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Abstract 
In this paper, optimal investment strategies for defined contribution (DC) 
Pension, with extra contribution are studied. Our model permits the plan 
member to make a defined extra contribution, as provided in the Nigerian 
Pension Reform Act of 2004. The plan member is free to invest in risk-free 
asset, and in two risky assets. A stochastic differential equation of the  
pension wealth that takes into account certain agreed proportions of the plan 
member’s salary, paid as contribution, and extra contribution towards the 
pension fund, is presented. The Hamilton-Jacobi-Bellman (H-J-B) equation, 
Legend transformation, and Dual theory are used to obtain the explicit solu-
tion of the optimal investment strategies for constant relative risk aversion 
(CRRA) utility function. We observed that the plan member will increase the 
proportion of his wealth to be invested in bond and stock and will reduce the 
proportion to be invested in cash. 
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1. Introduction 

Recent publications in economic Journals and other reputable Mathematics and 
Science Journals have brought to light, different methods of optimizing invest-
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ment strategies and returns. Example, some researchers have made various con-
tributions in this direction, particularly, in DC Pension Plan. [1] work on, sto-
chastic life styling: optimal dynamic asset allocation for defined contribution 
pension plans. In their work, various properties and characteristics of the optim-
al asset allocation strategy, both with and without the presence of non-hedge 
able salary risk were discussed. The significance of alternative optimal strategy 
by pension providers was established. 

In order to deal with optimal investment strategy, the need for maximization 
of the expected utility of the terminal wealth became necessary. Example, the 
Constant Relative Risk Aversion (CRRA) utility function, and (or) the Constant 
Absolute Risk Aversion (CARA) utility function were used to maximize the ter-
minal wealth. [1]-[6] used CRRA to maximize terminal wealth. However, [6] 
used the CRRA and the CARA to maximize terminal wealth. 

[7] applied the well-known H-J-B equation, Legend transform, and dual 
theory to obtain the explicit solutions of CRRA and CARA utility function, for 
the maximization of the terminal wealth. [8] took a different direction, where 
they considered an Inflationary market. In their work, the plan member made 
extra contribution to amortize the pension fund. The CRRA utility function was 
used to maximize the terminal wealth. This triggered our research. In our model; 
the amortization fund is a definite proportion of the plan member’s salary.  

The motive of this work is to maximize the optimal investment strategy for 
DC Pension with stochastic salary under the affine interest rate, with extra DC 
contribution, which is a proportion of the plan member’s salary. We shall use 
the CRRA utility function to maximize our terminal wealth. Our approach is 
similar to that of Chubing [7], though, ours is an extension to extra DC contri-
bution. 

2. Preliminaries   

We start with a complete and frictionless financial market that is continuously 
open over the fixed time interval [0, T], for T > 0 representing the retirement 
time of a given shareholder. 

We assume that the market is made up of risk free asset (cash) a zero coupon 
bond and risky asset (stock). Let ( ), ,F PΩ  be a complete probability space 
where Ω  is a real space and P is a probability measure, ( ) ( ){ }, : 0r sW t W t t ≥  
is a standard two dimensional Brownian motion such that they are orthogonal to 
each other. F is the filtration and denotes the information structure generated by 
the Brownian motions ( ) ( ){ },r sW t W t .   

Let ( )C t  denote the price of the risk free asset at time t and it is modeled as 
follows 

( )
( ) ( ) ( )d

d , 0 1
C t

r t t C
C t

= =                   (1) 

( )r t  is the short interest rate process and is given by the stochastic differen-
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tial equation (SDE) 

( ) ( )( ) ( )d d dr rr t a br t t W tσ= − − ,                 (2) 

( )1 2 , 0r c r t c tσ = + ≥ , 

where a, b, ( )0r , 1c  and 2c  are positive real numbers. If 1c  (resp., 2c ) is 
equal to zero, we have a special case, as in [9] [10]. So under these dynamics, the 
term structure of the short interest rates is affine, which has been studied by [2] 
[7] [11] [12]. 

Let ( )S t  denote the price of the risky asset and its dynamics is given based 
on a continuous time stochastic process at 0t ≥  and the dynamics of the price 
process is described as follows 

( )
( ) ( ) ( )( ) ( )( ) ( )1 1 2 0

d
d d d d d , 0s s r r r

S t
r t t W t t n W t t S S

S t
σ λ σ λ σ= + + + + =    (3) 

with 1λ , 2λ  (resp., sσ , 1n ) being constants (resp., positive constants) see [2] 
[4] [7]. 

A zero-coupon bond with maturity T, whose price at time t is denoted by 
( ), , 0B t T t ≥ , and 
Its dynamics is given by the SDE below see [2] [4] 

( )
( ) ( ) ( )( ) ( )( ) ( )2

d ,
d , d d , , 1

, B r r
B t T

r t t T t r t W t t B T T
B t T

σ λ σ= + − + =     (4) 

where ( )( ) ( ),B rT t r t f T tσ σ− = −  and  

( )
( )

( ) ( ) ( )2
1 2 1

1 2 1 2

2 e 1
, 2

e

mt

mtf t m b c c
m b c m b c

λ
λ λ

−
= = − +

− − + + −
     (5) 

Based on the works of [1] [4] [7] [12] we denote the stochastic salary at time t 
by (t) which is described by 

( )
( ) ( )( ) ( ) ( ) ( )2 3 0

d
, d d d , 0L r r s s

L t
t r t t n W t n W t L L

L t
µ σ σ= + + =       (6) 

where 32 ,n n  are real constants, which are two volatility scale factors measuring 
how the risk sources of interest rate and stock affect the salary. That is to say, the 
salary volatility is supposed to be a hedge able volatility whose risk source be-
longs to the set of the financial market risk sources. This is in accordance with 
the assumption [4], but is differs from those of [1] [12] who also suggest that the 
salary was influence by non hedgeable risk source (i.e., non-financial market). 
Also [7] assume that the instantaneous mean of the salary is such that 

( )( ) ( ),L Lt r t r t mµ = +  where Lm  is a real constant. 

3. Methodology 
3.1. Hamilton-Jacobi-Bellman (HJB) Equation 

Suppose, we represent ( ),B Su u u=  as the strategy and we define the utility at-
tained by the contributor from a given state x at time t as    
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( ) ( )( ) ( ) ( ), , , ,u uG t r x E V X T r t r X t x = = =               (7) 

where t is the time, r is the short interest rate and x is the wealth. Our interest 
here is to find the optimal value function  

( ) ( ), , sup , ,u uG t r x G t r x=                      (8) 

and the optimal strategy ( )* * *,B Su u u=  such that  

( ) ( )* , , , , .
u

G t r x G t r x=                       (9) 

3.2. Legendre Transformation 

The Legendre transform and dual theory help to transform non linear partial 
differential equation into a linear partial differential equation. 

Theorem 3.1: Let : nf R R→  be a convex function for 0z > , define the 
Legendre transform  

( ) ( ){ }max ,xL z f x zx= −                     (10) 

where ( )L z  is the Legendre dual of ( )f x  [13]. 
Since ( )f x  is convex, from theorem 3.1 we defined the Legendre transform 

( ) ( ){ }0
ˆ , , sup , , 0 ,0 .xG t r z G t r x zx x t T>= − < < ∞ < <         (11) 

where Ĝ  is the dual of G  and 0z >  is the dual variable of x.  
The value of x where this optimum is attained is denoted by ( ), ,h t r z , so that 

( ) ( ) ( ){ }0
ˆ, , inf , , , , ,0 .xh t r z x G t r x zx G t r z t T>= ≥ + < <        (12) 

The function h  and Ĝ  are closely related and can be refers to either one of 
them as the dual of G. These functions are related as follows 

( ) ( )ˆ , , , ,G t r z G t r h zh= −                     (13) 

where 

( ) ˆ ˆ, , , , and relating to byx zh t r z x G z G h h G= = = −          (14) 

At terminal time, we denote 

( ) ( ){ }0
ˆ sup 0 ,wV z V w zw w>= − < < ∞  

and 

( ) ( ) ( ){ }0
ˆsup .wH z w V w zw V z>= ≥ +   

As a result  

( ) ( ) ( )1 ,H z V z−′=                        (15) 

where H  is the inverse of the marginal utility V  and note that  
( ) ( ), ,G T r x V x=  
At terminal time T, we can define 

( ) ( ) ( ){ }
( ) ( ){ }

0

0

ˆ, , inf , ,

ˆand , , sup

x

x

h T r z x V x zx G T r z

G T r z V x zx

>

>

= ≥ +

= −
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so that   

( ) ( ) ( )1, , .h T r z V z−′=                      (16) 

4. Model Formulation 

Here the contributions are continuously paid into the pension fund at the rate of 
( ) ( )1 2e e L t+  where 1e  is the mandatory rate of contribution and 2e  is the 
extra contribution rate which is assumed to be at constant rate. Let ( )W t  de-
note the wealth of pension fund at time [ ]0,t T∈ . ( )Bu t  and ( )Su t  represent 
the proportion of the pension fund invested in the bond and the stock respec-
tively. This implies that the proportion of the pension fund invested in the 
risk-free asset ( ) ( ) ( )1C B Su t u t u t= − − . The dynamics of the pension wealth is 
given by 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) [ )1 2 2

d d , d
d

,

d ; 0,1

C B S
C t B t T S t

W t u W t u W t u W t
C t B t T S t

e e L t t e

= + +

+ + ∈

      (17) 

Substituting (1), (3) and (4) in (17) we have 

( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )

2
2 1 2 1 1 2

1

d d d

d d

r B B S s r

B B S r r S S S

W t W t r t u u n t e e L t t

W t u u n W t W t u W t

λ σ σ λσ λ σ

σ σ σ

 = + + + + 
+ + +

 (18) 

Let the relative wealth be defined as follows 

( ) ( )
( )

W t
X t

L t
=                          (19) 

Applying product rule and Ito’s formula to (19) and making use of (6) and 
(18) we arrive at the following equation 

( ) ( ) ( ) ( )
( ) ( )
( )( ) ( )
( )( )( ) ( ) ( ) ( ) ( )

2 2 2 2
2 3 2 2

2 2
1 2 1 3 1 2 1 2

1 2

3

2

d

d d

d
d , 0 0 0

L r S B B r

S s r S

B B r S r r

S s S

r

X t X t r t n n u n

u n n n n t e e t

X t u n u n W t
X t u n W t X W L

µ σ σ σ σ λ

λσ λ σ σ σ

σ σ σ
σ

= − + + + −

+ + + − + +
+ +

+ =



−

−

     (20) 

( ) ( ) ( )
( ) ( ) ( )( ) ( )
1 2 3 1 2

1 2 3

d d d

d d
B S

B B r S r r S s S

X t X u u t e e t

X u n u n W t X u n W t

θ θ θ

σ σ σ σ

= + + + +

+ + − + −
  (21) 

( )
( )

2 2 2 2
1

2 2 2

3 1 2 1 3
2

1

2

2

3

2 2

r SL

B r

r S rs

r t n n

n

n n n n

θ µ σ σ

θ σ σ λ

θ λσ λ σ σ σ

= − + +

= −

= + + −

                 (22) 

The Hamilton-Jacobi-Bellman (HJB) equation associated with (21) is  

( ) ( )( ) ( ){
( )( ) ( )( )
( ) }

2
1 2 3 1 2

2 2
3 1 2

1 2

1 sup

0

2
1 1
2 2

t r r rr u B S x

S s xx B B r S r xx

r B B r S r rx

G a br G G x u u e e G

x u n G x u n u n G

x u n u n G

σ θ θ θ

σ σ σ σ

σ σ σ σ

+ − + + + + + +

+ −

 

+ + −

− + −

 

=

  (23) 
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where , , , ,t r x rx rxG G G G G  and xxG  are partial derivatives of first and second 
orders with respect to time, short interest rate, and relative wealth.  

Differentiating (23) with respect to Bu  and Su , we obtain the first-order 
maximizing conditions for the optimal strategies Bu∗  and Su∗  as     

( )2 1 2 0B Sx B B r r xx r B rxG x u n u n G Gθ σ σ σ σ σ σ∗ ∗+ − − =+          (24) 

( ) ( )3 1 1 2 3 1
2 0x r B r rB S Sxx S xx rr xG xn u n u n G x u n G n Gθ σ σ σ σ σ σ∗ ∗ ∗ −+ + − + − =   (25) 

Solving (24) and (25) simultaneously we have 
2

1 3
3

xS

x
S

S x

n Gu n
x G

λ σ
σ

∗  +
= −  

 
                    (26) 

( )2 1 3 4r x rxr r

B B xx B xx
B

n n n G Gu
x G x G

σ θ σ σ
σ σ σ

∗ −    
= + +   

   
            (27) 

2
2 1 1 1 3 2

4
S S S

S

n n n nσ λ σ λ σ
θ

σ
+ + −

=   

Substituting (26) and (27) into (23) we have 

( ) ( )

( ) ( )

2
0 1

2
2 2 2 2

2 2 2
2

2

1
2

1 1 0
2 2

t r r rr x

x rx rx

xx xx x

x
r

x
r r

G a br G G x G

G G G Gn n
G G G

σ ρ ρ

ρ λ σ λ σ σ

+ − + + +

 + − − + − − = 
 

    (28) 

0 1 2e eρ = +  

2 2 2
31 3 1 2 2 2r Ss Ln n n mρ λσ λ σ σ= + + −  

4 2 3 2 2
2 3 13 3 1

1 1
2 2S S sn n nρ σ σ σ λ λ= − − −                 (29) 

Applying Legendre transform to (28) we have 

( ) ( )

( ) ( )

2
0 1

2 2 2 2
2 2 2 2 2

1ˆ ˆ ˆ
2

1 ˆ ˆ 0
2

t r r rr

r zz r rz

G a br G G x z

n z G n zG

σ ρ ρ

ρ λ σ λ σ

+ − + + +

 − − − + − = 
 

         (30) 

0 1 2e eρ = +  

2 2 2
31 3 1 2 2 2r Ss Ln n n mρ λσ λ σ σ= + + −  

4 2 3 2
32 13

2
3 1

1 1
2 2S sS n n nρ σ σ σ λ λ= − − −  

Differentiating Equation (30) for Ĝ  with respect to z we obtain a linear PDE 
in terms of h and its derivatives and using ˆ

zx h G= = , we have 

( ) ( )

( ) ( )

( )

2 2
0 1 1 2 2

22 2
2 2 2 2 2

2 2 2
2 2 2

1
2

12
2

1 0
2

t r r rr z r r

r rz r z

r zz

h a br h h h zh n h

n zh n zh

n z h

σ ρ ρ ρ λ σ

λ σ ρ λ σ

ρ λ σ

+ − + − − − + −

 + − − − − 
 

 − − − = 
 

      (31) 
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where  

0 1 2e eρ = +  

2 3 2
31 3 1 2 2 2r Ss Ln n n mρ λσ λ σ σ= + + −  

4 2 3 2 2
2 3 13 3 1

1 1
2 2S S sn n nρ σ σ σ λ λ= − − −  

1C B Su u u= − −                         (32) 

3

2
1 3 S

z
S

S
nu n zh

h
λ σ

σ
∗  +
= −  

 
                    (33) 

( ) ( ) ( )
2 1 3 4

B
r

z
n n n hu zh
f T t hf T t hf T t

θ∗    −
= + −      − − −   

          (34) 

2
2 1 1 1 3 2

4
S S S

S

n n n nσ λ σ λ σ
θ

σ
+ + −

=                  (35) 

( )
( )

( ) ( ) ( )2
1 2 1

1 2 1 2

2 e 1
, 2

e

mt

mtf t m b c c
m b c m b c

λ
λ λ

−
= = − +

− − + + −
   (36) 

We will now solve (31) for h and substitute into (33) and (34) to obtain the 
optimal investment strategies. 

5. Explicit Solution of the Optimal Investment Strategies for  
the CRRA Utility Function 

Assume the investor takes a power utility function     

( ) , 1, 0
pxV x p p

p
= < ≠                       (37) 

The relative risk aversion of an investor with utility described in (37) is con-
stant and (37) is a CRRA utility. 

From (16) we have ( ) ( ) ( )1, ,h T r z V z−′=  and from (37) we have  

( )
1

1, , ph T r z z −=                          (38) 

We assume a solution to (31) with the following form 

( ) ( ) ( ) ( ) ( )
1

1, , , , 0, , 1.ph t r z v t r z y t y T v T s−
 

= + = = 
  

 

Then  

1 11 1 1
1 11 , , ,

1 1
p pp r

t t z rz
vvh v z y h z h z

p p

   
− −   

− −−    ′= + = − = −
− −

        (39) 

( )
( )

1 1 11
1 1 1

2

2
, , .

1
p p p

zz r r rr rr
p v

h z h v z h v z
p

 
− 

− − − 
−

= = =
−

 

Substituting (39) into (31) we have 
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( ) ( )

( )
( ) ( ) ( )

2
2 2 2 1

1
2 2 1

2 2 2 1 02

1
1 2 1

1 0
21

r
t r r r rr

Ip
r

n p pvv a br v v v
p p

pv n z y t y t
p

λ σ ρ
σ

ρ λ σ ρ ρ−

 − + − − + +
− −

 − − − + − − = 
 − 

    (40) 

Splitting (40) we have 

( ) ( )1 0 0Iy t y tρ ρ− − =                       (41) 

( ) ( )

( )
( )

2
2 2 2 1

2 2
2 2 22

1
1 2 1

1 0
21

r
t r r r rr

r

n p pvv a br v v v
p p

pv n
p

λ σ ρ
σ

ρ λ σ

−
+ − − + +

− −

 − − − = 
 −

           (42) 

Solving (41) with the given boundary condition ( ) 0y T =  

( ) ( )( )10

1

1 e T ty t ρρ
ρ

− −= − −                      (43) 

To solve (42), we conjecture a solution of the form 

( ) ( ) ( ) ( ) ( ), e 1, 0,N t rv t r M t M T N T= = =  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2e , e

and e e

N t r N t r
r rr

N t r N t rI I
t

v M t N t v M t N t

v rM t N t M t

= =

= +
            (44) 

Substituting (44) into (42), we have 

( )( )

( )
( )

( )
( )

( )( ) ( )
( )

2 2 1 2
2

2
1 2 1 2 2 2

2 2

2
2 2 1 2 2 12

1 2

1
1 2

1
21 1

1 1
1 2 2 1

I

I

a n c a pM N c N
M p

p p n pc

p p

b n c b p n pc
r N N c N

p p

λ

ρ ρ ρ λ

λ λ

− − +
+ +

−

− − −
+ +

− −

 + − − −
 + − + +
 − − 

      (45) 

Splitting (44) we have  

( )( )

( )
( )

( )
( )

2 2 1 2
2

2
1 2 1 2 2 2

2 2

1
1 2

1 0
21 1

I a n c a pM N c N
M p

p p n pc

p p

λ

ρ ρ ρ λ

− − +
+ +

−

− − −
+ + =

− −

              (46) 

( )( ) ( )
( )

2
2 2 1 2 2 12

1 2

1 1 0
1 2 2 1

I b n c b p n pc
N N c N

p p

λ λ+ − − −
− + + =

− −
       (47) 

( )
( )( )

( )( )

1 1 2

1 1 2

1
2

1 2
1

1 2

2

e

1 e

c d d T t

c d d T t

d dN t
d
d

− −

− −

−
=

−
                    (48) 

where 
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( )
( )( ) ( ) ( ) ( )

( ) ( )
2 2 1 2 1 2 1

2 2
1d d

1 2 1e 1,
n c a p a p p

N t t c N t t t C
p pM t M T

λ ρ ρ ρ − + − − − − − + 
− −  

∫ ∫
= =        (49) 

( )( ) ( )( )( ) ( )
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2 2 2
2 2 1 2 2 1 2 2 1

1
11

b n c b p b n c b p n pc
d

p c

λ λ λ + − − + + − − − − 
 =

−
   (50) 

( )( ) ( )( )( ) ( )

( )
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11

b n c b p b n c b p n pc
d
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−
  (51) 
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  
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   (52) 

Hence the solution of (31) is given as 
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  (53) 

Proposition 5.1 
The optimal investment strategies for cash, bond and stock is given as follows 

1C B Su u u∗ ∗ ∗= − −  
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1 21 3 1 3
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= + +           − −          
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Remark 5.1 
Suppose 2 3 0, 0, 1n n p l= = → = , then the salary is not stochastic and the op-

timal investment is given as  

( )1
1 1 1 2

1

1 e
S

T t

S S

e eu
w

ρλ λ
σ σ ρ

− −
∗

      + −
= +               

  

( )
( ) ( )( )11 1 22 1 1

1

1 1 e T tS

S
B

w e enu
f T t w

ρρλ σ λ
σ ρ

∗ − − + +  − = −   
−     

  

Furthermore, assume there is no extra contribution i.e., 2 0e =  we have  
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Proposition 5.2 
Suppose 

1 SSu u∗ ∗<  and 
1 BBu u∗ ∗<  then 

1 CCu u∗ ∗>  
Proof 
Since 

1 SSu u∗ ∗<  and 
1 BBu u∗ ∗<  then, 

1 1S B S Bu u u u∗ ∗ ∗ ∗+ < +  
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( ) ( )1 1
1 1S S BBu u u u∗ ∗ ∗ ∗− + > − +  

1 1
1 1S S BBu u u u∗ ∗ ∗ ∗− − > − −  

But 
1 1 1

1C S Bu u u∗ ∗ ∗= − −  and 1C S Bu u u∗ ∗ ∗−= − , therefore 

1 CCu u∗ ∗>  

Remark 5.2 
Suppose 2 0e =  then the strategies is without the extra contribution hence 

the required strategies are as given below 
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The result above is similar to that in [7]. 
Case 1 
If 3 1 1 20, 0, 0,0 1, 0, 0, 0Sn p l eλ σ ρ> > > < < > > =  then 

2 SSu u∗ ∗<  
Case 2 
If ( ) ( ) ( )2 1 3 1 10, 0, 0, 0,0 1, 0, 0, 0,Sn n n f T t p l N tλ σ ρ− > − > > > < < > > >   

2 0e =  
then 

2 BBu u∗ ∗<  
Case 2 
If ( ) ( ) ( )2 1 3 1 10, 0, 0, 0,0 1, 0, 0, 0,Sn n n f T t p l N tλ σ ρ− < − > > > < < > > >   

2 0e =  
then 

2 BBu u∗ ∗>  
Proposition 5.3 
Suppose 

2 SSu u∗ ∗<  and 
2 BBu u∗ ∗<  then 

2 CCu u∗ ∗>  
Proof 
Since 

2 SSu u∗ ∗<  and 
2 BBu u∗ ∗<  then, 

2 2S B S Bu u u u∗ ∗ ∗ ∗++ <  

( ) ( )2 2
1 1S S BBu u u u∗ ∗ ∗ ∗> − +− +  

2 2
1 1S S BBu u u u∗ ∗ ∗ ∗> − −− −  

But 
2 2 2

1C S Bu u u∗ ∗ ∗= − −  and 1C S Bu u u∗ ∗ ∗−= − , therefore 

2 CCu u∗ ∗>  

6. Discussion and Conclusion 
6.1. Discussion 

From proposition 5.1, we observed that with non stochastic salary, the optimal 
investment strategies for bond and stock increases with extra contribution while 
that of cash decreases with extra contribution. Also from proposition 5.2, we 
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observed that with stochastic salary, the optimal investment strategies for bond 
and stock increases with extra contribution while that of cash decreases with ex-
tra contribution. We also had case where we could not conclude on the behavior 
of the optimal investment strategy for bond with extra contribution. In general 
we observed that extra contribution to the pension fund has an effect on the op-
timal investment strategies in cash, bond and stock. The analysis shows that the 
plan member will increase the proportion of his wealth to be invested in bond 
and stock and will reduce the proportion to be invested in cash. 

6.2. Conclusion 

The optimal investment strategy for a prospective investor in a DC pension 
scheme, with stochastic salary, under the affine interest rate model has been stu-
died. Relevant to this work, the CRRA utility function was used and we obtained 
the optimal investment strategies for cash, bond and stock using the Legendre 
transform and dual theory. More so, the effect of various parameters were ana-
lyzed, in particular, the effect of extra defined contribution was x-rayed, with 
significant input on the investment strategy. 
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