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Abstract 
In this paper, the call option price is evaluated based on linear investment 
strategy in order to hedge the risk actively in stock market with stochastic in-
terest rate. The Vasicek model is used to describe the structure of interest 
rates. The mathematical characterization is discussed for the unique no-arbi- 
trage price associated with any attainable contingent claim. The appropriate 
numeraire (zero-coupon bond) and measures (T-forward measure) are cho-
sen to simplify the calculations. Based on the designed linear investment 
strategy with stochastic interest rate, a novel option price approach is obtained 
under the T-forward measure. 
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1. Introduction 

With the globalization of economy and the rapid development of financial de-
rivatives market, the analysis of the option pricing is of great importance and has 
attracted considerable attention. In 1973, Black and Scholes [1] proposed the 
classical Black-Scholes model under the risk-neutral world with the assumption 
that the stock price follows geometric Brownian motion, and the expected return 
rate stock is a constant, while, the assumption of Black-Scholes model has a large 
difference with the real world. Merton [2] considered dividend and stochastic 
interest rate into the option pricing model. Cox and Rose [3] [4] used the alter-
native stochastic process to discuss the option pricing model and considered the 
expanded formula of stock price that does not include continuous sample path. 
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Buraschi and Dumas [5] studied the option pricing which the underlying assets 
obey to general diffusion process, deduced analytical formula and forward inte-
gral expressed based on the boundary of Europe option pricing. However, the 
implied assumption, throughout the traditional option pricing model, is that the 
investors do not have any stock trading at all during the valid period. Indeed, the 
investors could carry out reasonable stock trading strategy to guard against risks 
caused by the change of stock price. Wang [6] innovatively proposed the stock 
option pricing model based on dynamic investment strategy. In this case, the 
investors could purchase stock consequently with the stock price rising contin-
uously while the stock price is higher than the call option striking price. This 
stock investment strategy could help investors reduce some risk. Wang [7] con-
sidered the several linear investment strategies into the stock option price as well, 
and deduced an option pricing model formula through the complex mathemati-
cal calculation, while, Yan [8] calculated the option pricing model formula under 
the nonlinear dynamic investment strategy. 

It is known to all that the classical Black-Scholes model presumes the interest 
rate is a constant. In real financial market, however, the rate is fluctuating gener-
ally influenced by national policy, economy and stock market. In this case, many 
academic proposed stochastic interest rate model to research the option pricing 
issue. Generally speaking, the research includes the interest rate term structure, 
correction and expansion based on Black-Scholes model. In 1977, Vasicek [9] by 
using the basic Black-Scholes argument, developed a model that considers the 
evolution of the term structure of interest rates and the pricing of interest-rate 
derivatives, and the Vasicek model exhibits mean reversion characteristic. Har-
rison & Kreps [10] and Harrison & Pliska [11] [12] developed the first rigorous 
approach for the arbitrage-free pricing of general contingent claims. Jarrow and 
Morton [13] developed a general framework for interest-rates dynamics. Geman 
et al. [14] provided a useful toolkit explaining how the various dynamics change 
when changing the numeraire, where the apposite choice of numeraire could 
simplify the option calculations. Musiela and Rutkowski [15] and Hunt and 
Kennedy [16] gave more details about the treatment of the no-arbitrage issue 
under stochastic interest rates. Jamshidian [17] first used the change of measure 
in the calculation of a bond-option price under the Vasicek model, the approach 
of which provide the method to calculate the stock option price under the 
change of measure. Wang and Zhang [18] presented Europe call geometric op-
tion when the stochastic interest rate is modeled by Vasicek model and 
Hull-White model. Yao and Wang [19] used geometric mean to calculate aver-
age price of the asset and obtained average price, average strike price option 
pricing formula and parity formula under the continuous time situation. Xiao 
[20] gave the solution of Black-Scholes formula under the partial differential 
equation method, the equivalent martingale measure method, and the derivation 
of European option pricing with the stochastic interest rate, paid dividend and 
jump-diffusion. Feng [21] analyzed and simulated the Vasicek interest rate 
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model and MHL interest rate model, observed the option error, and concluded 
that under the Black-Scholes model, MHL model in the medium-term and 
short-term index call option pricing errors smaller than in the short-term 
Vasicek interest rate model index call option pricing error. Cui [22] discussed 
the correlation of two Brownian motions which are in the Hull-White model the 
interest rate and Black-Scholes model the underlying assets, under the assump-
tion of stochastic interest rates, the simulation methods which are similar to the 
classic binary tree. 

As we all known, the option pricing issue under the stochastic interest rate 
model has been extensive researched, but the option pricing under investment 
strategy is still a new filed. Investors draw up the stock investment strategy while 
purchases stock call option. During the option valid period, investors can pur-
chase stock according to the fixed investment strategy which is linear correlated 
with the stock price. Meanwhile, the investment strategy is taken when the stock 
price higher than the striking price. Under this circumstances, the loss of posi-
tion stock with trading planned stock will less than that not trading, the new op-
tion price under the designed investment strategy could be less than the classical 
Black-Scholes model option price. Wang [6] has proved this result correctly but 
under the assumption of the interest rate is a constant. In this paper, the interest 
rate term structure will be considered into the new option price model under the 
designed investment strategy. A favorable numeraire, zero-coupon bond, is cho-
sen through the martingale measure theorem. Furthermore, the new stock op-
tion can be achieved by calculating an expectation of its payoff which calculated 
under the designed investment strategy. 

2. Prerequisite Knowledge 

In this paper, we consider two assets in the market. One is the riskiness asset, the 
savings account tB  with dynamics 

0 de
t

sr s
tB ∫=                           (2.1) 

or in difference form 

d dt t tB r B t=                         (2.2) 

where tr  is the named risk-free interest rate at time t. The other is the risky as-
set supposed to be the stock. Consider the widely used model of stock price as 
follow 

1 1,d d dt t t t tS S t S Wµ σ= +                     (2.3) 

where tµ  is the expected rate of return of the stock price at time t. Under the 
risk-neutral world, the tµ  is equivalent to risk-free interest rate tr , 1σ  as-
sumed constant, is usually referred to as the stock price volatility, 1

tW  is a nor-
mal Brownian motion. Thus, the stock price, under the risk-neutral world, could 
be given by 

1 1,d d d .t t t t tS r S t S Wσ= +                      (2.4) 
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From the Itô formula, the stock price at time T can be expressed as 
2
1

1 1,0 0d d
2

0e
T T

s tr s W

TS S
σ σ

 
 − + 
 

∫ ∫
=                  (2.5) 

with 0S  is the stock price at initial time. 
{ }( )0

, , ,t t
P

≥
Ω    is a complete probability space with the filtration { } 0t t≥

  
follows the usual conditions. [ ]0,T  is the time interval where 0 and T respec-
tively represents current time and the expiry date. In this paper, we are interest 
in calculating the new option price under stochastic interest rates. While, the ex-
istence of the stochastic factors complicates the calculation. In such cases, con-
sidering a change of measure and numeraire would be quite helpful. 

Definition 2.1. [14] A numeraire is any positive non-dividend-paying asset. 
Remark 2.1. Intuitively, a numeraire is a reference asset that is chosen so as to 

normalize all other asset prices with respect to it. In fact, each numeraire can be 
represented as a stochastic process and corresponding a probability measure. 
The risk-neutral numeraire is the money-market account defined in equation 
(2.1) and (2.2). 

Lemma 2.1. [14] Assume there exists a numeraire N and corresponding 
probability measure NQ , such that the price of any traded asset (without inter-
mediate payments) X relative to N is a martingale under NQ , i.e. 

| , 0 .Nt T
t

t T

X XE t T
N N

 
= ≤ ≤ 

 
                 (2.6) 

In many concrete situations, a useful numeraire is the zero-coupon bond 
( ),P t T  maturing at time T where 0 t T≤ ≤  [17]. The measure associated with 

this numeraire is referred to as T-forward risk-adjusted measure, or more briefly 
as T-forward measure, and denoted TQ . The related expectation is denoted by 

TE , in such case, ( ), 1P T T = . Thus, pricing the derivative 0H  at initial time 
can be achieved by calculating an expectation of its payoff 

( ) [ ]0 00, |T
TH P T E H=                         (2.7) 

where TH  is the claim payoff at time T. We know that the filtration 0  has no 
influence on the above calculation of the expectation. This means that the for-
mula can also been written as follows: 

( ) [ ]0 0, .T
TH P T E H=                       (2.8) 

Indeed, according to risk-neutral argument, the zero-coupon bond price at in-
itial time can be given by 

( ) 0 d0, e
T

sr sP T E −∫ =   
                        (2.9) 

with E denoting the expectation under the risk-neutral measure. 
Then the option price C at initial time on a zero coupon bond under the T- 

forward measure could be calculated by 

( ) [ ]0, T
TC P T E V=                       (2.10) 
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where TV  is the claim payoff of the option at time T. 

3. The Europe Call Option Price Based on Investment  
Strategy 

In this section, we shall discuss the new option price, the Europe call option 
price, based on investment strategy with the stochastic interest rates under the 
Vasicek short model. Now, we deduce the intrinsic value function about the 
above new option. Consider that the Europe call option under the linear stock 
investment strategy that the initiatory buying price is higher than the striking 
price. The investment percentage function ( )Q S  is given as follows [6]: 

( ) ( ) ( )

0 ,

1 ,

(1 )

S K

Q S S K K S K
K

S K

β
α

α
β α

≤
= − ≤ ≤ +

 ≥ +

             (3.1) 

where 
S is stock price; 
A is all investment amount; 
( )Q S  is the stock investment proportion, which is equal to the value of the 

stock investment divided by A; 
K is strike price of the option; 
α  is investment strategy index, whereby the stock investment occurs while 

the stock price varies from K to ( )1 Kα+ , the smaller α  indicates that the 
investors buy stock in a narrower interval of stock prices; 

β  is the maximum value of the stock investment proportion. 
The feature of function ( )Q S  is shown in Figure 1, from which we can eas-

ily see that the added investment is q∆  when the stock pricing changes from 
S S− ∆  to S , and 
 

 
Figure 1. Feature of function Q(S). 
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( ) .q QA SQ S A′∆ = ∆ = ∆                    (3.2) 

Thus, the increased share of investment stock is 
q

S
∆

. If the stock price rises  

to 0S , the income of this investment q∆  should be given by 

( )0
q S S

S
∆

−                           (3.3) 

Therefore, while the price varies from K to 0S , the income ( )0R S , under the 
above stock investment strategy, can be expressed by integral form as follows: 

( ) ( ) ( )0
0 0 d .

S

K

AQ S
R S S S S

S
′

= −∫                (3.4) 

Notice that ( ) 0Q S′ =  when ( )1S Kα≥ + , then, the integration can be repre-
sented by 

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0
0 0

0
1

0 0

d 1 ,

d 1 .

S

K

K

K

AQ S
S S S K S K

SR S
AQ S

S S S S K
S

α

α

α
+

′
− ≤ ≤ +=  ′ − > +

∫

∫
      (3.5) 

Calculating the above integral formula by the derivative of ( )Q S , we can obtain 
the income function at stock price 0S  as follows: 

( )
( ) ( )

( ) ( )

0 0
0 0

0
0

0

ln 1 ,

ln 1 1 .

A S S A S K K S K
K K KR S

A S A S K
K

β β
α

α α
β

α β α
α

   − − ≤ ≤ +    = 
 + − > +

     (3.6) 

If the stock price varies from K to 0S , the investors do not buy any stock. 
Under this condition, the short position’s expected loss is given by 

( )0
A S K
K

−                           (3.7) 

In this case, however, the holding stock by the investor based on the above in-
vestment strategy will offset some loss, and the loss function would be 

( ) ( )0 0
A S K R S
K

− −                        (3.8) 

divided by A K , the loss function ( )0L S  of each share is 

( )
( ) ( )

( ) ( )

0 0
0 0

0
0

0 0

1 ln 1 ,

ln 1 1 .

S SS K K S K
KL S

SS K K S K

ββ
α

α α
β

α β α
α

   + − − ≤ ≤ +      = 
 − − + + > +

     (3.9) 

As known to all, the option seller should compensate the expected loss of the op-
tion holder in option market. Therefore, the value of loss function is equiva-
lent to the claim payoff. Noticed that the option claim payoff is zero when 

TS K≤ , so that the claim payoff of the new option TV  at time T can be ex-
pressed as 

https://doi.org/10.4236/jmf.2018.81004


X. Zhang et al. 
 

 

DOI: 10.4236/jmf.2018.81004 49 Journal of Mathematical Finance 
 

( ) ( )

( ) ( )

0

1 ln 1 ,

ln 1 1

T

T T
T T

T

T
T T

S K
S SS K K S KV K

SS K K S K

ββ
α

α α
β

α β α
α

≤


   + − − ≤ ≤ +   =    

 − − + + > +


      (3.10) 

where TS  is the stock price at maturity time T. 
Many options are priced of constant interest rate under the assumption, 

which we can see in Black-Scholes model. However, in financial markets, the in-
terest rate cannot be assumed as an unchanging factor. Here, we use classical 
short-rate model, the Vasicek model, to evaluate the new option price. 

Vasicek (1977) assumed that the instantaneous spot rate, under the real-world 
measure, evolves as an Ornstein-Uhlenbeck process with constant modulus. For 
a suitable choice of the market price of risk, this dynamics coincide with the 
other dynamics as well, which the short rate follows an Ornstein-Uhlenbeck 
process with constant coefficients under the risk-neutral measure [23], that is 

( ) 2 2,d d dt t tr ar t Wθ σ= − +                     (3.11) 

which can also be expressed as 

( ) 2 2,d d dt t tr a b r t Wσ= − +                     (3.12) 

where 

tr  is the short rate at time t; 
a  is the speed of mean reversion; 
b  is mean reversion level, and abθ = ; 

2σ  is the short rate volatility; 

2,tW  is normal Brownian Motion process at time t and independent with 

1,tW . 
The Vasicek models drift term means that over time interest rates will con-

verge to the mean reversion level b with the speed a. The parameter b can be 
thought as the long interest rate level, that is the process swing around the level b 
in an erratic but continuous. 

Collecting tr  terms we can obtain 

( ) ( )
0 2 2,0

e 1 e e d
t a t uat at

t tr r W
a
θ

σ − −− −= + − + ∫               (3.13) 

where 0r  is the short rate at time 0. Then, the short rate tr  is normally dis-
tributed with mean and variance given respectively by 

[ ] ( )

[ ] ( )

0

2
22

e 1 e ,

1 e .
2

at at
t

at
t

E r r
a

Var r
a

θ

σ

− −

−

= + −

= −
                    (3.14) 

Meanwhile, the price of zero coupon bond can be evaluated by the expectation 
of a functional of the process tr  as 

( ) ( ) ( )0 0 00

1d dd 0,20, e e 0, e
T TT u uu

E r u Var r ur u r B TP T E A T
   − + −− −      ∫ ∫∫ = = =  

    (3.15) 
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where 

( ) ( ) ( )

( )

222
22

2

0,
0, exp 0, ,

42

1 e0, .
aT

B T
A T B T T

a aa

B T
a

σσθ

−

   = − − −    
   

−
=

    (3.16) 

The price of zero coupon bond have been computed by instantaneous-spot- 
rate dynamics under the risk-neutral measure. In order to evaluate the new op-
tion price, we only need to calculate the expectation of TV  under the T- for-
ward measure. The change of measure and the Formula (3.10) imply that under 
the T-forward measure TQ  (has been derived by Jamshidian [17]) 

( )( )2
2 2 2,d , d d T

t t tr ar B t T t Wθ σ σ= − − +                (3.17) 

where the TQ -Brownian motion 2,
T
tW  is defined by 

( )2
2, 2, 2d d , d ,T

t tW W B t T tσ= +                      (3.18) 

and 

( )
( )1 e, .

a T t

B t T
a

− −−
=                        (3.19) 

Thus, 

( ) ( )
0 2 2,0

e 0, e d
t a t uat T T

t ur r M t Wσ − −−= + + ∫                  (3.20) 

with 

( ) ( ) ( ) ( )( )
2 2
2 2
2 20, 1 e e e .

2
a T t a T tT atM t

a a a
σ σθ − − − +− 

= − − + − 
 

        (3.21) 

Evaluating the integral of the short rate tr  on ( )0,T  

( ) ( )

( )

0 2 2,0 0 0 0 0

2
2

0 2

2 2
2
2

2 2,0 0

d e d 0, d e d d

1 e e 1

1 2e e
2

e d d

T T T T t a t uat T T
t u

aT aT

aT aT

T t a t u T
u

r t r t M t t W t

r T
a a aa

aa

W t

σ

σθ

σ

σ

− −−

− −

− −

− −

= + +

  − −
= + − +  

  
 − +

+  
 

+

∫ ∫ ∫ ∫ ∫

∫ ∫

      (3.22) 

As the same analysis, the dynamic of the process tS  under the T-forward 
measure can be expressed by 

1 1,d d d .T
t t t t tS r S t S Wσ= +                      (3.23) 

The Girsanov theorem implies that the process 1,
T
tW  defined by [23] 

1, 1,
T
t tW W=                            (3.24) 

Now we calculate the expectation of TV  under the T-forward measure. It is 
important to note that the random variable TS  is lognormally distributed, 
( )Tf S  denotes the probability density function of TS , we can obtain that 
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[ ] ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1 1

1

1 ln d

ln 1 d

1 d ln d

1 ln 1 1 d .

KT T T
T T T TK

T
T T TK

K K T T
T T T T TK K

T T TK

S SE V S K f S S
K

SS K K f S S

S SS K f S S f S S
K

S K f S S

α

α

α α

α

ββ
α α

β
α β

α
ββ

α α

β
α β

α

+

+∞

+

+ +

+∞

+

  = + − −    
 + − − + +  

 = + − − 
 
  + − + + −    

∫

∫

∫ ∫

∫

(3.25) 

In order to simplify the process of integral calculation, we divide the above 
expectation into three parts given by 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1
1

1
2

3 1

1 d ,

ln d ,

1 ln 1 1 d .

K
T T TK

K T T
T TK

T T TK

I S K f S S

S SI f S S
K

I S K f S S

α

α

α

β
α

β
α
β

α β
α

+

+

+∞

+

 = + − 
 

= −

  = − + + −    

∫

∫

∫

     (3.26) 

LET ln Ty S= , it is known from probability theory that ( )e ey yf  is the 
probability density function of ln TS , whose mean and variance under the 
T-forward measure can be expressed from (2.5) respectively as follows: 

[ ]

( ) ( ) ( )

2
1

0 1 1,0 0

2
1

0 0

2 2 1
1 2

0 0 2

2 2
2
2

2 2 2
21 2 2

0 0 2

ln ln d d
2

ln d
2

1 e eln
2

1 2e e
2

ln 0, 0, 0,
2 2

T TT T T
T T t t

TT
t

aT aT

aT aT

E S E S r t W

S T E r t

S T r T
a a aa

aa

S T r B T T B T B T
a aa

σ
µ σ

σ

σ σθ

σ

σ σ σθ

− − −

− −

 
= = + − + 

 

 = − +   

  −
= − − + − +  

  

− +
+

 
= − − + − − +    

 

∫ ∫

∫

,

(3.27) 

( )

( )

2
2 1

0 1 1,0 0 0

2 1 1,0 0 0

2 2
22
12

2 2
22
12

ln d d d
2

e d d

1 e 1 e2
2

1 e2 0, ,
2

T T TT T
T t t

T t Ta t uT T T
u t

aT aT

aT

Var S r t t W

Var W dt W

T T
a aa

T B T T
aa

σ
σ σ

σ σ

σ
σ

σ
σ

− −

− −

−

 
= + − + 

 
 = +  

 − −
= − + + 

 
 −
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moreover, we have 
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Thus, 
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            (3.29) 

Define 

T

T

yz µ
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=                            3.30) 

or equivalently 
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where ( )N x  is the standard normal cumulative density function, simplify the 
above integration 
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  (3.32) 
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Similarly, we have 
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Thus, from Formula (3.20) to (3.32), the new option price at time 0 under the 
stochastic interest rate can be given by 
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It is obviously that the Formula (3.34) is similar to the option pricing formula 
of Wang when the interest rate is a constant and ( )0, , , T TP T µ σ  respectively  

substituted by 
2
1

0 1e , ln , 
2

rT S T Tσ
µ σ−  

+ − 
 

, where r is the riskiness interest  

rate, µ  expected rate of return of stock price. 
Wang [7] gives the following formula for the option pricing based on the de-

signed linear investment strategy: 
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where 
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It is easily to obtain that the Formula (3.36) we have calculated is equal to the 
result of Wang 3.37 when the interest rate is a constant. Therefore, it is can con-
firm the truth of option pricing under the designed investment strategy we have 
derived. So that the option price under the designed investment strategy with 
interest rate has been calculated under the T-forward measure. Most important, 
the zero coupon bond is chosen as the numeraire which simplifies the option 
pricing problem. 

4. Conclusions 

A new option pricing under the designed investment strategy has been re-
searched by Wang [6] [7]. We discuss this new option price under the assump-
tion that the stochastic interest rate is submitted to Vasicek rate model. The clas-
sical method of calculating the option pricing is under the risk-neutral measure 
to make it and this method is too complicated. However, in fact, changing the 
measure appropriately will simplify the calculation of option pricing. In this case, 
we chose the zero coupon bond as the numeraire and discussed the option pric-
ing under the T-forward measure. It is proved that calculating the option price 
under the T-forward measure simplifies the issue greatly. Finally, the new option 
pricing under the designed investment strategy with the stochastic interest rate 
has been calculated. The result formula is similar to the formula represented by 
Wang [7] which means the proposed conclusion in this paper is feasible. 

Of course, there are many deficiencies in this article. Firstly, option under the 
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designed investment strategy can be further discussed. For example, will the in-
vestment strategy during the option’s valid period influence the other aspects of 
stock option? Are there any differences with the option pricing under the 
T-forward measure and that under the risk-neutral measure? How do the option 
prices under the investment strategy change, if the interest rate obeys to 
CoxCIngersollCRoss model, BlackCDermanCToy model, BlackCKarasinski 
model or HullCWhite model? Moreover, option pricing with stochastic volatility 
may provide another story. This consideration is worth to be examined. 
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