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Abstract 

The Treasury lock is a common pre-hedging derivative strategy the Street of-
fers to their corporate clients. The paper provides a justification of the com-
mon practice of booking a short position in the Treasury lock as a forward 
contract on the underlying benchmark and a short position in the 
Then-Current Treasury lock as a forward contract on underlying benchmark 
rolled over the life of the contract.  
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1. Introduction 

1.1. Trade Description 

In the Treasury lock transaction, termed T-Lock in the following, a Client will-
ing to pre-hedge a prospected USD bond or loan issuance (Hedging Future 
Bond Issuance [1], Valtchev [2], LOCKING IN TREASURY RATES WITH 
TREASURY LOCK [3]) will seek to enter a long T-Lock position with the Bank , 
with a given Expiry and written on a prescribed Security (most traditionally, a 
Treasury bond). Samples of T-Lock contracts within the ISDA Master Agree-
ment framework can be found in [4]. 

Being the driver of the fixed rate paid by the borrower the sum of its credit 
spread and the benchmark interest rate, the goal of such pre-hedge strategy is 
locking, when deemed economical, the interest rate component a few months 
ahead of the issue date. When considering a T-Lock as pre-hedge, the client is 
looking at the Treasury curve as the interest rates benchmark as opposed to 
looking at the swap rate curve. The choice of engaging in a T-Lock in lieu of a 
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forward starting swap is mainly driven by the relative cost between the two 
strategies. An extensive illustration of the rationale for the use of T-Locks in 
comparison with other pre-hedging strategies can be found in Adam and Smith 
[5]. 

Being long a T-Lock, at strike L (a.k.a. Locked Yield), means receiving at Ex-
piry an amount equal to 

( )IRR RiskFactorN L⋅ − ⋅                    (1) 

where: 
 N is the notional  
 IRR is the internal rate of return of the prescribed security, prevailing at Ex-

piry  
 RiskFactor is minus the change of the bond’s price corresponding to a unita-

ry shift of its internal rate of return1  
The financing nature of the transaction, for which the hedge is intended, sees 

Expiry normally, at most, around 6 months (up to 12 months in very unusual 
cases) and L normally chosen to be close to the IRR seen at trade date, whilst 
deemed satisfactory enough by the Client to be locked at this level. 

The Security can either be a specific existing Treasury (and the trade termed 
T-Lock as such or Standard T-Lock) or a Treasury to be identified at Expiry, i.e., 
the then On-The-Run n-Year benchmark ( 1, ,30n =  , usually 5,7,10n =  and 
the trade termed Then-Current-T-Lock). 

In both cases, if at Expiry the Treasury yield has increased, the Client will re-
ceive a dollar amount compensating the extra cost they will be incurring in bor-
rowing money at a rate linked to the Treasury curve. Vice versa, Treasury yield 
tapering will generate a loss to the Client which, in turn, is financially compen-
sated by a lesser cost in the borrowing transaction—in other words, via a long 
T-Lock position the Client is synthetically shorting the Security to the Bank until 
Expiry. 

Hedge accounting-wise, the T-Lock can be designated as hedging item in a 
cash flow hedge relationship with an anticipated transaction, i.e., the borrowing 
transaction (the hedged item). As such, up until expiry the T-Lock P & L will be 
set aside in OCI. Then, if at expiry the borrowing materializes the P & L arisen 
from the T-Lock will be released amortized during the life of bond/loan (partial-
ly) offsetting, on a running basis, the cash flows generated during the debt ser-
vicing. On the other hand, if the financial close for the hedged item is not 
reached, the full P & L is recycled as a cost/income entry at expiry (Ramirez [6] 
[7] [8], In depth: Achieving hedge accounting in practice under IFRS 9 [7], 
Hedge accounting under IFRS 9 [9]). 

1.2. Pricing the Standard T-Lock 

To begin with, recall that, if ( )P y  is the price of the underlying Security as a 

 

 

1In other words, RiskFactor 10000 DV01= − ⋅ , where DV01 represents the price change corres-
ponding to a basis point positive shift in the bond’s yield. 
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function of the yield y, the internal rate of return IRR is by definition the yield 
such that  

( )mkt IRRP P=                         (2) 

with mktP  the (dirty) price of the bond. 
The T-Lock prescribes the use of the compounded interest formula  

( )
11 1

1 1 ,
1 1

n in

t i
ii ji j

P y c
y y

α
α α== =

= +
+ +∑∏ ∏                (3) 

where c is the coupon rate of the bond, 0t t≥  is the issue date, 1 nt t< <  the 
coupon payment dates (with 1 0t t> ) and 1, , nα α  the accrual factors. When t 
lies in a coupon period, i.e., 0 1t t t< ≤ , where 0t  is the last coupon payment 
date, the formula generalizes to  

( )
1

1 0

22 21

1 1 1
1 1 1

t t
n int t

t i
ii ji j

P y c
y y y

α
α α α

−
−

== =

  
= +    + + +   

∑∏ ∏         (4) 

which is basically (3) multiplied by the stub discount. 
Defining the risk factor as  

( )
IRR

RiskFactor
t

t
t

y

P y
y

=

∂
= −

∂
                  (5) 

then the T-Lock payoff at et  is equal to  

( )e e
RiskFactor IRRt tg a L= ⋅ ⋅ −                  (6) 

where 1a = +  for a long (unitary) position and 1a = −  for a short (unitary) 
position and RiskFactor, IRR are evaluated at et . 

From a different angle, at the first order,  

( ) ( )e

e

eIRR

IRR
t

t
t

y

P y
g a L

y
=

∂
= − ⋅ ⋅ −

∂
                (7) 

( ) ( )( )e e e
~ IRRt t ta P L P⋅ −                       (8) 

( )( )e e

mkt
t ta P L P= ⋅ −                            (9) 

so the T-Lock measures the gap between the market price of the bond and its 
price with flows discounted at rate L. 

We will show that (9) actually identifies a overhedge/underhedge of the 
T-Lock, respectively for 1a =  and 1a = − . 

In an arbitrage-free valuation framework, the general pricing formula (Hunt 
and Kennedy ([8], Corollary 7.34) reads  

( )e
e e e

RiskFactor IRRt
t tt t t tv a D L = ⋅ ⋅ ⋅ −            (10) 

where the expected value conditional on the information available at t is com-
puted with respect the et -forward measure and 

ettD  is the risk-free zero cou-
pon bond seen at t with maturity et . Due to the short term under consideration 
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( e 0.5t t− ≤ ) and the quality of the issuer (the US government), default risk is 
ignored. 

Working out the value from the formula above requires quite a modelling and 
computational effort but, because 

e
IRR t  can be interpreted as the (stubbed) 

swap rate (on a bond yield curve) fixing at et , if the uncertainty about 

e
RiskFactort  is ignored, the former summand can be seen as the payoff of a 
CMS-let based on the bond curve, i.e., in other words, that of a Constant Matur-
ity Treasury swaplet (see Pucci [10] for a treatment of Constant Maturity Trea-
sury swaps under relaxed assumptions where default of the bond issuer is also 
considered). Yet this interpretation is misleading because freezing 

e
RiskFactort  

overshadows, and actually reverses, a key feature. Indeed, while a CMS-let has 
always positive convexity, the T-Lock has instead (at least locally near the 
Locked Yield) negative convexity as will be shown in Section 2.3 (page 16) Equa-
tion (43). 

Given the complexity of addressing the modelling issues behind (10), let alone 
the availablity of a pricing function in the front office systems, a quick fix for the 
Bank to price and trade a short T-Lock position, in light of the typically short 
tenors clients need to cover, has been found in representing it as a plain forward 
contract. The following part of the paper analyzes the rationale of such opera-
tional practice. 

1.3. Approximating a T-Lock as a Forward Contract 

From (9), it can be seen that the payoff of a long Standard T-Lock struck at L 
may be approximated, at first order, by the t-value of a short forward contract 
struck at ( )

et
P L . Moreover, because the convexity of the T-Lock is negative in 

non-extreme scenarios away for the current yield as shown in Section 2.3, such 
forward contract constitutes a overhedge for the trade, as can be also observed 
from the joint plot in Figure 1, with respect to security price, for a 3-month 
T-Lock written on the 10Y benchmark as of 24 January 2019, i.e. Treasury, cou-
pon 3.125%, maturity 25 November 2028 (ISIN US9128285M81). The spot in-
ternal rate of return is 2.717% ( mkt 104.1055P = , cleanprice 103.4922= ), the 
3-months repo rate repo 2.46%r = , forward internal rate of return 
IRR 2.53%=  ( forward dirty price 104.74%= , forward clean price 103.36%= ) 
and 2.717%L = . 

The identification of such overhedge suggests that a short position on the 
T-Lock may be proxied by a long position on the forward contract on the same 
underlying and struck at  

( )
et

K P L=                        (11) 

( ) ( )
ee~ ForwardPrice RiskFactor IRRt t tt L+ ⋅ −        (12) 

where: 
 ( )eForwardPricet t  is the et -forward price at t for delivery of the Security at 

time et . 
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Figure 1. T-lock payoff and its overhedge. 

 
 

e
RiskFactort  is the risk factor of the Security as computed at time et   

 IRR t  is the et -forward internal rate of return of the Security as computed 
at time t, i.e., the rate such that  

( ) ( )
e eIRR ForwardPricet t tP t=                 (13) 

at et t< . 
The forward contract proxy defined above may be regarded as a convenient 

representation of the Standard T-Lock in a practical situation where the T-Lock 
typology is not available in the trader’s front office risk management systems. In 
a later section we will analyse the risk generated by such approximation under 
standard mathematical assumptions that will make the treatment easier. 

Because the security is not determined at inception, for the booking of the 
Then-Current-T-Lock a further issue arises. A natural extension is booking a 
Then-Current-T-Lock as a forward contract on the on-the-run benchmark as 
seen at inception and revise the booking each time a new on-the-run is taken 
over so that at et  the proxy contract will match the real payout to the Client. 
Thus, for the purpose of investigating the pricing of a Then-Current-T-Lock, we 
turn our attention to the effect of replacing the security in the proxy forward 
contract. 

Switching underlying security will lead to a new strike  

( )
e

ˆ
t̂K P L=                         (14) 

with a strike gap, at first order,  

ˆStrikeGap K K= −                      (15) 

( ) ( )
( ) ( )

e e

e eF̂orwardPrice ForwardPrice
ˆ ˆRiskFactor IRR RiskFactor IRR

t t

t t t t

t t

L L

= −

+ ⋅ − − ⋅ −
      (16) 
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We can see that, ignoring the jump in RiskFactor, a reasonable assumption if 
the switch is actually a benchmark replacement within the same tenor (e.g. 10Y) 
or within close-”in-the-run” bonds, the strike gap reads  

( ) ( )
( )e

e e
ˆStrikeGap ForwardPrice ForwardPrice

ˆRiskFactor IRR IRR
t t

t t t

t t= −

+ ⋅ −
       (17) 

The intuition is that the StrikeGap will generally be small if the switch is 
within close-”on-the-run” bonds but we will focus on this issue later in Section 
3.1 turning our attention to a more meaningful measure, the P & L of the proxy 
forward contract. 

From now on we will use Euler’s notation  

( ) ( )k
k
x k

f x
f x

x
∂

≡   ∂
  

for high-order differentials. 

2. Hedging the Standard T-Lock 

In the current section we will look at the greeks (Hull [11], Chapter 19) generat-
ed by a standard T-Lock position, bearing in mind though that the same results 
apply to the Then-Current-T-Lock in-between roll events. The first two subsec-
tions are dedicated to the delta and gamma while in the third we touch on the 
practical implementation of the hedging strategy via the repo trade. 

For ease of computation, we will assume the bond price to have the following 
functional form (Hull [11], Section 4.8, page 91], Taleb [12], page 184) with re-
spect to the yield  

( ) ( ) ( )e en i

i

n
t t y t t y

t i
t t

P y c α− − − −

>

= + ∑                (18) 

where c is the coupon rate of the bond and iα  its accrual factors 
Under this assumption, with R the internal rate of return,  

( ) [ ] ( )y y R
g R a P R L

=
= − ⋅ ⋅ −                         (19) 

( ) ( )( )~ a P L P R⋅ −                             (20) 

( ) ( )e e

e

mkte en i

i

n
t t L t t L

i
t t

a c Pα− − − −

>

 
= ⋅ + − 

 
∑              (21) 

Also, the first, second and third derivative of ( )P y  are easily computed, re-
spectively, as  

[ ] ( ) ( ) ( ) ( )e en i

i

n
t t y t t y

y t n i i
t t

P t t c t tα− − − −

>

= − − − −∑          (22) 

which is a negative quantity (or null in limiting cases),  

[ ] ( ) ( ) ( ) ( )2 22 e e ,n i

i

n
t t y t t y

y t n i i
t t

P t t c t tα− − − −

>

= − + −∑         (23) 

i.e., the so-called convexity of the bond (Taleb [12], page 184) 
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[ ]21
y P

P
                           (24) 

which is positive, and finally,  

[ ] ( ) ( ) ( ) ( )3 33 e en i

i

n
t t y t t y

y t n i i
t t

P t t c t tα− − − −

>

= − − − −∑         (25) 

which is negative. 
As a consequence, the T-Lock payoff as a function of the yield  

( ) [ ] ( )yg y a P y L= − ⋅ ⋅ −                  (26) 

has first and second derivative, respectively,  

[ ] [ ] ( )y yg a P y L
y
∂  = − ⋅ ⋅ − ∂

                    (27) 

[ ] ( ) [ ]2
y ya P y L P = − ⋅ ⋅ − +                (28) 

and  

[ ] [ ] ( ) [ ]2 3 22y y yg a P y L P = − ⋅ ⋅ − +                (29) 

2.1. The Overhedge Error 

We’re now in the position of being able to evaluate the accuracy of approxima-
tion (9) which, looking at it backward, boils down to substituting P with its first 
order Taylor polynomial. The approximation is a (global) overhedge because the 
remainder  

( ) ( ) ( ) [ ]( )1
1 yR y P y P L P y L= − − −            (30) 

has a unique stationary point at y L=  which is also a maximum, since the 
second derivative of ( )1R y  is negative. 

Moreover, recalling the Remainder Estimation Theorem (see Apostol [13]) 
which states that, for a differential function P and all y in an interval I containing 
a point a, the error in using the Taylor polynomial of degree n to approximate P 
satisfies  

( ) ( )

1

1 !

n

n

M y a
R y

n

+−
≤

+
                   (31) 

where M is the maximum value of [ ]1n
y P+  in the interval I, for 1n = , a L=  

we have that  

( )
2

1 2
M y L

R y
−

≤                     (32) 

where, because the third derivative of P (that is, the first derivative of [ ]2
y P ), 

is negative, [ ]( )2 minyM P I=  is taken to be the value at the left-most point of 
the interval which is roughly (taking the extreme case 0y = )  

( ) ( )2 2

i

n

n i i
t t

t t c t t α
>

− + −∑                    (33) 

As an illustration, for the 10Y benchmark roughly  
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~ 150M                          (34) 

if we exclude the possibility of negative yields, an event that has never occurred 
(minimum yield for the 1Y Constant Maturity Treasury is 0.08% attained in 
September 2011). If we assume a 30% yield change, which is an upper bound for 
a short term such as 6 months for the 10Y benchmark, the dollar error amounts 
to 0.005% on 100% of notional. 

2.2. Delta of the T-Lock 

Thanks to the smoothness of ( )P y  the greeks can be obtained by interchang-
ing expected value and differentiation so for an analysis of delta and gamma of 
the T-Lock we will just look at the first and second derivatives of the payoff. 
From (28), when 1a = , for y L−  small enough (which is a reasonable as-
sumption with short term expiries under typical business conditions),  

[ ] 0y g >                         (35) 

so that the delta of the (long) T-Lock is negative  

[ ] [ ] [ ] 0P y Pg g y= ⋅ <                    (36) 

which is consistent with the previous comment about T-Lock being equivalent 
to shorting the security. 

More precisely, resolving (28) for L, when 1a =   

[ ] [ ]
[ ]20 and 0 iff y

y
y

P
g L y

P
> ∆ < > +





            (37) 

hence, because of the sign of the derivatives, we have a sharp lower bound 
smaller than y. 

Turning things around  

[ ] [ ]
[ ]20 and 0 iff 0y

y
y

P
g y L

P
> ∆ < − < − >





          (38) 

so, at least intuitively because the RHS of the inequality is also a function of y, as 
long as y does not overshoot L, the delta remains negative. 

Taking into account the discounting, a trader, after booking the T-Lock posi-
tion via proxy forward as argued in Section 1.3, may delta hedge a short position 
via shorting an amount of bond equal to  

[ ]
e

~ tt PD g∆                          (39) 

and continuously re-adjust the hedge as market and time move. So the question 
is how trading the delta will affect the bank’s P & L, so we turn our attention to 
the gamma. 

2.3. Gamma of the T-Lock 

In the following we investigate effectiveness of the replication via ∆ -hedging of 
a T-Lock. From section (A) we have  
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[ ] [ ] [ ] [ ] [ ]22 2 2
P y P y Pg g y g y = ⋅ + ⋅                       (40) 

[ ] [ ] [ ] [ ] [ ]( )322 21y y y y yg P g P P  = ⋅ − ⋅    
          (41) 

From (28) and (29), the gamma of the T-Lock locally, i.e., y L−  small 
enough, satifies  

[ ] [ ] [ ] [ ] [ ] [ ]( )322 2 2~ 2 1P y y y y yg a P P a P P P      − ⋅ ⋅ + ⋅ ⋅       
       

[ ] [ ] [ ] [ ]( )222 22 1y y y ya P P a P P    = − ⋅ ⋅ + ⋅     
                   (42) 

[ ] [ ] 22 1y ya P P   = − ⋅ ⋅                                         (43) 

So, when 1a = , with y L−  small enough, the Gamma is negative (i.e., the 
convexity of the T-Lock is negative), so dynamically replicating a T-Lock will, 
(not so) locally around L, generate rebalancing profits. In other words, dynami-
cally replicating a long T-Lock via (10) and its delta assuming no volatility will 
be a overhedge, hence generating a non-negative P & L for the trader (see Carr 
and Madan [14], Equation (9)). More precisely, using (41), we see that  

( ) [ ]( ) [ ] [ ] [ ] [ ]
22 3 20 iff y y y y yy L P P P P P Γ < − ⋅ − ⋅ > ⋅  

         (44) 

The latter factor satisfies  

[ ]( ) [ ] [ ]
22 3 0y y yP P P− ⋅ <                    (45) 

Proof. Thanks to (87) (Appendix C), noting that the leading summands 
( )( )2
02

y P 
   and ( ) ( )0 01 3

y yP P   − ⋅      cancel each other, we see that  

[ ]( ) [ ] [ ]
( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( )

22 3

2
0 0 02 2 3 3

y y y

y y y y y y

P P P

P c A P c A P c A

− ⋅

     = + + + ⋅ +     

  

     
  (46) 

( ) [ ] ( ) [ ] ( ) [ ]

[ ]( ) [ ] [ ]

0 0 02 2 1 3 3 1

22 2 1 3

2

0

y y y y y y

y t y t y t

c P A P A P A

c A A A

      = − −      
 + − ⋅ <  

     

  
          (47) 

This is because both summands are negative (from (88) and (89)) and the fact 
that 0c > .  

Finally, (44) and (45) yield  

[ ] [ ]
[ ]( ) [ ] [ ]

2

22 3
0 iff 0y y

y y y

P P
y L

P P P

⋅
Γ < − < >

− ⋅

 

  
         (48) 

so, by the same argument shown above, as long as y does not overshoot L, the 
gamma remains negative as well. In Figure 2 we have plotted the T-Lock payoff 
along with its first derivative, i.e., its delta at expiry, with respect to security price. 
Also, notice in Figure 3 how both the delta and the gamma (here only reported 
at expiry for illustration) turn positive, as predicted by (37) and (48), in extreme 
high rate scenarios. 
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Figure 2. T-lock delta. 
 

 
Figure 3. T-lock gamma. 

2.4. Replication of the T-Lock via Repo 

We have already investigated the impact of delta hedging a short position in the 
T-Lock. The reader may have already noticed that what we have actually been 
looking at is the delta and gamma of the T-Lock with respect to the forward 
price of the bond, in other words the delta and gamma with respect to the for-
ward contract as main security to be used in the replication strategy. This is ac-
tually appropriate since the shorting-the-bond requires to hedge the short posi-
tion in the T-Lock can generally be accomplished only via a (reverse) repo trade 
and the delta (36), in terms of hedge ratio, is to be interpreted as the size of the 
corresponding repo to trade (for an extensive description of the workings of re-
po business see [15]). Indeed, in Equation (13), but also in the exact approach 
(10), the repo rate comes into play because (see Section D). 
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( ) ( )( ) ( )( )e e
e

mkt repo repo
e e eForwardPrice 1 1

i
i

t t tt i t t i
t t t

t P r t t c r t tα
< ≤

= + − − + −∑  (49) 

where repo
uvr  is the (simply compounded) forward repo rate for the period 

u v→ . We assume a zero haircut, which is a good approximation given the cre-
dit quality of the Treasury. 

Due to (49), (13) and (22), since by the chain rule and assuming a flat 
short-term repo curve,  

( ) ( ) ( ) ( )repo repo

repo repo
ForwardPrice

ForwardPrice

t ty R P

g r rg y y P
y Pr r

= =

∂ ∂∂ ∂
= ⋅ ⋅

∂ ∂∂ ∂
   (50) 

the sensitivity of the T-Lock to the repo rate is negative, so the higher the repo 
rate the cheaper is the long position. 

The typical bid-ask spread for a repo transaction is 5 basis points. For instance, 
as of 24 Jan 2019, we report the repo curve in Table 1 for GC (General Collateral) 
which shows positive repo rates for all tenors but, since the security is normally 
chosen to be a benchmark Treasury, a specialness (negative) premium may ap-
ply so the repo rate may be significantly lower, increasing the fair value of the 
T-Lock position. Historically, in times of liquidity squeeze, the specialness has 
seen the repo rate on the 10Y Treasury momentarily drop into the negative axis 
at minus three hundred basis points (see Leong [16]). 

In passing, it’s also interesting to note that given the current regime in the 
EUR market, being repo rates in the negative space, a hypothetical T-Lock writ-
ten on a European treasury bond would be more expensive relative to a tradi-
tional trade on a US Treasury. 

3. Trading the Then-Current-T-Lock 

As already represented in Section 1.3, in a Then-Current-T-Lock the underlying 
security is determined at et  as the currently on-the-run benchmark. In the spe-
cial and idealized case where et  is coincides with the issue date of the new 
benchmark, the value at et t<  of a long(short) Then-Current-T-Lock struck at 
L is proxied by a short (long) forward contract struck at 

( )
e

1 RiskFactort tK R L= + ⋅ −                  (51) 

where 
 

e
RiskFactort  is that of the Proxy Security as computed at time et   

 tR  is the et -forward internal rate of return of the Proxy Security as com-
puted at time t (see Equation (13)) 

 
Table 1. Repo rates for the 10Y as of 24 Jan 2019. 

Maturity Bid Ask 

1 month 2.57% 2.52% 

3 months 2.60% 2.55% 

6 months 2.63% 2.58% 

12 months 2.70% 2.65% 
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 Proxy Security is a traded security chosen in lieu of the yet unknown under-
lying, e.g., the on-the-run security as determined at time t.  

At rollt  the new security must be selected and a new strike populated, the 
strike gap being  

( ) ( )
( ) ( )

( )

e roll e roll

e e roll

e roll roll

ˆ ˆStrikeGap RiskFactor RiskFactor

ˆ ˆRiskFactor RiskFactor

ˆRiskFactor

t t t t

t t t

t t t

R L R L

R L

R R

= ⋅ − − ⋅ −

= − ⋅ −

− ⋅ −

    (52) 

In practice such a coincidence does not hold and because at inception the un-
derlying security may be unknown and definitely not listed or identifiable in the 
position keeping system, the trader, via the procedure described in Section 1.3, 
may book the trade approximating the Then-Current-T-Lock as a Standard 
T-Lock with underlying security specified as the security that is on-the-run at 
trade inception. At each benchmark roll date rollt , the booking is revised with 
the on-the-run at rollt  benchmark, generating a switch P & L, the roll P & L. 

We will show in the approximated derivation (66) that the roll P & L must be 
small in special conditions. This is all the more the case at a on-the-run succes-
sion, i.e., when the security rolls from the previous on-the-run benchmark to the 
new on-the-run issue. Indeed, the new on-the-run will normally have an internal 
rate of return in line with the existing level and, if we also take into account that 
because of the high frequency of issue (e.g. trimestral for the 10Y) the 
on-the-run succession normally brings a new coupon that is very close to that of 
the previous on-the-run, the roll P & L is potentially even less significant. 

3.1. The Roll P & L 

In this section we will present an approximated formula for the Roll P & L that 
will allow us, in the conclusive part of the paper, to compute statistical estimates. 

To keep things simple, assume the security is switched from a bond with cou-
pon rate c to a bond with coupon rate ĉ , all other details remaining equal. The 
net present value changes from  

( )
e et tt tD K F tπ  = −                     (53) 

to  

( )
e e

ˆ ˆˆt tt tD K F tπ  = −                      (54) 

The P & L due to the switch is  

( ) ( ) ( )( )e e e
ˆ ˆˆt t tt t tD K K F t F tπ π  − = − − −             (55) 

with ( )
et

K P L= , ( )
e

ˆ
t̂K P L=  and  

( ) ( ) ( )ˆ ˆe en i

i

n
t t y t t y

t i
t t

P y c α− − − −

>

= + ∑                (56) 

so that  
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( ) ( )e

e

ˆ ˆ e i

i

n
t t L

i
t t

K K c c α − −

>

− = − ∑                (57) 

Now, by definition  

( ) ( )
eet t tF t P R=                     (58) 

and  

( ) ( )ee
ˆ ˆ ˆ
t t tF t P R=                     (59) 

therefore 

( ) ( ) ( ) ( )
e ee e

ˆ ˆ ˆ
t t t t t tF t F t P R P R− = −                           (60) 

( ) ( ) ( ) ( )
e e e e

ˆ ˆ ˆ ˆ
t t t t t t t tP R P R P R P R   = − + −           (61) 

( ) ( ) ( ) ( )e
e e

e

ˆ ˆˆ e i t

i

n
t t R

i t t t t
t t

c c P R P Rα − −

>

 = − + − ∑       (62) 

where, when ent t−  is small, i.e., the bond at et  is close to the bond’s maturity, 
the last summand  

( ) ( ) ( ) ( )e e
e e

ˆˆ e en t n tt t R t t R
t t t tP R P R − − − −− = −                     (63) 

( ) ( )( )e e

e

ˆ
e ei t i t

i

n
t t R t t R

i
t t

c α − − − −

>

+ −∑               (64) 

can be approximated, at first order, as  

( ) ( ) ( ) ( ) ( )e e
e

e e
ˆ ˆ~

i

n

t t t t n i i t t
t t

P R P R t t c t t R Rα
>

 
− − + − − 

 
∑         (65) 

so that the (forward) P & L satisfies  

( ) ( ) ( )e e

e ee

ˆˆ
ˆ e ei i t

i i

n n
t t L t t Rt t

i i
t t t ttt

c c
D

π π
α α− − − −

> >

 −
= − − 

 
∑ ∑           (66) 

( ) ( )
e e

ˆ
t t t tP R P R − −                           (67) 

( ) ( ) ( )e e

e e

ˆˆ~ e ei i t

i i

n n
t t L t t R

i i
t t t t

c c α α− − − −

> >

 
− − 

 
∑ ∑           (68) 

( ) ( ) ( )
e

e e
ˆ

i

n

t t n i i
t t

R R t t c t tα
>

 
+ − − + − 

 
∑             (69) 

( )( ) ( )
e

e
ˆˆ~

i

n

t i i
t t

c c R L t tα
>

− − −∑                  (70) 

( ) ( ) ( )
e

e e
ˆ

i

n

t t n i i
t t

R R t t c t tα
>

 
+ − − + − 

 
∑             (71) 

Similarly, it can be shown that  

( )( ) ( )
ee

e
ˆ

ˆ~
i

n
t t

t i i
t ttt

c c L R t t
D

π π
α

>

−
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( ) ( ) ( )
e

e e
ˆ ˆ

i

n

t t n i i
t t

R R t t c t tα
>

 
+ − − + − 

 
∑               (73) 

Therefore, in as a much as  
 ent t−  is small  
 L is close to tR  
 there is no significant gap in the internal rate of return between the two se-

curities 
The security change generates little P & L in the forward contract position. 
More generally, in order to allow for longer tenor benchmarks, having defined  

( ) ( )e ,i

i

n
t t y

t i
t t

A y α − −

>

= ∑                      (74) 

the removal of the restriction that ent t−  is small leaves us with  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

e e e e
e

e eˆ ˆ

ˆ ˆ ˆˆ

ˆ ˆˆ~
t t

t t
t t t t t t t

tt

y t t y t t ty R y R

c c A L A R P R P R
D

c c A L R P R R

π π

= =

−    = − − + −   

   − ⋅ ⋅ − + ⋅ −    
    (75) 

where 

[ ] ( ) ( )e ,i

i

n
t t y

y t i i
t t

A t tα − −

>

= − −∑                  (76) 

Having (75) at hand, we are now able to assess the impact of switching the 
underlying security of the contract at the issue of a new benchmark. To this aim, 
in the next section we will look at a stylized description of how a new benchmark 
is constructed, where we ignore the change in the tenor structure of the bond, 
only focusing on the determination of a new par coupon rate so that the new 
benchmark is priced at par. 

3.2. Forming the New Benchmark 

Treasury benchmarks are periodically reissued by means of an auction mechan-
ism. The US government yearly publishes an auction calendar ([17]). 

The roll process is described in the graph (Figure 4), where the bracketed ex-
ponent on ( )P   is a placeholder for the coupon rate, a process that runs as fol-
lows: 
 First the internal rate of return tR  of the current benchmark is evaluated  
 The prospected coupon ĉ  of the new benchmark is located so that the new 

issue is at par, i.e., ( ) ( )ˆ 1c
t tP R =   

 Then the auction will filter through market appetite determining a final 
coupon rate ĉ′   

 Finally, the new internal rate of return ˆ
tR  is implied from ( ) ( )ˆ ˆc

t tP R′ .  
 

 
Figure 4. The auction process. 
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It’s clear that if the market confirms the new issue “at the old level” we land 
on ˆ

t tR R=  so, as can be elicited from Equation (75), minimizing the roll P & L. 
Because the above assumptions are normally not verified, to estimate the roll 

risk in practice, in Section 4.3 we will resort to a statistical analysis based on the 
history of auctions. 

4. Statistical Analysis 

Looking at market data from January 2008 for the 2Y, 5Y and 10Y Treasury 
benchmark (see Figures 5-7), we have the following summary statistics in Table 
2. The summary shows the average, the standard deviation and the two classic 
percentiles of the sample. Note that, in order to encompass non-standard scena-
rios, the data set includes the 2007 crisis. 
 

 
Figure 5. Treasury 2Y: Internal rate of return and risk factor. 

 

 
Figure 6. Treasury 5Y: Internal rate of return and risk factor. 
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Figure 7. Treasury 10Y: Internal rate of return and risk factor. 

 
Table 2. Treasuries: Internal rate of return statistics. 

IRR 2Y 5Y 10Y 

AVERAGE 0.88% 1.61% 2.40% 

STDEV 0.75% 0.61% 0.52% 

0.05 Perc 0.24% 0.70% 1.62% 

0.95 Perc 2.59% 2.77% 3.34% 

 
In the following sections we will use such historical data to verify in practice 

our guess regarding the efficacy of managing the risk generated by short T-Lock 
positions by booking them as forward contracts. The statistical anaysis is aimed 
at estimating:  

1) The overhedge error (Section 4.1) due to the payoff approximation illu-
strated in Section 1.3.  

2) The gamma negativity bounds (Section 4.2), that is the stability of negative 
sign of the gamma across market scenarios.  

3) The roll risk (Section 4.3) due to the P & L of the Bank generated during 
the life of the contract by the mispecification and consequent revision of the se-
curity underlying the sold T-Lock.  

4.1. Overhedge Error Estimation 

We first look at the overhedge error (9) by extracting a historical estimation for 
(32). Considering a 6M T-Lock on the 10Y benchmark, we find (Table 3) that 

2y L−  is on average 0.004% and at most (i.e. at 0.05% percentile) 0.0206%, and 
consequently (also recalling the estimate (34)), from (32) we have that the over-
hedge error is on average 0.32% of the notional and most likely bounded above 
by 1.55%, an event that materialized during the 2011 crisis that led to US  
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Table 3. Overhedge error.  

6M y L−  ( )2y L−  

AVERAGE −0.090% 0.004% 

STDEV 0.663% 0.006% 

0.05 Perc −1.44% 3.92E−08 

0.95 Perc 0.93% 0.0206% 

 
downgrade by the major rating agencies (Brandimarte and Bases [18]). For the 
estimations in Table 3 we have assumed to be in a typical business case where 
the locked yield L to be set at the IRR seen at inception t, so that y L−  is taken 
to be the 6-month performance 6Mt tR R+ −  of the IRR. For ease of reading we 
omit reporting estimates for other cases, such as 3M, yielding similar results. 

4.2. Negative Gamma Bounds 

Considering the same historical window, in the following we have considered a 
daily time series of the upper bound (48) and reported in Tables 4-6 the relevant 
statistics. A move of such magnitude within the typical features (expiry and 
at-the-money strike) of a T-Lock trade is highly unlikely and has never been 
recorded being outside ordinary levels of core governative yields. 

4.3. Assessment of the Roll Risk 

We have considered roll data from January 2008 for the 10Y Treasury bench-
mark. It is a very large time window which is chosen to encompass extreme his-
torical scenarios. 

From Table 7, we see that, for the 10Y, the IRR change at roll dates tends to 
be higher than the IRR change on the whole sample. Consequently we expect P 
& L change an unfavourable on the T-Lock position at each benchmark switch. 

To further the analysis, in the following we will look at the statistics regarding 
the actual P & L. Ignoring the discounting effect, which is a reasonable approxi-
mation by virtue of the short time horizon under scrutiny, we have considered a 
time series of (75) and computed the relevant percentiles and value-at-risk for 
the (forward) net present value of the forward contract for 1M, 3M, 6M, 12M 
expiries and 3% locked yield. From the point of view of the trader selling the 
T-Lock on the 10Y (Table 8): the average roll generates for the trader roughly a 
−0.105% of the notional loss which peaks at −1.04% at the 95-th percentile for 
the shortest expiry. 

For the 5Y benchmark, data are more comfortable, showing a lower roll risk, 
both in the average and in the 95-percentile for all expiries (Table 9). For the 2Y 
benchmark, data are generally showing a lower roll risk, both in the average and 
in the 95-percentile for all expiries. We have also detected a robust insensitivity 
of the reported computation results to the choice of strike, so we here only focus 
on an indicative 3% level (Table 10). 
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Table 4. Upper bound for negative gamma for the 10Y.  

10Y Treasury Upper Bound 

AVERAGE 11.44% 

STDEV 0.10% 

0.05 Perc 11.28% 

0.95 Perc 11.61% 

 
Table 5. Upper bound for negative gamma for the 5Y. 

5Y Treasury Upper Bound 

AVERAGE 21.31% 

STDEV 0.12% 

0.05 Perc 21.11% 

0.95 Perc 21.51% 

 
Table 6. Upper bound for negative gamma for the 2Y. 

2Y Treasury Upper Bound 

AVERAGE 22.47% 

STDEV 15.20% 

0.05 Perc 11.15% 

0.95 Perc 25.57% 

 
Table 7. Treasury 10Y: Yield change. 

10Y Treasury Yield Change Yield Change on Roll 

AVERAGE −0.0006% 0.0123% 

STDEV 0.0497% 0.0571% 

0.05 Perc −0.0760% −0.0528% 

0.95 Perc 0.0794% 0.1166% 

 
Table 8. Roll P & L for the 10Y. 

10Y Treasury Roll P & L (Trader’s View) 

3.00% 1M 3M 6M 12M 

AVERAGE −0.1085% −0.1069% −0.1045% −0.0996% 

STDEV 0.5028% 0.4953% 0.4841% 0.4615% 

0.05 Perc 0.4749% 0.4677% 0.4568% 0.4352% 

0.95 Perc −1.0395% −1.0238% −1.0005% −0.9530% 
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Table 9. Roll P & L for the 5Y. 

5Y Treasury Roll P & L (Trader’s View) 

3.00% 1M 3M 6M 12M 

AVERAGE −0.05% −0.04% −0.04% −0.04% 

STDEV 0.22% 0.22% 0.21% 0.18% 

0.05 Perc 0.24% 0.23% 0.22% 0.20% 

0.95 Perc −0.43% −0.42% −0.40% −0.35% 

 
Table 10. Roll P & L for the 2Y. 

2Y Treasury Roll P & L (Trader’s View) 

3.00% 1M 3M 6M 12M 

AVERAGE −0.07% −0.07% −0.06% −0.05% 

STDEV 0.51% 0.51% 0.50% 0.50% 

0.05 Perc 0.32% 0.31% 0.31% 0.30% 

0.95 Perc −0.52% -0.51% −0.49% −0.45% 

5. Valuation Adjustments 

Just as any derivative, a position on the T-Lock carries counterparty risk (see 
Gregory [19], Morini and Prampolini [20]). As such, CVA and DVA should also 
be included in the book value of the trade and in the final price to the client. 

The calculation of such adjustments is a run-of-the-mill task for a bank deal-
ing in derivatives but, whereas it may be argued that short-term trades generally 
attract low counterparty risk, we also notice that a T-Lock short position is sub-
ject to systemic wrong-way counterparty risk. Indeed, on a distressed scenario 
where the corporate market is undermined, a flight-to-quality ensuing regime 
may concurrently lower the Treasury spreads increasing the Bank exposure to 
the Client. It is difficult though to envision a situation where the corporate sec-
tor suffers and the banks thrive so it may be argued that the adverse move of the 
CVA may be offset by a specular increase in the DVA component, lowering the 
potential impact of wrong-way-risk on the bank’s balance sheet. 

As for the FVA (Andresen, Duffie and Song [21], Morini and Prampolini [20], 
Albanese and Andreasen [22]), having noticed that the natural hedge is a repo 
trade, a funding cost arises from the cash leg of the hedge the Bank is posting to 
borrow the security or from the collateralization mechanism if the repo is 
CSA-assisted or cleared. 

From the point of view of the dealer bank, capital costs (KVA) are also mi-
nimal allowing for a interesting profitability of T-Locks although, by the same 
token, the trade will not afford high mark-ups. 

Turning our attention to the proxy booking proposed, the overhedge nature 
the approximation will underestimate the exposure generated by the short 
T-Lock position, therefore underestimating the “contra” contribution (see Al-
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banese and Andreasen [22]) of counterparty risk, funding value adjustments and 
KVA. Nevertheless the short-term nature of the transaction under investigation 
will mitigate the consequences of such underestimation considering that XVA’s 
for at-the-money trades are normally priced at a fraction of the carried exposure. 

6. Conclusions 

We have shown that a long Standard T-Lock position has negative convexity, so 
the trader may safely (over-)replicate it by booking a linear trade, a proxy for-
ward contract, which is a natural overhedge. In other words, a trader willing to 
sell a Standard T-Lock position can book the trade as a forward contract written 
on the same security and with the same expiry as that of the T-Lock contract. 
Being an overhedge, the forward contract will generate a conservative represen-
tation of bank’s P & L associated to the position. The negative convexity will en-
sure that delta hedging the positions will generate gamma profits. This comes in 
handy when the front office risk management system does not feature the 
T-Lock as a typology. 

Moreover, we have shown that a T-Lock position is historically little sensitive 
to the benchmark roll. Therefore, a trader may book a Then-Current-T-Lock 
trade as a proxy forward contract written on the security that is on-the-run 
benchmark at inception and remain confident that revising the booking at roll 
dates to update the underlying will statistically generate a negligible P & L, while 
again, thanks to the negative convexity of the T-Lock, delta hedging the position 
in between roll dates will generate gamma profits. 
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Appendix 

A. Simple Math 
Below we recall simple facts about first and second derivatives of differentiable 

functions. If f and g are differentiable then  

( )f g f g′ ′ ′= ⋅                        (77) 

and 

( ) ( ) ( ) ( )2f g f g g f g g′′ ′′ ′ ′ ′′= ⋅ + ⋅                 (78) 

As a consequence, if f invertible and differentiable then  

( )1 1f
f

− ′ =
′
                          (79) 

and 

( )
( )

1
3

ff
f

− ′′′′ = −
′

                      (80) 

B. Key Derivatives 
Noting that  

( ) ( ) ( ) ( ) ( )0 ,c
t t tP y P y cA y= +                   (81) 

and 
( ) ( ) ( ) [ ]e nt t yc

y t n y tP t t c A− −  = − − +                (82) 

( ) [ ]0
y t y tP c A = +                     (83) 

we can work out that  

( ) ( ) ( ) ( ) ( )e en i

i

nk kt t y t t yck
y n i i

t t
P t t c t tα− − − −

>

  = − + −  ∑         (84) 

[ ] ( ) ( )e ,i

i

n k t t yk
y t i i

t t
A t tα − −

>

= −∑                  (85) 

and 
( ) ( ) ( ) [ ]e nk t t yck k

y t n y tP t t c A− −  = − +                  (86) 

( ) [ ]0k k
y t y tP c A = +                       (87) 

C. More Math 
Setting ( )i iq t t= − , ( )e it t y

i iQ α − −=  we see that  
( ) [ ] ( ) [ ] ( ) [ ]0 0 01 3 3 1 2 22 0y t y t y t y t y t y tP A P A P A     + − ≥                  (88) 

because  

[ ]23 3 22
i i i i

n n i i n n i i n n i i i n i n i n
t t t t t t t t

q Q q Q q Q q Q q Q q Q Q Q q q q q
> > > >

+ − = −∑ ∑ ∑ ∑  

is a clearly non-negative. 
Moreover,  
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[ ]( ) [ ] [ ]22 1 3 0y t y t y tA A A− ⋅ <                    (89) 

because  
2

23 2

,
0

i i i i j
i i i i i i i j i j

t t t t t t t t t t
q Q q Q q Q Q Q q q

> > > > >

     
 − = − >       

     
∑ ∑ ∑ ∑       (90) 

Indeed,  
2

3 2 3 2 2

i i i
i i i i i i i j i j i j i j

t t t t t t i j i j
q Q q Q q Q q q Q Q q q Q Q

> > > ≠ ≠

 
− = − 
 

∑ ∑ ∑ ∑ ∑            (91) 

( )3 3 2 22i j i j i j i j i j
i j i j

q q q q Q Q q q Q Q
< <

= + −∑ ∑  

( )3 3 2 22i j i j i j i j i j
i j

q q q q Q Q q q Q Q
<

= + −∑       (92) 

( )2 2 2 22i j i j i j i j i j
i j

q q q q Q Q q q Q Q
<

= + −∑      (93) 

( )2
i j i j i j

i j
q q Q Q q q

<

= −∑                (94) 

is clearly positive2. 
D. The Forward Price and the Repo 
A coupon security/dividend security X is a security that pays a discrete stream 

of cashflows ic , each at time iT . It could be either a stock or a coupon bond. 
If cuth  is the haircut, the T-forward price of the security, paying a dividend 

ic  at time iT , 1, ,i n=  , is  

( ) ( ) ( ) ( )repo funcut cutForwardPrice 1 e er T t r T t
t tT X h h− − = − +  

         (95) 

( )( )( )cut fun cut repo1

<
e i

i

h r h r T T

i
t T T

c
+ − −

≤

− ∑               (96) 

where repor  is the repo rate, funr  is the funding rate for unsecured borrowing. 
Both rates are assumed continuously compounded and flat for ease of illustra-
tion. 

Assuming first cut 0h = , in a repo trade with dividends/coupons with ma-
turity T the trader  

1) Borrows in the time interval [ ]0 1,T T  an amount tX  of cash at rate repor  
until T, with which s/he buys bond from the market and immediately transfers it 
to the repo counterparty.  

2) Then for each [ ]1,i iT T−  on each bond schedule node iT , receive coupon 

ic  and decrease the borrowed outstanding in the repo by ic .  
3) At T, s/he gets the bond back, sells it in the market and returns all out-

standing borrowed cash to the repo counterparty.  
We describe our position by the quantity tA  which represent the cash owned 

(plus sign)/owed (minus sign) to the repo counterparty, the repo account. 

 

 

2For ease of reading, in the above summations we have omitted typing the conditions it t>  and 

jt t> . 
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At start on the repo trade our repo account amounts to t tA X= − . At each 
coupon payment we decrease the outstanding by the coupon amount. For in-
stance, at 1T  the repo account becomes  

( )repo
1

1 1 er T t
T tA c A −= +                       (97) 

Then, recursively, for 2, ,i q=  , at iT   
( )repo

1
1
e i i

i i

r T T
T i TA c A −

−

−= +                    (98) 

and finally from qT  to T it accrues to the terminal value  
( )repo

e qr u T
u qA A −
=                        (99) 

Working out the recursion we see the repo cash account grows as  
Lemma 1. For all u t≤ ,  

( ) ( )repo repo
e ei

i

r u T r u t
u i t

t T u
A c X− −

< ≤

= −∑                  (100) 

So at maturity the strategy is worth  

T T Tv X A= +                         (101) 

In other words, the trader enters at t a contract at zero cost and ends up, via 
the repo strategy, at T with a TX  in exchange for TA , which means, by defini-
tion, that TA  is the T-forward price of the security  

( ) ( ) ( )reporepo
ForwardPrice e e i

i

r T Tr T t
t t i

t T T
T X c −−

< ≤

= − ∑            (102) 

If, on the other hand, due to market illiquidity the repo trade is not viable for 
the given security, the formula still holds but with funr  in lieu of repor  

( ) ( ) ( )funfun
ForwardPrice e e i

i

r T Tr T t
t t i

t T T
T X c −−

< ≤

= − ∑            (103) 

The two cases (102), (103) are the extreme cases:  
 cut 0h = : all funding is secured since based on the repo trade  
 cut 1h = : there is no repo trade, all funding is unsecured.  

Finally, for a generic haircut cut0 1h≤ ≤  we obtain a “blend” formula:  

( ) ( ) ( ) ( )repo funcut cutForwardPrice 1 e er T t r T t
t tT X h h− − = − +  

      (104) 

( )( )( )cut fun cut repo1
e i

i

h r h r T T

i
t T T

c
+ − −

< ≤

− ∑            (105) 

which may be derived from a strategy where coupon payments are distributed 
between repo redemption and unsecured funding redemption according to the 
their relative weights. 
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