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Abstract 
GARCH models have been commonly used to capture volatility dynamics in 
financial time series. A key assumption utilized is that the series is stationary 
as this allows for model identifiability. This however violates the volatility 
clustering property exhibited by financial returns series. Existing methods 
attribute this phenomenon to parameter change. However, the assumption of 
fixed model order is too restrictive for long time series. This paper proposes a 
change-point estimator based on Manhattan distance. The estimator is appli-
cable to GARCH model order change-point detection. Procedures are based 
on the sample autocorrelation function of squared series. The asymptotic con-
sistency of the estimator is proven theoretically. 
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1. Introduction 

Modelling volatility of financial asset returns is particularly an important area in 
Finance. This is because volatility is considered to be a measure of risk when 
pricing financial instruments. The series particularly is characterized by the 
property of volatility clustering and thus can be considered to display a statio-
nary behavior for some time then suddenly the variability changes, it stays con-
stant for some time at this new value until another change occurs. This therefore 
suggests that the financial returns series is non-stationary and can be looked at 
as a union of several stationary series. GARCH models have been commonly 
used to capture volatility dynamics in financial time series particularly in model-
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ling of stock market volatility as seen in [1] [2] [3] and derivative market volatil-
ity as utilized by [4] [5] and [6]. 

Given the changing pace of the underlying economic mechanism and tech-
nological progress, modeling economic processes over a long time horizon, it is 
possible that structural changes may occur. This can cause the time series to de-
viate from stationarity and result to volatility clustering. The detection of these 
structural change points is therefore vital to various players in a given economy 
to ensure timeliness of decisions. A fundamental problem in financial trading is 
the correct and timely identification of turning points in stock value series. This 
detection enables one to make profitable investment decisions, such as buying- 
at-low and selling-at-high, hence traders require early identification of local 
troughs and peaks of stock values. In macroeconomics, knowing the beginning 
of a recession leads to an increase of government expenditure or an expansion of 
money supply. 

A key assumption of the GARCH models used is that the process is stationary 
as this allows for model identifiability. However, this violates the volatility clus-
tering property exhibited by the financial returns series. This phenomenon is 
manifested by the fact that the absolute value of returns or their squares display 
a positive, significant and slowly decaying autocorrelation function despite the 
fact that the returns are uncorrelated. This indicates that modeling financial re-
turns series over long time horizons deviates from the stationarity assumption 
suggesting the existence of a change-point in the series. A modification of the 
GARCH model, specifically the IGARCH model, has been proposed to model 
the persistent changes in volatility as the stationarity assumption is relaxed. 
However the IGARCH model is prone to some shortcomings. [7] showed that 
the behavior of an IGARCH process depends on the intercept, such that, if the 
intercept is positive then the unconditional variance of the process grows linear-
ly with time. In practice this means that the amplitude of the clusters of volatility 
to be parametrized by the model on the average increases over time. The rate of 
increase needs not, however, be particularly rapid. If the intercept is zero in the 
IGARCH model, the realizations from the process collapse to zero almost surely. 
However, a potentially disturbing fact is that the model assumes that the uncon-
ditional variance of the process to be modeled does not exist in that the variance 
may be infinite [8] and [9]. 

It is argued that in applications, the assumption of parameter constancy in 
GARCH models may not be appropriate especially when the series to be mod-
eled are long [10]. To overcome this problem of modeling financial time series 
in the presence of structural changes, the duo suggests that one option is to as-
sume that the parameters change at specific points of time, divide the series into 
sub-series according to the location of the change-points and fit separate 
GARCH models to the sub-series. This brings about the challenge of determin-
ing the number of change-points and their location because they are normally 
not known in advance. This proposition has been adopted by various researchers 
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who have utilized different methodologies to be able to locate the change-points 
attributed to change in parameter specification. The use of squared model resi-
duals and likelihood ratio to detect parameter changes is proposed by [11] while 
[12] proposes the use of Markov-switching GARCH models estimated through 
Markov Chain Monte Carlo simulation methods. Modeling of equity volatilities 
as a combination of macroeconomic effects and time series dynamics by com-
bining exponential splines and GARCH models is utilized by [13]. An alternative 
approach is to use smooth transition GARCH model. This can be achieved by 
defining a transition function where the coefficients are expressed as a function 
of time as in [9] or by employing non-linear functions that are lagged for the 
squared observations [14] and [15] or lagging the conditional variance [16]. 
CUSUM tests have also been proposed as suitable methods of identifying 
change-points by establishing breaks in moments of the time series. The use of 
the unconditional variance is proposed by [17] while [18] [19] use the mean. 
However, these methods are mainly based on the assumption that change-points 
occur solely due to change in parameter specification. The approach presented 
here seeks to identify change-points attributed to change in model order specifi-
cation. 

This paper is organized as follows. Section 2 gives an overview of GARCH 
model specification with corresponding assumptions utilized in the proof of the 
main result. Section 3 presents the proposed change-point estimator for change 
attributed to in the model orders p and q in GARCH models. The estimator is 
based on the Manhattan distance of sample autocorrelations of a squared returns 
series. Section 4 provides proof of the consistency of the proposed change-point 
estimator. 

2. GARCH Model 

Assume that the data tX , for t∈ , are independent and sampled at equi- 
spaced points. The series ( )t t

X
∈  describe a financial returns time series mod-

eled using ( )GARCH ,p q  model specified as: 

2 2 2
0

1 1

fort t t
p q

t i t i j t j
i j

X t

X

σ

σ α α β σ− −
= =

=

∈

+ +

=

∑ ∑



                  

(1) 

The sequence of innovations ( )t t∈  is an independent and identically dis-
tributed (iid) sequence with mean zero and unit variance. ( )t t

σ
∈  is the volatil-

ity sequence of the GARCH model. Assume that 0p qα β ≠  and that all coeffi-
cients iα  and jβ  are non-negative to avoid ambiguity with regards to orders 
( ),p q . Since we are not interested in the trivial solution 0tX ≡  to (1), further 
assume that 0 0α > . 

Let p q=  and 2
,i t i i i t ic β α− −= +   for 1,2, ,i p=  , where { },i tc  is a se-

quence of independent and identically distributed random variables such that 

,i tc  is independent of tσ . This allows us to rewrite (1) as 

https://doi.org/10.4236/jmf.2018.82018


I. W. Irungu et al. 
 

 

DOI: 10.4236/jmf.2018.82018 269 Journal of Mathematical Finance 
 

( )
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(2) 

Model (2) is utilized in the proof of consistency of the proposed change-point 
estimator. 

The GARCH (p,q) model (1) can also be represented as an ARMA(max(p,q),q) 
as showed by [20] as  

2 2 2
0

1 1 1
for

p q q

t i t i j t j t j t j
i j j

X X X u u tα β α β− − −
= = =

− − = + − ∈∑ ∑ ∑ 
        

(3) 

where 2 2
t t tu X σ= −  and  ( )t t

u
∈  is white noise. 

This representation of the GARCH model follows the standard ARMA form 
for the squared series, therefore, conventional methods used to identify ARMA 
processes may be used to determine the presence of GARCH. Of keen interest is 
the use of the sample autocorrelation function (SACF) and partial autocorrela-
tion functions (PACF). Specifically, the orders p and q are drawn from the au-
tocorrelation function and partial autocorrelation function respectively. Empiri-
cally, these orders are chosen such that the SACF cuts off after lag p and the 
PACF decline exponentially to zero after lag q for which they are significant. In 
light of this it can be asserted that the SACF and PACF can be used to distin-
guish GARCH model with different model orders specifications. 

The following assumptions are necessary to prove the subsequent theoretical 
results. 

Assumption 1 (Independence) 
i) t ’s are independent and identically distributed 
ii) tX ’s are independent of the t ’s for 1 t n≤ ≤  
Assumption 1 will ensure parameters in model (1) are estimated using Quasi- 

Maximum Likelihood Estimation method. 
Assumption 2 (Strictly Stationary) 
According to [21] the existence of a unique strictly stationary solution to (1) is 

the negativity of the top Lyapunov exponent. This however cannot be calculated 
explicitly but a sufficient condition for this is given by 

1 1
1

p q

i j
i j
α β

= =

+ <∑ ∑
                        

(4) 

Assumption 3 (Ergodic Process) 
According to [22] standard ergodic theory yields that ( )tX  is an ergodic 

process. Thus its properties can be deduced from a single sufficiently large ran-
dom sample of the sample. 
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3. Change-Point Estimator 

Assume that the data { } 1

n
t t

X
=

 describes a financial returns time series modeled 
using ( )GARCH ,p q  process. A single change-point testing problem is first 
considered where it is assumed that a change-point can happen only at time k 
where 1 1k n< < − . The hypotheses to be investigated are assumed to follow the 
following definition: 

( )

( )
( )

{ }

0

1

: GARCH 1,1 for 1, ,
against

GARCH 1,1 for 1, ,
where , \ 0

GARCH , for 1, ,
:

t

t

H X t n

t k
H X p q

p q t k n

∼ =

=∼ ∈
= +








    

(5) 

Let I =   be a finite index sequence and ( )t t
X

∈  satisfy Assumptions 1 and 
2. Let ( )1 2, , , kX X X X=   be a k dimensional vector and  

( )1 2, , ,k k nY X X X+ +=   be a ( )n k−  dimensional vector. The autocovariance 
and autocorrelation functions can be expressed in terms of the inner product as 

( ) ( ), ,acovar X Y X E X Y E Y= − −
               

(6) 

( ) ( )
( )

, ,
( )

X E X Y E Y
acorr X Y

sd X sd Y
− −

=
               

(7) 

where ( )sd X  and ( )sd Y  represents the standard deviation of X and Y re-
spectively which represents an 2L  distance from the mean. 

By the Assumption 3 that the series ( )t t
X

∈  is ergodic, then it is implied that 
the sample moments converge in probability to the population moments. It 
therefore follows that the sample autocovariance and autocorrelation converge 
in probability to the population autocovariance and autocorrelation respectively. 

Theorem 1. (Holder’s Inequality) 
Let I be a finite or countable index set. Given 1 p≤ ≤ ∞ , if  

( ) ( )k pk I
X X L I

∈
= ∈  and ( ) ( )k pk I

Y Y L I′∈
= ∈ , where 1 1 1

p p
+ =

′
 then 

( ) ( )1k k k I
XY X Y L I

∈
= ∈  and 

( ) ( )
1 1

1

p pp p
k k k kk I k Ip p

k I k I
XY X Y X Y

′′

∈ ∈ ′
∈ ∈

   
≤ = < ∞   

   
∑ ∑

      
(8) 

Let 2p p′= =  in the Holders Inequality Theorem 1 we obtain 

( ) ( ) ( )2 2E X Y E X E Y≤
                  

(9) 

Thus, applying the result in (9) to (6) and (7) yields 

( ) ( ) ( ) 1, spaceacovar X Y sd X sd Y L≤ ∈
             

(10) 

( ) 1, 1 spaceacorr X Y L≤ ∈
                   

(11) 

Following (11) define sequences of autocorrelation functions 1,i jρ +  where for 
fixed 0i = , 1 1j n≤ ≤ −  and for fixed j n= , 1 1i n≤ ≤ −  to be such that we 
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have two subsequences ( )1 1,1 1,2 1, 1, 1, , , ,j k nρ ρ ρ ρ ρ −=  
 and  

( )2, 3, 1,, , , , ,in n n k n nnρ ρ ρ ρ ρ+=  
 where 1,kρ  and 1,k nρ +  denote the autocor-

relation of the sequence { }2

1

k

t t
X

=
 and { }2

1

n

t t k
X

= +
 for 1 k n≤ ≤ . 

An estimator is proposed drawn from a process k
nD  quantifying the devia-

tion between 1,kρ  and 1,k nρ +  using a divergence measure motivated by the 
weighted pL  distance, with k denoting the change-point. For 0p >  define 

( )
1

1, 1, 1
1

2 2
1

4
1

where for 0 ,0

n pp
p k k n k k k

k

k h
t t ht

k k
tt

L w

X X
k n h n

X

ρ ρ φ φ

φ

+ +
=

−
+=

=

 
− = − 

 

< <= < <

∑

∑
∑           

(12) 

Specifically, assume the case when 1p =  in (12) resulting into a weighted 
Manhattan distance and by linearity and absolute value of inequalities of the ex-
pectation operator results into 

( )

( )
( ) ( )

1 1, 1, 1
1

1

1

n

k k n k k k
k

k k k

k k k

L w

E w

w E E

ρ ρ φ φ

φ φ

φ φ

+ +
=

+

+

 
− = − 

 
= −

≥ −

∑

              

(13) 

To facilitate the construction of the proposed estimator the lower bound of 
the divergence measure (13) is assumed. Further assume that the autocorrelation 
function is calculated at lag : 0h h n< < . The proposed change-point estimator is 
thus developed from the process generated by this measure as follows: 

( ) ( )1
1 1

1 1k n

k k k k i i
i i k

w E E w
k n k

φ φ φ φ+
= = +

− = −
−∑ ∑

           
(14) 

From (14) it can be seen that the proposed test is a weighted difference be-
tween the sample autocorrelation functions 1,kρ  and 1,k nρ +  with kw  denot-
ing the weight. 

Assumption 4. (Weight) 
The weight kw  is a measurable function that depends on the sample size n 

and change-point 𝑘𝑘. It is arbitrarily chosen such that it satisfies the condition 
that 

1 1

1 1

1 0

k n

i i
i i

k n

i i
i i

k
n

k
n n

φ φ

φ φ

= =

= =

=

 
⇒ − = 

 

∑ ∑

∑ ∑
                    

(15) 

Equating (14) and (15) determines the weight kw  as follows: 

1 1 1 1

1 1

1 1 1

1 1

k n k n

k i i i i
i i k i i

k n

i i
i i k

kw
k n k n n

k k k n k
n n n k n k

φ φ φ φ

φ φ

= = + = =

= = +

=

   
− = −   −   

  −    − −     −     

∑ ∑ ∑ ∑

∑ ∑
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1 1

1 11

1

k n

i i
i i k

k

k k
n n k n k

k kw
n n

φ φ
= = +

  = − −  −  
 ⇒ = − 
 

∑ ∑

                

(16) 

The resultant process is obtained from (14) and (16) and defined as 

1 1

1 11
k n

k
n i i

i i k

k kD
n n k n k

φ φ
= = +

 = − −  − 
∑ ∑

               
(17) 

The change-point estimator k̂  of a change point *k  is the point at which 
there is maximal sample evidence for a break in the sample autocorrelation 
function of the squared returns process. It is therefore estimated as the least val-
ue of k that maximizes the value of k

nD  where 1 k n< <  is chosen as: 

{ }1
ˆ min : maxk k

n nk n
k k D D

< <
= =

                   
(18) 

4. Simulation Study 

The performance of the proposed estimator is examined by considering the ef-
fects of the change in sample size. Assume that { }tX  is a stationary 

( )GARCH ,p q  process where { }, \ 0p q∈ . The single change-point estimation  

problem is considered where the change-point k is fixed at 
2
n  for 500n = ,  

1000n =  and 2000n = . Figures 1-3 display the plots for the location of the 
change-point estimator as estimated by the proposed estimator (18) for various 
sample sizes. The hypothesis considered here is when change occurs in model 
order q, described as; 

( )

( )
( )

0

1

: GARCH 1,1 for 1, ,
against

GARCH 1,1 for 1, ,

GARCH 1,2 fo

:

r 1, ,

t

t

t

H X t n

H X t k

X t k n

∼ =

∼ =

∼ = +





              

(19) 

The following table gives the parameter estimates used in the simulation. 
 

Parameter GARCH(1,1) GARCH(1,2) 

0α  72.008 10−×  72.008 10−×  

1α  16.193 10−×  12.714 10−×  

1β  16.775 10−×  13.283 10−×  

2β   13.073 10−×  

 
The change-point estimators obtained are 264k = , 587k =  and 1052k =  

for sample sizes 500, 1000 and 2000 respectively as displayed in Figures 1-3. The 
performance of the estimators is evaluated using the Adjusted Rand Index (ARI) 
which compares the segmentation created by the change-point estimator and the 
true segmentation. The Adjusted Rand Index lies between 0 and 1. When the 
two partitions agree perfectly, the ARI is 1. The results of the ARI are provided 
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in Table 1 for changes in order q. 
The results for the change in order q in Table 1 show that as the sample size 

increases, the similarity index given by ARI generally increases. 

5. Consistency of the Change-Point Estimator 

Consider a sample 2 2 2
1 2, , , nX X X  satisfying (2) and (5) and the change-point 

estimator k̂  given by (18). If the sequences { }2
1,kX  and { }2

2,kX  satisfy 
 

 
Figure 1. Single Change-Point for Stationary Series GARCH tX  for 500.n =  

 

 

Figure 2. Single Change-Point for Stationary Series GARCH tX  for 1000.n =  
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Figure 3. Single Change-Point for Stationary Series GARCH tX  for 2000.n =  

 
Table 1. Adjusted rand index given changes in order q. 

n Δq Hubert and Arabie ARI Fowlkes and Mallows ARI 

500 1 1.00 0.9895613 

1000 1 1.00 0.9914832 

2000 1 1.00 0.9971880 

 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

1 2

1 2

1 2
2 11 11 11 2 11 12

2 2
4 11 2 12

2
2 1 2 2 1 1

2
4 1 2

1 1

1 1

1 1 1
0

1

h

S S

S S

M h M h

ν γ γ γ ν γ γ
δ

ν γ ν γ

ν γ γ ν γ γ
ν γ γ ν γ

−  − − − =
− − −

− − − −  − ≠
− −        

(20) 

then for 
ˆ

ˆ k
n

τ = , 

{ }*
1

2 2 2

ˆ CP
n

τ τ ε
ε δ

− > ≤

                    

(21) 

where C is a positive constant. 
Proof Suppose that { }2

1, ,kX k∈  and { }2
2, ,kX k∈  are two ( )GARCH ,p q  

sequences as defined in model (2). Further suppose that a sample  
2 2 2
1 2, , , nX X X  from the model is observed, such that 

2 *
1,2
2 *
2,

if

if

1k
k

k

X k k
X

X k k n

≤ ≤

< ≤

= 
                     

(22) 

where *k  is the unknown change point. More specifically assume that the two 
sequences have different model order specification such that 
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( )
( )

*
1 12

*
2 2

GARCH , if 1

GARCH , ifk

p q k k
X

p q k k n

=
≤

< ≤


≤

               
(23) 

where 1 2p p≠  and 1 2q q≠  but 1 1 1p q= =  and 2 2p q= . Let * *k nτ=  and 
assume that  0 1τ< < , then in the presence of the change-point, the sequence 

{ }2
kX  is no longer stationary. 

The foundation of this proof is based on the second and fourth moments of 
{ }tX  which will first be derived. Assume that the GARCH(p,p) model (2) has a 
finite fourth moment and let ( ) , 2, 4j

t jE jν= = . The assumption that the 
second moment of { }tX  exist it implies that ( ), 2 1i t i i iE c β αν− = + < . Let 

( )1 ,i i t iE cγ −= , ( )2
2 ,i i t iE cγ −=  and 

1
p

i ijiγ γ
=

= ∑  for 1,2, ,i p=   and 1,2j = . 
The second and fourth moments of { }tX  is established by determining 

( )2
tE σ  and ( )4

tE σ  as follows: 

( )2 2 0
0 ,

1 11

p

t i t i t i
i

E E c α
σ α σ

γ− −
=

 
= + =  − 

∑
               

(24) 

Equation (24) shows is that ( )2
tE σ < ∞  exists for 1 1γ < . 

( )

( ) ( ) ( )

4 2 2 2 4 2 2
0 0 , , , ,

1 1

2 2 4 2 2
0 0 1 2 , ,

2 2

2 2

p p p

t i t i t i i t i t i l t l m t m t l t m
i i l m

p

t t l t l m t m t l t m
l m

E E c c c c

E E E c c

σ α α σ σ σ σ

α α γ σ γ σ σ σ

− − − − − − − −
= = <

− − − −
<

 
+ + + 



+ +

=

=



+

∑ ∑ ∑

∑
  

(25) 

To establish ( )4
tE σ  the ( )2 2

, ,l t l m t m t l t mE c c σ σ− − − −  is determined using the fol-
lowing Theorems as proved by [23]. 

Theorem 2. Assume that ( ) 1λ Γ < . Under this condition, 

( ) ( ) ( ) ( ) ( )2 2 2 4
, , 0 1 1 1 1 2, ,l t l m t m t l t m l m t l tE c c M l m E M l m Eσ σ α γ γ σ γ σ− − − − = +   (26) 

where for 1m l− >  

( ) { } ( )*

1 1

1 1 1 1 1\
1 1 1

, 1
m l i m l

j i p m l pP m l p
i j i

M l m e j I eγ
− − − −

− − + −−
= = =

    ′= + Γ + Γ + Γ −Γ    
    

∑ ∏ ∏  

( )1 1,1, ,1pj − = ′
  is a ( )1 1p − ×  vector 

( )1 1, ,1,0, ,0pe − = ′
   is a * 1p ×  vector with the first 1p −  elements equal 

to 1 
( )k kE CΓ =  is a matrix of order ( ) ( )1 1p p− × −  with 1m l− +Γ  a matrix of 

order ( ) *1p p− ×  and Γ a matrix of order * *p p×  
( ) { }max iλ λΓ =  is maximum absolute eigenvalue of the matrix Γ 

In particular 

( ) { } ( )
( ) ( ) ( )

( ) { }

*

1

1 1 2 1\ 1

4

2 21 1 2
2

1

21 , 1 ,\
1 1

1, 1

, , ,

,

p pP p

m i
i

m l i

m l m j m l i mP m l
i j

M m m j I e

M l m M l m M l m

M l m e

γ

γ

γ γ γ

−

− −

=

− −

− − −−
= =

 ′− = + + Γ −Γ  

= +

  
′= + Γ  

   

∑

∑ ∏ 
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( ) ( )

( ) ( )( )

( ) { } ( ) ( )*

1

22 1 22 ,
1 1

1

23
1

1 1

24 \
1

,

, , 2, 1

, 1, 2 1

pm l

i j m l j
i j m l

m l p

i m l

m l

jP m l p
j

M l m M m l i

M l m c m l i

M l m I m l p m l p

γ γ

γ

γ γ

− −

− +
= = − +

− + −

= − +

− + −

−
=

= − − +

= − −

  
′= Γ −Γ − + + − + −  

   

∑ ∑

∑

∏



 

Proof. For proof of Theorem 2 see Appendix 5 of [23]. 
Substituting (24) and (26) in (25) yields 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

4 2 2 4 2 2
0 0 1 2 , ,

2 2 4 2
0 0 1 2 0 1 1 1

1 1

4
1 2

2 2

1 12 2 ,
1 1

2 ,

p

t t t l t l m t m t l t m
l m
p

t l m
l m

p

l t
l m

E E E E c c

E M l m

M l m E

σ α α γ σ γ σ σ σ

α α γ γ σ α γ γ
γ γ

γ σ

− − − −
<

<

<

= + + +

= + + +
− −

+

∑

∑

∑
   

(27) 

( ) ( )

( )

( )

( )

( )
( )

( )

4
2 1 2

2 2 2
0 0 1 0 1 1 1

1 1

2 2 2 2
0 0 1 0 1 0 1 1 1

1
2
0

1 1 1 1
1

2
0 1 1 1 14

1 2

1 2 ,

1 12 2 ,
1 1

1 2 2 ,
1

1 2 ,
1

1 2 ,

1 1 2

p

t l
l m

p

l m
l m

p

l m
l m

p

l m
l m

p
l ml m

t

E M l m

M l m

M l m

M l m

M l m
E

σ γ γ

α α γ α γ γ
γ γ

α α γ α γ α γ γ
γ

α
γ γ γ

γ

α γ γ γ
σ

γ γ

<

<

<

<

<

 
− − 

 

= + +
− −

 
= − + + −  

 
= + + −  

 + + =
− − −

∑

∑

∑

∑

∑
( )1 2 ,p

ll m
M l mγ

<
 
 ∑          

(28) 

From (28) it can be deduced that ( )4
tE σ < ∞  for 1 1γ <  and 

( )2 1 22 , 1p
ll m M l mγ γ

<
+ <∑ . 

Now the fourth moment of { }tX  is evaluated as 

( ) ( ) ( )
( )

( ) ( )

2
0 4 1 1 1 14 4 4

1 2 1 2

1 2 ,

1 1 2 ,

p
l ml m

t t p
ll m

M l m
E X E E

M l m

α ν γ γ γ
σ

γ γ γ

<

<

 + + =
 − − − 

=
∑
∑



     

(29) 

Equation (29) implies that fourth moment of { }tX  exist if 1 1γ <  and 
( )2 1 22 , 1p

ll m M l mγ γ
<

+ <∑ . 
The mixed moment ( )2 2

t t hE X X +  has the form 

( ) ( ) ( ) ( ) ( )2 2 2 2 4
0 2 1 2 2t t h t tE X X M h E M h Eα ν σ ν σ+ = +          

(30) 

where for 1n ≥ , 

( ) ( )
( ) ( ) ( )

*0

1
1 *

1 1 * 1 1

4

2 21 2 2
2

h
p h pp

i
i

M h e I e

M h M h M h

αγ

ν

−
−

+ + −

=

 ′= Γ + Γ −Γ  

= + ∑
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( ) { }

( ) ( )

1

21 1 1 ,1\
1 1

1

22 1 22 ,
1 1

h i

h j h iP h
i j

ph

i j h j
i j h

M h e

M h M n i

γ γ γ

γ γ

−

−
= =

−

−
= = +

  
′= + Γ  

   

= − +

∑ ∏

∑ ∑ 

 

( ) ( )( )

( ) { } ( ) ( )

( ) ( )

*

0

1

23
1

1 1

24 \
1

1
0

, 2, 1

1, 2 1

,0,1, ,1 is a 1 1 vector

h p

i h

h

jP h p
j

M h c h i

M h I h p h p

e pα

γ

γ γ

α

+ −

= +

+ −

=

−

= −

  
′= Γ −Γ + + + −  

   
′ + ×=

∑

∏



 

Proof. For proof of Theorem 2 see Appendix 9 of [23]. 
The expected value of the sample autocorrelation function, ( )kE φ , is first 

evaluated using (29) and (30). 

( )
( )
( )
( ) ( ) ( ) ( )

( )
1 2

1 2

2 2

4

2
2 1 2 2 1 1

2
4 1 2

for 0 0

1 1 1

,

1

t t h
h

t

S S

S S

E X X
E k n h n

E X

M h M h

φ

ν γ γ ν γ γ
ν γ γ ν γ

+
= < < < <

− − − −  =
− −

       

(31) 

Further assuming that (22) and (23) are satisfied, evaluate (31) for 1 1 1p q= =  
as follows: 

( ) ( )

( )

1 1
0

1 0 11
0 11

1
0

2
0 11

11
0 1

2 1
11 11 11

11

11

1 0
0

1

1
1

n

h i
j

i j

h

h

M h
α

α γ
α γ

α
α γ

γ

γ γ γ

γ
γ

− −

−

−

= =

−

  
=   

   
 
 

=   
  
  

=

= + + + +

−
−

∑ ∏



              

(32) 

( ) ( )

( )

3

2 0 11
0 11 11 11

0 11 2
11 11

2
11 11

1 0 0

0

n

n

n

M h α γ
α γ γ γ

α γ
γ γ

γ γ

−

−

−

   
=    

  
 

=  
 

=              

(33) 

For GARCH(1,1) model, 21 12 21 0γ γ γ= = = . Substituting (37) and (33) in (31) 
results to 

( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

1 2

1 2

1 2
2 11 11 11 2 11 12 *

2 2
4 11 2 12

2
2 1 2 2 1 1 *

2
4 1 2

1 1
for 1

1 1

1 1 1
for

1

h

h

S S

S S

k k
E

M h M h
k k n

ν γ γ γ ν γ γ

ν γ ν γ
φ

ν γ γ ν γ γ
ν γ γ ν γ

−  − − −  ≤ ≤
 − − −= 
 − − − −   < ≤

− −   

(34) 
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Equation (34) shows that, in the presence of a change-point, the expected val-
ue of the sample autocorrelation function before and after the true change-point 

*k  is not equal. We consider a special case of change from GARCH(1,1) to 
GARCH(2,2) where we evaluate (31) for 2 2 2p q= =  as follows: 

( ) ( )
( )

( ) ( )

( )

( )

1 1
0

1 0 11 21 0 11 21
1

21

1
0

2
1

0 11 21 21 11
0 1

2
1

21 21
0 1

1 11 21
21

11 21

1 0 0
0

0 1 0 1

1

1

1 11 1
1 1

n

h i
j

i j

h i
j

i j

h h

M h
α

α γ γ α γ γ

γ

α

α γ γ γ γ

γ γ

γ γ
γ

γ γ

− −

−

−

−
−

= =

−
−

= =

−

     =          − 
 
 
 
   = −     
  

− −     
 − −

= − + − − − 

∑ ∏

∑ ∏

        

(35) 

( ) ( ) 1
1 211 1M γ −= −                       (36) 

Applying Theorem 3 and letting 1h =  yields ( )2 1M  

( )
( )
( ) ( )( ) ( )
( ) ( ) ( )

( ) ( )
( )

21 11

22 12

23 2, 3 2, 4 1, 4 21 12

1 1
24 21 2 21 12 21 12 21

11 21 2 12
2

21

1

1

1 1 ,2 ,

1 1 1

1
1

1

t t t

M

M

M c E c c c

M

M

γ

γ

γ γ γ

γ γ γ γ γ γ

γ γ ν γ
γ

− − −

− −

=

=

= = =

= Γ − = −

− +
=

−





 



 

The expected value, ( )kE φ , for (23) for model order specification 1 1p q=  
and 2 2p q=  for lag 1 results to 

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2

1 2

2
2 11 11 2 11 12 *

2 2
4 11 2 12

1 2
2 11 21 2 12 1 2 11 *

2
21 4 1 2

1 1
for 1

1 1

1 1
for

1 1
S S

S S

k k

E

k k n

ν γ γ ν γ γ

ν γ ν γ
φ

ν γ γ γ ν γ γ ν γ γ

γ ν γ γ ν γ

  − − −  ≤ ≤
 − − −= 

− + − −    < ≤
 − − −  



   

(37) 

From (34) and (37), it can be seen that in the presence of a change-point then 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

1 2

1 2

1 2
2 11 11 11 2 11 12

2 2
4 11 2 12

2
2 1 2 2 1 1

2
4 1 2

1 1

1 1

1 1 1
0

1

h

S S

S S

M h M h

ν γ γ γ ν γ γ
δ

ν γ ν γ

ν γ γ ν γ γ
ν γ γ ν γ

−  − − − =
− − −

− − − −  − ≠
− −        

(38) 

To proof consistency of the estimator we need to show that as the sample size 
n increases ( ) ( )*

0k k
n nE D E D− → . Thus the ( )k

nE D  is evaluated noting that 
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it reaches its maximum at the point *k  resulting to 

( ) ( )
( )

* *

* *

1 if

1 if
k
n

k k
E D

k k

δτ τ

δτ τ

 − ≤= 
− >                  

(39) 

Thus 

( ) ( )* * *1k
nE D δτ τ= −

                     
(40) 

From (39) and (40) it follows that 

( ) ( )
( )( )
( )

( ) ( ) ( )( )

*

*

* * *

* * *

* * *

1 if

if

implying

1

k k
n n

k k
n n

k k
E D E D

k k

E D E D

δ τ τ τ

δ τ τ τ

δ τ τ τ τ

 − − ≤− = 
− >

− ≥ − ∧ −
         

(41) 

We also have that 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

* * * *

* * * *

*

1
2max

k k k k k k k k
n n n n n n n n

k k k k k k k k
n n n n n n n n

k k k k
n n n nk n

D D D E D E D D E D E D

D D D E D E D D E D E D

D E D E D E D
≤ ≤

  − − + − − +    

− ≤ − + + − −

≤ − + −

=

 

( ) ( ) ( )
( )

* *

*

1

1

implying

2max

2max since

k k k k k k
n n n n n nk n

k k k k
n n n nk n

E D E D D E D D D

D E D D D

≤ ≤

≤ ≤

− ≤ − + −

≤ − ≥
      

(42) 

Thus from (41) and (50) as well as replacing τ with τ̂  in (41) we have that 

( )( ) ( ) ( ) ( )** * *

1
1 2maxk k k k

n n n nk n
E D E D D E Dδ τ τ τ τ

≤ ≤
− ∧ − ≤ − ≤ −

   
(43) 

Consider k
nD  as given in (17), the estimate ( )

1
max k k

n nk n
D E D

≤ ≤
−  is now estab-

lished as follows 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

2
1 1

2
1 1 1

2
1 1

1 1

1

1

1

1

1 1

1 1

k n
k k
n n i i i i

i i k
k k n

i i i i i i
i i i k
k n

i i i i
i i

k n

i i i i
i i
k

i i
i

D E D n k E k E
n

n E k E k E
n

n E k E
n

kE E
n n n

E
n

φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ

= = +

= = = +

= =

= =

=

   − = − − − −   

     = − − − − −     

   = − − −   

   ≤ − + −   

 ≤ − + 

∑ ∑

∑ ∑ ∑

∑ ∑

∑ ∑

∑ ( ) ( )
1 1

2k k

i i i i
i i

E E
n n

φ φ φ φ
= =

   − ≤ −   ∑ ∑

 

( ) ( )
1 1 1

implying
1max 2max

k
k k
n n i ik n k n i

D E D E
n

φ φ
≤ ≤ ≤ ≤ =

 − ≤ − ∑
            

(44) 
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Theorem 4. Let 1 2, , , nY Y Y  be any random variables with finite second 
moments and 1 2, , , nc c c  be any non-negative constants. Then 

( ) ( )

( )

2

1

1
2 2 2

1
, 1 , 1

1 1
2 2 2

1 1 1 1
1

max

2

k

k im k n i

m n k

m i j k k i j
i j k m i j

n k n

k k j k k
k m j k m

P c Y

c E YY c c E YY

c E Y Y c E Y

ε ε
≤ ≤ =

−

+
= = =

− −

+ + + +
= = =

 
> 

 

≤ + −

 
+ +  

 

∑

∑ ∑ ∑

∑ ∑ ∑
            

(45) 

Proof. For proof of Theorem 4 see Theorem 4.1 of [24]. 

Applying Theorem 4 with 1m = , 1 2
1

nc c c
n

= = = =
 and ( )k i iY Eφ φ= −  

yields 

( )

( )( ) ( )( )( )
( )( ) ( )( )( )

( ) ( )( )

( )( )

2

1 1

1

2
, 1

1

2 2
1 , 1

1

1 12
1 1

1 2
1 12

1

1max

1

1 1

12

1

k

i ik n i

i i j j
i j

n k

i i j j
k i j

n k

k k j j
k j

n

k k
k

P E
n

E E E
n

E E E
n n

E E E
n

E E
n

ε φ φ ε

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ

≤ ≤ =

=

−

= =

−

+ +
= =

−

+ +
=

 
 − >  

 

≤ − −

+ − − −

 
+ − −  

 

+ −

∑

∑

∑ ∑

∑ ∑

∑

 

( ) ( )( )

( )( )

( ) ( ) ( )( )

1

1 12
1 1

1 2
1 12

1

1 1
2 2

1 12 2
1 , 1 1

2

2

1

2 1var cov , var

n k

k k j j
k j

n

k k
k

n k n

k j j k
k j j k

E E E
n

E E
n

n n
C C
n n

φ φ φ φ

φ φ

φ φ φ φ

−

+ +
= =

−

+ +
=

− −

′+ +
′= = =

 
− −  

 

−

≤

+

+

≤

= ≤

∑ ∑

∑

∑ ∑ ∑

       

(46) 

implying ( ) 21 1

1max
k

i ik n i

CP E
n n

φ φ ε
ε≤ ≤ =

 
 − > ≤  

 
∑

         
(47) 

Substituting the result in (47) to (53) results to 

( )( ){ } ( )

{ }

* * *
21 1

*
1

2 2 2

11 max
k

i ik n i

CP P E
n n

CP
n

δ τ τ τ τ ε φ φ ε
ε

τ τ ε
ε δ

≤ ≤ =

 
 − ∧ − > ≤ − > ≤  

 

− > ≤

∑

 

(48) 

As n →∞  from (48) we can see that 1
2 2 2

0C

nε δ
→ , which completes proof. 
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Thus the estimator τ is a consistent estimator of *τ  implying that k is a consis-
tent estimator of *k . 

6. Conclusion 

In this paper we argue that change in GARCH process can be attributed to mod-
el order specification which results into a nonstationary series that depicts real 
data. Given that possible values for p and q can be arrived through inspection of 
sample autocorrelation and sample partial autocorrelation os squared series, an 
estimator for the change-point is derived based on the Manhattan distance. Re-
sults based on the similarity index ARI show that the estimator performs better 
as the size of change increases. We are also able to prove consistency of the esti-
mator theoretically. The proposed estimator can be improved to examine de-
parture from other model order specification other that GARCH(1,1). The next 
paper will focus on establishing the limiting distribution of the estimator. 
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