new code, by varying J and providing the results when this is done. 
Again, we point out that one does not have to discretize in S to use PSM as was 
shown in our third example. We are doing this in this article for comparison 
with EFDM and CNM. We will also present some of the coefficients that PSM 
produces so that one can view the approximate polynomial solutions to the “true” 
answer. We also point out that polynomials are straightforward to evaluate effi-
ciently on a computer using Horner’s algorithm which we actually do here. 

4. Motivation behind PSM 

To our knowledge the PSM approach has not been extensively used within the 
finance literature, if at all. The advantages of PSM are many and several of these 
are particularly important in the contingent claim valuation framework. The 
neuroscientists Stewart and Bair [6] showed that PSM was competitive with the 
Runge-Kutta order 4 method (RK4) and the Bulirsch-Stoer method (BSM) and, 
in most cases, superior for Hodgkin-Huxley type differential equations, which 
are nonlinear. The astrophysicists Pruett, Rudmin and Lacy [35] showed that 
PSM was in many cases superior to RK4 and BSM for Newton’s N-Body prob-
lem. Also, the astrophysics teams Nurminskii and Buryi [36] and Pruett, Ingham 
and Herman [37] and the neuroscientists Synkiewicz [38] and Yudanov, Shaa-
ban, Melton and Reznik [39] have shown that it is in general easier to parallelize 
PSM codes and obtain close to linear speed up than other codes, including on 
graphical processing units.  

As outlined above the PSM can be used symbolically and/or numerically to 
analyze or obtain numerical results. A symbolic polynomial estimate to the PDE 
solution directly offers the user the ability to compute not only the value of the 
contingent claim but also the corresponding comparative statics of that value to 
changes in the underlying inputs. These are well known as the Greeks in the 
finance literature. Once the symbolic solution is created no further numerical es-
timation is required within PSM. This is very different that any FDM approach. 
All FDM approaches would require repeated numerical estimations to compute 
the Greeks. The PSM doesn’t require that and so errors introduced are not 
propagated further like in the FDM framework. We will illustrate this below. 

The numerical PSM approach also subsumes the EFDM as a special case and 
thus can always be at least as accurate and stable as that approach. This enables 
the user to create a single PSM program and be able to easily use it when the 
EFDM is needed. Additionally, for similar reasons, the stability requirement of 
the PSM is never more constraining than the EFDM approach.  

The CNM approach has the advantage of most always being stable but it is 
particularly inefficient computationally. CNM will also not have solutions for 
more complicated valuation applications that result in nonlinear frameworks. 
PSM is both more computationally efficient and in almost all cases more accu-
rate. It also lends itself to far more complicated problems than the CNM frame-
work.  
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Computational errors within the PSM framework also tend to remain of the 
same order regardless of the underlying values of the inputs whereas those asso-
ciated with FDM can compound (grow) throughout the FD grid.  

Money [40] showed that when applied discretely to PDEs, PSM is a generaliza-
tion of the Lax-Wendroff method (LWM) that is commonly used and/or modified 
in computational fluid dynamics that involve nonlinearities. He determined stabil-
ity conditions for some linear PDEs, including the heat equation. His work was for 
constant coefficient PDEs, but he did show its applicability to some nonlinear 
PDES. As far as we know, this is the first application of PSM to PDEs with 
non-constant coefficients. In the Black-Scholes-Merton options modeling PDE 
(BSMOMPDE) the coefficients depend on the variable being discretized. In future 
papers, we will demonstrate the relationship between PSM and LWM in both the 
linear and nonlinear case and derive stability and convergence conditions. Here 
our goal is to introduce the method, to show its efficacy and its potential strengths 
for variable coefficient PDEs and show that we can improve on the stability of the 
EFDM and be competitive with CNM. It is not an easy matter to extend CNM to 
nonlinear BSMOMPDEs. However, PSM extends naturally without having to 
solve systems of nonlinear equations to get a numerical answer.  

For the discretizations we used above the EFDM for the BSMOPMPDE has 
an error that is ( ) ( )2O t O S∆ + ∆ . The CNM for the BSMOPMPDE has an er-
ror that is ( ) ( )2 2O t O S∆ + ∆  which is an improvement over the explicit FDM. 
The PSM of order k (using polynomials of degree k) has an error that is 

( ) ( )2kO t O S∆ + ∆  which allows analyzing the error in using PSM on the 
BSMOPMPDE. 

Finally, even the analytic solutions to the contingent claim BSMOPMPDE re-
quires numerical estimation since it contains the cumulative distribution func-
tion. The distribution function requires a numerical approximation to the inte-
gration. This also introduces an error. It is possible that the PSM may more ac-
curately approximate the true solution than this approximation of the analytic 
solution. Also, since one can increase the order of PSM, one has the advantage of 
studying convergence with respect to the grid size, the order of the polynomial 
used in PSM and the time step. This allows the potential of the computer giving 
as accurate an answer as possible.  

5. Numerical Results Comparing PSM to FDM 

Figure 1 and Figure 2 contrast the different numerical routines for a put option 
at the money ( 100S K= = ), with a volatility of 10%, an interest rate of 3%, a 
dividend rate of 1.5%, 1dS = , min 0S = , and max 200S = . Figure 1 presents the 
error relative to the closed form solution for 0.01dt =  and increasing expira-
tions. With a small time step the EFDM’s linear approximation is actually better 
than higher order PSM’s and CNM. This is most likely due to the higher order 
terms in the PSM that effectively introduce round off error on the polynomial 
coefficients.  
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Figure 1. The absolute errors at 100S =  for various PSM and CNM with 0.01dt = . 

 

 

Figure 2. The absolute errors at 100S =  for various PSM and CNM with 0.04dt = . 
 

This is the rare case where EFDM is the most accurate. Somewhat counter 
intuitively the increased terms in the PSM introduce a source of small round off 
errors when the time step is very small. However, since the EFDM is just a spe-
cial case of the PSM we can determine easily at what time step does the PSM 
overtake the EFDM in accuracy. That is an important determination because as 
the time step increases the speed and stability of the PSM will dominate the tra-
deoff quite quickly. To illustrate this we increase the time step in the next exam-
ple. 
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Figure 2 is similar to Figure 1 but for a slightly larger time step, 0.04dt = . 
Here we can plainly see that the EFDM is far less accurate than all the other me-
thods and begins to oscillate. This is due to the instability of the EFDM. The 
second order PSM (PSM 2) and fourth order (PSM 4) is as accurate as the CNM 
and everywhere more accurate than the EFDM. As the time step increases and 
EFDM becomes less stable, and loses accuracy. PSM 4 is as accurate as CNM and 
close to expiration sometimes more accurate. This implies that the PSM can be 
computed more quickly than both CNM and EFDM without losing accuracy. 
This is particularly important in a trading environment or any application where 
resources are constrained. As we extend our research to non-linear applications 
this property will become even more important. 

A Note on Discontinuity 

Cen and Le (2011) highlight many of the difficulties within numerical routines 
in dealing with the non-differentiability at the strike price. In Figure 2 we can 
see the oscillation aspects to some degree within the EFDM framework. The 
general symbolic PSM method cannot be used on a non-differentiable initial 
condition. Here we approximate the put payoff with an infinitely differentiable 
function which gives us advantages over Cen and Le [9]. This is a relatively 
common issue throughout continuous mathematics. Whenever an application 
contains a discrete boundary condition difficulties will arise by the very nature 
of differentiability. Consequently, numerical approaches like FDM and PSM will 
have to deal with this issue. As we illustrate below the PSM easily addresses this 
problem that can negatively impact the FDM approaches. 

One reason that PSM does not work in a symbolic environment for 
BSMOPMPDE is that the payoff functions are not differentiable at the strike 
price, K since the payoff for a call is given by ( ) ( )max ,0Q S S K= −  and for a 
put is given by ( ) ( )max ,0Q S K S= −  and to do PSM on a PDE the initial 
condition must be infinitely differentiable. In the Appendix, we give the second 
degree polynomial approximation to ( ),V S τ  that Maple generated (The 
fourth degree polynomial is too large to represent.) and the infinitely differenti-
able Q we used to approximately the put payoff even at the discrete boundary 
condition. 

Figure 3 is a plot of the fourth PSM iterate given by Equation (6) for a call 
with 0.03r = , 0.015q = , 0.25σ = , 100K =  over the time interval 
0 0.01τ≤ ≤  ( 0.01T t T− ≤ ≤ ) for 0 200S≤ ≤ . 

6. Conclusion 

We have introduced the PSM framework to the finance literature and illustrated 
its advantages over traditional FDM. It is more accurate and offers a polynomial 
representation which can be further leveraged for both higher accuracy and 
more computational efficiencies. These advantages were illustrated through nu-
merical examples. Specifically, as the time step increases (and computational  
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Figure 3. A Maple 3D Plot of a Put From a 
Symbolic PSM Fourth Degree Polynomial. 

 
speed increases) the advantages of PSM over EFDM becomes more apparent. 
Additionally, the PSM is everywhere as accurate as the CNM without the 
computational limitations. The PSM easily addresses discrete boundary condi-
tions as well. Finally, due to the polynomial representation of PSM, analysts can 
far more accurately approximate values and hedging parameters for almost any 
set of inputs without being constrained by a finite difference grid. Future re-
search will include more complicated nonlinear applications that will highlight 
the advantages over traditional FDM even more. These future applications offer 
fertile ground for research. Both FDM and CNM approaches struggle with non-
linear applications. PSM offers a framework that doesn’t suffer the same limita-
tions. PSM is an excellent alternative to the numerical finance literature. 
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Appendix. 

In Figure 1 and Figure 2 we showed the errors for PSM 1, PSM 2 and PSM 4 
and CNM for different time steps. Below we show the fourth degree polynomial 
generated by PSM 4 at 74 74S = . 

[ ] ( )4 2 3
74

4

26 1.89 0.036675 0.000408374999996

0.000003218905924

v t t t t

t

= − + −

+
 

It is important to remember that PSM generates a polynomial for each iS  
and that from this polynomial we know that 

[ ] ( )3 2 3
74 26 1.89 0.036675 0.000408374999996v t t t t= − + −  

is generated by PSM 3 and  
[ ] ( )2 2
74 26 1.89 0.036675v t t t= − +  

Is generated by PSM 2. 
In Figure 3 we generated the results for a put option using a smooth approx-

imation to the put payoff using Maple. We actually plotted the fourth degree 
polynomial that Maple generated. The second degree polynomial Maple gene-
rates for any ( ) ( ),0 , ,V S Q s r q=  and σ  is 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

4
2 2

42 3
2 2 2 2

2 3

2 3 2

2 3 2
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d d d
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σ σ σ
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We used ( ) ( )( )ln 1 exp 100 100Q S S S= + − − +  to approximate the put 
payoff for Figure 3. The maximum difference between this Q and the put payoff 
is ln2 and occurs at 100S K= = . A future study would involve approximating 
the payoff functions by even more accurate infinitely differentiable functions or 
at least functions that are k times continuously differentiable.  
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