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Abstract 
Investors find it difficult to determine the movement of prices of stock due to 
volatility. Empirical evidence has shown that volatility is stochastic which 
contradicts the Black-Scholes framework of assuming it to be constant. In this 
paper, stochastic volatility is estimated theoretically in a model-free way 
without assuming its functional form. We show proof of an identity estab-
lishing an exact expression for the volatility in terms of the price process. This 
theoretical presentation for estimating stochastic volatility with the presence 
of a compensated Poisson jump is achieved by using Fourier Transform with 
Bohr’s convolution and quadratic variation. Our method establishes the addi-
tion of a compensated Poisson jump to a stochastic differential equation using 
Fourier Transforms around a small time window from the observation of a 
single market evolution.  
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1. Introduction 

Volatility measures uncertainty of returns which plays a major role in cash flows 
from selling assets at a precise future date. It is very essential in financial markets 
due to price fluctuations, prediction of stock prices, option pricing, portfolio 
management and hedging. Decision and policy makers depend on volatility to 
determine the bullish and bearish nature of the market to avoid loss. The varying 
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nature of volatility makes it difficult to predict stock prices. The Black-Scholes 
framework assumes constant volatility but empirical evidence has proved 
otherwise leading researchers to explore more into modeling volatility of an 
asset. It is important to note that the original Black-Scholes framework did not 
include jumps into price processes. It is then of interest to explore to what 
extend the inclusion of jumps affects the dynamics of stock price volatility. 
Volatility can be estimated through parametric and nonparametric methods. 
When using the parametric methods, it is modeled using its functional form of 
observed variables in the market. These include discrete-time volatility models 
such as Autoregressive Conditional Heteroscedasticity(ARCH) models, where 
volatility relies on the past returns and other variables that are directly observed 
only [1]. Also, the implied volatilities are based on parametric models. Com- 
putation of the historical volatility without assuming its functional form is done 
by nonparametric methods. The expost variation in the frequency domain of 
equity prices was analyzed by Wang [2]. He proposed a realized periodogram 
based estimator based on Fourier transform which estimated the quadratic 
variation consistently using the price process which was log equilibrium. For 
contaminated prices caused by the micro-structure noise from the market data, 
the estimator filtered out the high frequency periodograms which converted the 
high frequency data to a low frequency periodograms. Its application was done 
to electric prices transaction that was general through simulation. The proposed 
estimator was said to be insensitive to sample frequency choices. 

Malliavin and Mancino [3] presented the computation of a time series 
volatility using Fourier series analysis method from observations of a semi- 
martingale data. The method was nonparametric and model free. The Fourier 
coefficient of the volatility was estimated based on integration of the time series. 
They stated that the method was well suitable for financial market and specifi- 
cally for analysis of time series data which are of high frequency and cross volati- 
lities computations. Kanatani [4] derived a linear interpolation bias of realized 
volatility. He used Fourier series estimator proposed by Malliavin and Mancino 
[3] to avoid the biasness. He examined the theoretical relationship between 
realized volatility and Fourier estimator and showed that the Fourier estimator 
was most efficient than the realized volatility. He also proposed that, linear 
interpolation should not be used as the preparation for realized volatility calcula- 
tions. Hoshikawa et al. [5] compared alternative estimators theoretically and 
empirically for the performance of the classical quadratic variation method by 
Hayashi and Yoshida [6] and Fourier series estimator by Malliavin and Mancino 
[3] in the presence of high frequency data. They found out that, the Hayashi and 
Yoshida [6] estimator performed the best among the alternatives in view of the 
bias and the Mean Square Error for integrated multivariate volatility since the 
biasness of Hayashi and Yoshida [6] was mostly due to the biasness of the drift. 
The other estimators were shown to have possibly heavy bias mostly toward the 
origin. They also applied these estimators to Japanese Government Bond futures 
to obtain the results which was consistent with their simulation. Mancino and 
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Sanfelici [7] studied the Fourier estimator of an integrated volatility in the 
presence of micro-structure noise. They presented the properties of finite sample 
of the Fourier estimator and derived an analytic expression for the contaminated 
estimator in terms of biasness and Mean Square Error. They also revealed that, 
the estimate could be used experimentally to design an optimal Mean Square 
Error-based estimator, which was efficient and robust with noise. Their conclu- 
sion was that, the Fourier estimator was relatively unbiased and the biasness of 
the finite sample could be made small by appropriately cutting off the highest 
frequencies. Mattiussi and Iori [8] analyzed a method based on Fourier analysis 
to estimate volatility and correlation when the observed prices are at a high 
frequency rate. Their method did not require data manipulation and led to more 
robust estimates than the traditional methods that have been proposed. They 
evaluated the performance of the Fourier algorithm to reconstruct the time 
volatility of simulated bivariate and univariate models. They also used the 
Fourier method to investigate the volatility and the correlation dynamics of the 
future market over the Asian crisis period. They detected possible interdepen- 
dencies and volatility transmission. A nonparametric estimation method based 
on Fourier analysis applied to continuous semi-martingales was proposed by 
Malliavin and Mancino [9]. It was mainly constructed for measuring instanta- 
neous univariate and multivariate volatility and co-volatility using observations 
from high frequency data. The Fourier transform of log-returns took into 
account asynchronous observations and unevenly spaced data. Asymptotic nor- 
mality and the consistency of the statistical properties of the Fourier estimator 
was analyzed. They defined the Fourier estimator purposely for co-volatility 
computation without manipulating the data based on integration embedded in 
Fourier transform. Also, with high frequency data, the reconstruction of co-vo- 
latility as a stochastic function was done in an effective way which allowed the 
volatility function to be handled as a variable observed in financial applications. 
Cuchiero and Teichmann [10] presented a new nonparametric method to 
compute the trajectory of instantaneous covariance using Fourier transform. 
The observation used was discrete from a multidimensional price process in the 
presence of jump. They extended the work of Malliavin and Mancino [3], [9] by 
adding a classical jump-robust estimator of a realized covariance estimation 
integration to estimate the Fourier coefficient. The path of the instantaneous 
covariance was reconstructed using Fourier-Fejer inversion. They proved the 
central limit theorem and the consistency of the estimator. Also, they analyzed 
the asymptotic estimator variance which was smaller by a factor 2/3 as compared 
to the classical local estimators. They investigated its robustness and showed 
how to empirically and theoretically estimate the integrated realized covariance 
of a stochastic covariance process which was instantaneous. Barucci et al. [11] 
studied the performance of forecasting the volatility estimator using Fourier 
with micro-structure noise presence. They compared analytically the Fourier 
estimator which significantly performed better than the realized volatility esti- 
mator types, especially for high-frequency data and without noise component. 
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They showed that the Fourier estimator outperformed the other methods 
designed for handling the market micro-structure contamination.  

All these and many researches have been done in volatility estimation using 
Fourier analysis without the consideration of the addition of a compensated 
Poisson jump. In this paper, we are motivated to propose a nonparametric 
estimation method based on Fourier analysis incorporated with Bohr’s convolu- 
tion and quadratic variation, applying it to continuous semi-martingale process 
with the addition of a compensated Poisson jump as an extension of the results 
of Malliavin and Mancino [9]. We investigate to see whether the addition of 
compensated Poisson jump has effect on the results obtained. This method will 
be suitable for measuring instantaneous multivariate volatility. This process will 
incorporate discontinuities on the returns on stocks and help fit a better market 
data with regards to the reflection of the reality in the stock market [12]. The 
estimation of volatility with a compensated Poisson jump will give a fair idea on 
how the movement of the stock prices will be in order for investors to position 
themselves well in terms of investing or hedging.  

The volatility is reconstructed as a function of time. The volatility matrix 
( ),j k tΣ  on the time window [ ]0, t  is computed by changing the origin of time, 

rescaling it to reduce the time window to [ ]0,2π  and using Fourier transform 
with Bohr’s convolution and quadratic variation to estimate it. We prove a 
general identity relating the Fourier transform of the price process ( )p t  with a 
compensated Poisson jump to that of the instantaneous multivariate volatility 

( ),j k tΣ  under the hypothesis that the volatility process is square integrable. We 
then derive an instantaneous volatility estimator from the identity based on a 
discrete, unevenly spaced asset prices. This is important when the derivation of 
stochastic volatility is performed along the time evolution in terms of contingent 
claim pricing-hedging [13]. This method can be generalized to measure the 
cross-correlations or co-variances which is a multivariate case. The paper is 
organized as follows: Section 2 deals with theoretical concepts. Section 3 dis- 
cusses the estimation of stochastic volatility using Fourier Transform and Sec- 
tion 5 presents the conclusion. 

2. Theoretical Concepts 

We present some important mathematical preliminaries that are significant to 
this paper. These preliminaries will outline some definitions and theorems that 
will be used in this paper. 

Definition 1. A stochastic process N  is a counting process if there exists an 
increasing family of sequence of random variables  

{ }1 2 10 : j jT T T T+ +< ≤ ≤ ∈ ∪ ∞ <   

where jT  is finite and  

) ( ),
1 jt T

j
N I t

∞

 ∞=

= ∑  

and  
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) ( ),

1 if

0 if 0j

j

T
j

t T
I t

t T ∞

≥=  ≤ <
 [14] 

Definition 2. Suppose   is a metric space of a real line with metric  
( ),x yθ  then a continuous real-valued function ( )x t  on   is called an 

almost periodic function if, for every 0ε > , there exists ( ) 0m m ε= >  such 
that every interval ( )0 0,t t m ε+    contains at least one number τ  for which 

( ) ( ),x t x tθ τ ε+ <    for ( )t−∞ < < ∞ . [15] 
Definition 3. Let ,Φ Ψ  be functions on  , where   is an integer, then 

their Bohr convolution is: 

( )( ) ( ) ( )1: lim .
2 1

n

B n s n
k s k s

n→∞ =−

Φ∗ Ψ = Φ Ψ −
+ ∑  

Definition 4. The map :mI x p→  from ( )nP R  to ( )P M  is an Itô map 
where ( )P M  is the set of continuous maps from [ ]0,1  to M  and ( )nP R  
is the set of continuous maps x , from [ ]0,1  to nR  such that ( )0 0x =  and 
stochastic moving frame ( ) ( ) ( )( ),r p eτ τ τ=  such that ( )0p m M= ∈  and  
( )0e  is the identity [16].  
Definition 5. Let M  be an n-dimensional Riemannian Manifold, ( )T M  

be a tangent space and ( )*T M  be the dual space of ( )T M  then a vector field 
Z  along p  is a map from [ ]0,1  to ( )T M  such that for [ ]0,1τ ∈ ,  

( ) ( ) ( )p pZ T Mττ ∈ . If Z  is an adapted vector field with respect to ω  being an 
adapted differential one form along p , then ( ) ( )1

pe Zτ τ−  with respect to 
( ) ( )pe τ ω τ  is an adapted vector on n  [16]. 
Definition 6. Suppose ( )*

mT M  is the dual space of ( ) ( )* *
m M

T M T M
∈

=


  

then a differential form ω  of degree one along p  is a map from [ ]0,1  to 
( )*T M  such that for any [ ]0,1τ ∈ , ( ) ( ) ( )*

p pT Mτω τ ∈ . If ω  is an adapted 
differential one form along p , then ( ) ( )pe τ ω τ  is in a linear form [16]. 

Theorem 1. (Ito energy identity). Let ω  be an adapted differential form and 
Z  be an adapted vector field along p ; then it implies that we have  

( ) ( ) ( ) ( ) ( ) ( )1 1 1

0 0 0
d d dE s Z s s E s p s Z s p sω ω   = ⋅      ∫ ∫ ∫        (1) 

Proof: see [16].  
Theorem 2. (Ito Formula for a complex variable case). If ( ),i j i jV V VVµ = , 

where ,i jV V  are martingales and we apply complex Itô formula to it, then we 
get, 

( )d d d d di j i j j i i jVV V V V V V V= + +                 (2) 

Proof: see [17].  
Theorem 3. (Burkholder-Davis-Gundy inequality) For every 1 p≤ < ∞  there 

exist positive constants ,p pk K  such that, for all local martingales X  with 

0 0X =  and stopping times τ , the following inequality holds. 

[ ] ( ) [ ]2 2* .
pp p

p pk X X K Xττ τ
    ≤ ≤     

    

If 2p = , then we have a special case, then it implies that this inequality holds 
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in this case with constants 2 21, 4k K= = .  

[ ] ( ) [ ]
2* 4 .X X Xττ τ

    ≤ ≤     
    

See proof [18].  
Remark 1. The compensated Poisson process t tM N tλ= − , t +∈  is a 

martingale with respect to its own filtration tF  [14].  
Definition 7. Let tV  be a real-valued stochastic process defined on the 

probability space ( ), ,Ω F  and with time t  that ranges over non-negative real 
numbers then the pth variation is defined as,  

10 1
lim

k k

n p

t t t
k

V V V
−Π → =

= −∑  

where [ ]0, tΠ∈  and Π  is the norm of the partition 0 1 20 nt t t t t= < < < < =  
such that we have ( ){ }1max ,  1, ,i it t i n−Π = − ∀ =   if the above sum converges 
[19].  

This is true under certain conditions for example, 1p =  defines the first 
variation or total variation process, for 2p = , the pth variation equals the 
quadratic variation if the sum converges. Also, it is a bounded variation if and 
only if for 1, tp V= < +∞ .  

For a generalize Itô processes,  

0 0 0
d d ,

t t
t s s sX X B sσ µ= + +∫ ∫  

where B  is a standard Brownian motion, its quadratic variation is given by  

[ ] 2
0

d .
t

stX sσ= ∫  [20]. 

The quadratic variation of a compensated Poisson process t tM N tλ= −  is  

[ ] 2
s tt

s t
M M N

≤

= ∆ =∑  [21]. 

3. Stochastic Volatility Estimation with Fourier Transforms 

Fourier Transform is a nonparametric method which is the representation of 
frequency domain, and the mathematical operation that links the frequency 
domain representation to a function of time. A time varying data can be 
transformed from one domain into a different domain (frequency domain) and 
that is the main idea behind Fourier [22]. To represent functions in Fourier 
transform, the function has to be non-periodic and its integral of the absolute of 
the function must converge [23]. A function can be reconstructed from its 
Fourier transform by using inverse Fourier transform. When volatility changes 
with time, its computation which is done by nonparametric methods centers 
around small time windows which can be daily, weekly or monthly in a high 
frequency data. 

Fourier transform constructs the volatility as a function for it’s iteration and 
computation of the cross-correlation between price and volatility. Fourier 
Transform takes into consideration all the observations and avoids inconsistency 
in data since it is based on integration. Let ( )p t  be the log-price of assets 
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which is a continuous semi-martingale on a fixed time window, then 

( ) ( ) ( ) ( ) ( )d , d , d d ,p t t B t t B B t M tα σ= + +  

where ( ) ( )M t N t tλ= −  and ( )N t  is a Poisson process with intensity λ , α  
is the drift, σ  is the volatility, time is t  and the standard Brownian motion 
B . ( )B t  and ( )M t  are independent.  

We solve for the price process with a compensated Poisson jump as  

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

0 , d , d d
t t t

p t p s B s s B B s M sα σ= + + +∫ ∫ ∫        (3) 

where σ  is adapted to a filtration but α  is not necessarily adapted and it’s 
bounded by cα σ+ ≤ , for c∈ . 

Now we let ( ) ( ) ( )1 , , np t p t p t=  , satisfying  

( ) ( ) ( ) ( ) ( )
1

d d d d , 1, , ,
d

j j i j j
i

i
p t t B t t t M t j nσ α

=

= + + =∑        (4) 

where 1, , dB B B=   are independent Brownian motions on a probability space, 
such that j

iσ  and jα  are random processes which are adapted to a filtration 
and satisfies the conditions in (QA) below; 

( )( )2

0
d

T iE t tα  < ∞  ∫  

(QA) 

( )( )4

0
d , 1, , , 1, , .

T j
iE t t i d j nσ  < ∞ = =  ∫    

Definition 8. Suppose we have two assets whose prices are ( ) ( ),j kp t p t , 
then its respective volatilities will be ( ) ( ),j k

i it tσ σ  (co-volatilities), hence the 
entries of its volatility matrix ( ),j k tΣ , is  

( ) ( ) ( ),

1
.

d
j k j k

i i
i

t t tσ σ
=

Σ =∑  

When ( ) ( )j kp t p t= , the volatility matrix will be  

( ) ( )( )2,

1

d
j k j

i
i

t tσ
=

Σ =∑  

known as the instantaneous volatilities. 
Theorem 4. Suppose the function ( )φ ν  has Fourier transform:  

( )( ) ( )2π

0

1: e d ,
2π

ikk kνφ φ ν ν−= ∈∫                  (5) 

and its differential form:  

( )( ) ( )2π

0

1d : e d
2π

ikk νφ φ ν−= ∫                    (6) 

then 

( )( ) ( ) ( )( ) ( )1 2π 0 d .
2π

ik k
k

φ φ φ φ = − −  
               (7) 

Proof. From Equation (5), 
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( )( ) ( ) ( )

( ) ( )

( ) ( )

2π

0

2π

0

2π

0

1 e e d
2π

1 e e d
2π

1 e e d
2π

ik ik

ik ik

ik ik

k
ik ik

ik

ik

ν ν

ν ν

ν ν

φ φ ν φ ν

φ ν φ ν

φ ν φ ν

− −

− −

− −

 
= − − − 

 

 = − + 

 = − − 

∫

∫

∫



 

From Equation (6)  

( )( ) ( ) ( )

( ) ( ) ( ) ( )

2π

0

2π

1 1e d
2π
1 12π e 0 d

2π

ik

ik

k k
ik ik

k
ik ik

νφ φ ν φ

φ φ φ

−

−

 = − +  

 = − − + 

 



 

but ( ) ( ) ( )2πe cos 2π sin 2πik k i k− = − , and ( )cos 2π 1k = , ( )sin 2π 0k = , then we 
have 

( )( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

1 12π cos 2π sin 2π 0 d
2π

1 12π 0 d
2π

k k i k k
ik ik

k
ik ik

φ φ φ φ

φ φ φ

 = − + − + 

= − − +  

 


 

that is  

( )( ) ( ) ( )( ) ( )1 2π 0 d
2

ik k
k

φ φ φ φ
π

 = − −  
   

The Identity Relation for a Complex Martingale Case  

We present the following propositions with their proofs below.  
Proposition 5. The identity that relates the price process and volatility matrix 

with the compensated Poisson jump is  

( )( ) ( )( ) ( ) ( )
*

1 1 d d d
2π 2π B

ij i jk N k p pΣ + =              (8) 

Proof. Here we establish an identity which relates the Fourier transform of the 
price process ( )p t  to the Fourier transform of the volatility matrix ( )ij tΣ . 
The drift α  does not contribute to the quadratic variation [24], so without loss 
of generality, we let 0α = ; then p  is a semi-martingale. 

Suppose we have a price process which has a volatility matrix and a com- 
pensated Poisson jump,  

( ) ( ) ( ) ( ) ( ) ( )
1

d d d d , 1, , ,
d

j j k i j j
i i

i
p t t t B t t t M t j nσ σ α

=

= + + =∑    (9) 

where ( )( ),t B tσ  does not depend on ( )B t  then from Equation (9), we have,  

( )( ) ( ) ( )( ) ( )( )
1

d d d d .
d

j j k i j j
i i

i
p k B k t k M kσ σ α

=

 = + + 
 
∑     

let ( ) ( ) ( ) ( )1d d ,dj j k i
i iip t t t B tσ σ σ

=
=∑  then,  
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( )( ) ( )( ) ( )( ) ( )( )d d d d .j j j jp k p k t k M kσ α= + +     

Again, let  

( )( ) ( )d j
mp k kσ φ= , ( )( ) ( )dj t k kαα φ=  and ( )( ) ( )d j

MM k kφ=  

then it suffices from the theory of convolution that,  
( ) ( )

( )( )
*

* * *

* * * * *

* * * *

B

B B B

B B B B B

B B B B

M M

M M

M

M M M M M

σ α σ α

σ α σ α

σ σ σ α σ α σ α α

α σ α

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

+ + + +

= + + + +

= + + + +

+ + + +

 

Since 0α =  then from Bohr’s convolution, the functions that convolve with 
α  will be zero and also functions that convolve with M  apart from itself will 
be zero, hence we have,  

( ) ( )
B BBM M M Mσ α σ α σ σφ φ φ φ φ φ φ φ φ φ∗ ∗∗

+ + + + = +  

From Definition 3, we have, 

( )( ) ( ) ( )*
1lim .

2 1B

n

n s n
k s k s

nα α α αφ φ φ φ
→∞ =−

= −
+ ∑            (10) 

From Equation (10), we define the Bohr’s convolution of the volatility and the 
compensated Poisson jump as: 

( )( ) ( ) ( )*
1lim .

2 1B

n

n s n
k s k s

nσ σ σ σφ φ φ φ
→∞ =−

= −
+ ∑  

( )( ) ( ) ( )*
1lim .

2 1B

n

M M M Mn s n
k s k s

n
φ φ φ φ

→∞ =−

= −
+ ∑  

which implies that  
( ) ( )

( ) ( ) ( ) ( )

*

1 1lim lim
2 1 2 1

BM M

n n

M Mn ns n s n
s k s s k s

n n

σ α σ α

σ σ

φ φ φ φ φ φ

φ φ φ φ
→∞ →∞=− =−

+ + + +

= − + −
+ +∑ ∑

 

But  

( ) ( ) ( ) ( ) * ***
d d

B BBB

j j
M M M Mp p σ α σ α σ σφ φ φ φ φ φ φ φ φ φ= + + + + = +   

We define  

( ) ( ) [ ]( ) [ ]( )2* 0

1 1d d d ,d e d , ,
2π 4πB

t iksX X X X X X s−= = ∫    [2] 

which implies 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

* **

* *

2 20 0

d d

d d d d

1 1d ,d d ,d
2π 2π
1 1e d , e d ,

4π 4π

B BB

B B

i j
M M

j j j j

i j j j

t tiks i j iks j j

p p

p p M M

p p M M

p p s M M s

σ σ

σ σ

σ σ

σ σ

φ φ φ φ

− −

= ∗ + ∗

= +

   = +   

   = +   ∫ ∫

 

   

 
 

where ( ) ( )d , dj j jM M s N s  =   is:  
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( ) ( ) ( ) ( )2 20 0*

1 1d d e d , e d
4π 4πB

t ti j iks i j iks jp p p p s N sσ σ
− − = + ∫ ∫   

Let  

( ) ( ) ( ) ( )( )2 0

1 1d , e d ,
2π4π

ti j ij iks i j ijp p s t p p s kσ σ σ σ
−   = Σ ⇒ = Σ   ∫    

and  

( ) ( )( )2 0

1 1e d d
2π4π

t iks j jN s N k− =∫   

Then we have,  

( )( ) ( ) ( ) ( )( )
*

1 1d d d
2π 2πB

ij i j jk p p N kΣ = −     

Hence the identity that relates the volatility matrix and the compensated 
Poisson jump is  

( )( ) ( )( ) ( ) ( )
*

1 1 d d d
2π 2π B

ij j i jk N k p pΣ + =     

Proposition 6. The volatility matrix and compensated Poisson jump are 
related to the price process by the identity  

( ) ( )( )( ) ( )( ) ( )( )1 1d d d
2π 2π

i j ij j
Bp p q q N q∗ = Σ +          (11) 

with the volatility independent of the stock’s Brownian motion.  
Proof. In the case where ( )tσ  is independent of tB , we introduce complex 

martingales ( ) ( ),i j
k rt tΓ Γ  for any integers ,r k , where p  is the price process 

and we have two assets, , 1, 2.i j =  The Fourier transform of the complex 
martingale is,  

( ) ( )
0

1: e d
2π

ti iks i
k t p s−Γ = ∫  

( ) ( )
0

1: e d .
2π

tj irs j
r t p s−Γ = ∫  

That is:  

( )( ) ( )2π

0

1d e d ,
2π

i iks ip k p s−= ∫  

which implies ( ) ( )( )2π d .i i
k p kΓ =    

Using Itô formula in Theorem 2 to solve the complex martingale we have, 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
0 0

d d d d d

d d

1 1d e d d e d
2π 2π

i j i j j i i j
k r k r r k k r

i j j i
k r r k

t tiks i irs j

t t t t t t t

t t t t

p s p s− −

Γ Γ = Γ Γ + Γ Γ + Γ Γ

= Γ Γ + Γ Γ

    +     
    

∫ ∫

 

From Equation (4), if 0α =  we have  
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( )( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

0 0
0 0

0 0
0

0

d d d

1 1d e d d d e d d
2π 2π

1 1d d d e d d e d
2π 2π

1d
2π

i j i j j i
k r k r r k

d dt tiks i l j irs j l j
l l

l l

dt ti j j i iks i l iks j
k r r k l

l

t t t t t

B M s B M s

t t t t B M s

σ σ

σ

− −

= =

− −

=

Γ Γ = Γ Γ + Γ Γ

       + + +       
       

    = Γ Γ + Γ Γ + +       

×

∑ ∑∫ ∫

∑∫ ∫

( )

( ) ( ) ( ) ( )

( )

0
0

0 0
0 0

0 0
0

0

1e d d e d
2π

1 1d d d e d d e d
2π 2π

1 1d e d d e d
2π 2π
1d e d
2π

dt tirs j l irs j
l

l

d dt ti j j i iks i l irs j l
k r r k l l

l l

dt tiks i l irs j
l

l

t iks j

B M s

t t t t B B

B M s

M

σ

σ σ

σ

− −

=

− −

= =

− −

=

−

    +       
   = Γ Γ + Γ Γ +    
   

   +      

+

∑∫ ∫

∑ ∑∫ ∫

∑∫ ∫

∫ ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )

0
0

0 0

2
2

0

2

0

2

1d e d
2π

1 1d e d d e d
2π 2π

1d d e d
2π

1 e d d
2π

1 e
2π

dt irs j l
l

l

t tiks j irs j

d
i k r ti j j i i j l

k r r k l l
l

d
i k r t j i l

l
l

i k r

s B

M s M s

t t t t t B s

M t t B t

σ

σ σ

σ

−

=

− −

− +

=

− +

=

− +

  
      
   +    
   

  = Γ Γ + Γ Γ +       

  +       

 +  
 

∑∫

∫ ∫

∑

∑

( ) ( ) ( ) ( ) ( )( )( )
2

2

0

1d d e d
2π

d
t i k r tj j l j

l
l

M t t B t M tσ − +

=

   +      
∑

 

But 
0

d i j ij
l ll σ σ

=
= Σ∑  and ( )( )2

d dj j
tM t N= , which implies,  

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

2

2

=0

2

=0

2

1d d d e d
2π

1 e d d
2π

1 e d d
2π

1 e d
2π

i k r ti j i j j i ij
k r k r r k

d
i k r t j i l

l
l

d
i k r t j j l

l
l

i k r t j
t

t t t t t t

M t t B t

M t t B t

N

σ

σ

− +

− +

− +

− +

 Γ Γ = Γ Γ + Γ Γ + Σ 
 

  +       

  +       

 +  
 

∑

∑
 

( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

2
2π 2π 2π

0 0 0

2
2π

0
=0

2
2π

0
=0

2
2π

0

1d d d e d
2π

1 e d d
2π

1 e d d
2π

1 e d
2π

i k r ti j i j j i ij
k r k r r k

d
i k r t j i l

l
l

d
i k r t j j l

l
l

i k r t j
t

t t t t t t

M t t B t

M t t B t

N

σ

σ

− +

− +

− +

− +

 Γ Γ = Γ Γ + Γ Γ + Σ 
 

  +       

  +       

 +  
 

∫ ∫ ∫

∑∫

∑∫

∫

 

Since  

( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )2π

0
d 2π 0 2π 2π 0 0 ,i j i j i j i j i j

k r k r k r k r k rtΓ Γ = Γ Γ − Γ Γ = Γ Γ −Γ Γ∫  
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and ( ) ( )0 0 0i j
k rΓ Γ =  we have,  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

2
2π 2π

0 0

2
2π

0
=0

2
2π

0
=0

2
2π

0

12π 2π d d e d
2π

1 e d d
2π

1 e d d
2π

1 e d
2π

i k r ti j i j j i ij
k r k r r k

d
i k r t j i l

l
l

d
i k r t j j l

l
l

i k r t j
t

t t t t t

M t t B t

M t t B t

N

σ

σ

− +

− +

− +

− +

 Γ Γ = Γ Γ + Γ Γ + Σ 
 

  +       

  +       

 +  
 

∫ ∫

∑∫

∑∫

∫

 

Let ( ) ( ) ( ) ( ) ( )( )2π

0
, d dij i j j i

k r r kH k r t t t t= Γ Γ + Γ Γ∫  and from the definition of a 
Fourier transform, 

we have ( ) ( )( )2π

0

1 e d ,
2π

i k r tij ijt k r− +Σ = Σ +∫   which follows that,  

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

2
2π

0
=0

2
2π

0
=0

2
2π

0

12π 2π ,
2π

1 e d d
2π

1 e d d
2π

1 e d
2π

i j ij ij
k r

d
i k r t j i l

l
l

d
i k r t j j l

l
l

i k r t j
t

k r H k r

M t t B t

M t t B t

N

σ

σ

− +

− +

− +

Γ Γ = Σ + +

  +       

  +       

 +  
 

∑∫

∑∫

∫



 

If we have an integer 1n ≥ , then for any integer q, where q n≤  and from 
the Bohr’s convolution theory we have,  

( ) ( ) ( )1 2π 2π
2 1

n
ij i j
q q s s

s n
n

n
ϑ + −

=−

= Γ Γ
+ ∑                (12) 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

2
2π

0
=0

2
2π

0
=0

2
2π

0

12π 2π ,
2π

1 e d d
2π

1 e d d
2π

1 e d
2π

i j ij ij
q s s

d
i q s s t j i l

l
l

d
i q s s t j j l

l
l

i q s s t j
t

q s s H q s s

M t t B t

M t t B t

N

σ

σ

+ −

− + −

− + −

− + −

Γ Γ = Σ + − + + −

  +       

  +       

 +  
 

∑∫

∑∫

∫



 

which simplifies to  

( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2
2π

0
=0

2
2π

0
=0

2
2π

0

12π 2π ,
2π

1 e d d
2π

1 e d d
2π

1 e d
2π

i j ij ij
q s s

d
iqt j i l

l
l

d
iqt j j l

l
l

iqt j
t

q H q s s

M t t B t

M t t B t

N

σ

σ

+ −

−

−

−

Γ Γ = Σ + + −

  +       

  +       

 +  
 

∑∫

∑∫

∫
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From Equation (12) it implies that,  

( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2π

0
=0

2 2
2π 2π

0 0
=0

1 2π 2π
2 1

1 1 1, e d d
2 1 2π 2π

1 1 1e d d e d
2 1 2π 2π

1
2

n
ij i j
q q s s

s n

n d
ij ij iqt j i l

l
s n l

n d
iqt j j l iqt j

l t
s n l

n
n

q H q s s M t t B t
n

M t t B t N
n

ϑ

σ

σ

+ −
=−

−

=−

− −

=−

= Γ Γ
+

   = Σ + + − +    +      
     + +     +       

=

∑

∑ ∑∫

∑ ∑∫ ∫



( )( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

2
2π

0
=0

2 2
2π 2π

0 0
=0

1 2 1 ,
1 2π

1 1 e d d
2 1 2π

1 1 1e d d e d
2 1 2π 2π

1 1
2π 2 1

n
ij ij

s n

n d
iqt j i l

l
s n l

n d
iqt j j l iqt j

l t
s n l

ij

q n H q s s
n

M t t B t
n

M t t B t N
n

q
n

σ

σ

=−

−

=−

− −

=−

 Σ + + + − +  
   +     +      

     + +     +       

= Σ +
+

∑

∑ ∑∫

∑ ∑∫ ∫



 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2π

0
=0

2 2
2π 2π

0 0
=0

1, e d d
2π

1 1 1e d d e d
2 1 2π 2π

n d
ij iqt j i l

l
s n l

n d
iqt j j l iqt j

l t
s n l

H q s s M t t B t

M t t B t N
n

σ

σ

−

=−

− −

=−

   + − +         
     + +     +       

∑ ∑∫

∑ ∑∫ ∫  

Hence, 

( ) ( )( ) ( )1 ,
2π

ij ij ij ij
q n nn q H q s s Yϑ = Σ + + − +            (13) 

where  

( ) ( )1, ,
2 1

n
ij ij
n

s n
H q s s H q s s

n =−

+ − = + −
+ ∑  

but  

( ) ( ) ( ) ( ) ( )2π

0
, d dij i j j i

k r r kH k r t t t t= Γ Γ + Γ Γ∫  

which implies  

( ) ( ) ( ) ( ) ( )2π

0

1, d d
2 1

n
ij i j j i
n q s s s q s

s n
H q s s t t t t

n + − − +
=−

+ − = Γ Γ + Γ Γ
+ ∑ ∫  

and  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2π

0
=0

2 2
2π 2π

0 0
=0

1 1 e d d
2 1 2π

1 1 1e d d e d
2 1 2π 2π

n d
ij iqt j i l

n l
s n l

n d
iqt j j l iqt j

l t
s n l

Y q M t t B t
n

M t t B t N
n

σ

σ

−

=−

− −

=−

  =    +    
     + +     +       

∑ ∑∫

∑ ∑∫ ∫
 

( ),ij
nH q s s+ −  can also be reduced to nQ  by symmetry as, 

( ) ( )22π
2 10 0

1 d d
2 1

n tj i
n s q s

s n
Q t t

n − +
=−

= Γ Γ
+ ∑ ∫ ∫  [9] 

From nQ ,  
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( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

22 2π2π
2 1 2 10 0 0 0

2

d d

2π 0 0

ttj i j i
s q s s q s

j j i i
s s q s q s

t t t t

t

− + − +

− − + +

   Γ Γ = Γ Γ   

= Γ −Γ Γ −Γ

∫ ∫  

Let ( )0 0Γ =  (it refers to the Fourier transform of the initial price) then it 
implies that  

( ) ( ) ( ) ( )22π
2 1 20 0

d d 2π
tj i j i

s q s s q st t t− + − +Γ Γ = Γ Γ∫ ∫  

Now  

( ) ( )( ) ( ) ( ) ( )2 2 2d 2π 2π d ( ) d 2πj i j i i j
s q s s q s q s st t t− + − + + −Γ Γ = Γ Γ + Γ Γ∫ ∫ ∫  

Since ( )1 2,t t t∈  and ( )0,2πt∈ , we have  

( ) ( )( ) ( ) ( ) ( ) ( )2π 2π

0 0
d d dj i j i i j

s q s s q s q s st t t t t t− + − + + −Γ Γ = Γ Γ + Γ Γ∫ ∫  

Hence ij
nH  can be reduced to nQ  by symmetry as n →∞ . 

Let ( )nD t  be a Dirichlet kernel defined as  

( ) ( )
( )

sin 11 1e ,
2 1 2 1 sin 2

n
ist

n
s n

n t
D t

n n t=−

+
= =

+ +∑              (14) 

By the definition of nQ  we have,  

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

2 12

2 12

2

2π
2 10 0

2

2π
2 10 0

2π
2 12 0 0

2π

2 0

1 d d
2 1

1 2π
2 1

1 1 1e d e d
2 1 2π 2π
1 1 e d e d

2 14π
1 1 e d

2 14π

n tj i
n s q s

s n
n

j i
s q s

s n
n t i q s tist j i

s n

n t i q s tist j i

s n

n
ist j

s n

Q t t
n

t
n

p t p t
n

p t p t
n

p t
n

− +
=−

− +
=−

− +

=−

− +

=−

=−

= Γ Γ
+

= Γ Γ
+

= ×
+

 =  + 
 =  + 

∑ ∫ ∫

∑

∑ ∫ ∫

∑ ∫ ∫

∑ ∫ ( ) ( )

( ) ( )

2 1 1

2 2 1 1

2 10

2π
1 22 0 0

e e d

1 1 e e e d d
2 14π

t iqt ist i

n t ist iqt ist i j

s n

p t

p t p t
n

− −

− −

=−

 = × × + 

∫

∑ ∫ ∫

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 1 1

2 2 11

2 2 11

2π
1 22 0 0

2π
1 22 0 0

2π
1 22 0 0

1 1 e e d d
2 14π

1 1 e e d d
2 14π

1 1e e d d
2 14π

n t is t t iqt i j
n

s n

nt is t tiqt i j

s n

nt is t tiqt i j

s n

Q p t p t
n

p t p t
n

p t p t
n

− −

=−

−−

=−

−−

=−

 = × + 
 = × + 

= ×
+

∑ ∫ ∫

∑∫ ∫

∑∫ ∫

 

But from Equation (14)  

( ) ( )2 1
2 1

1 e
2 1

n
is t t

n
s n

D t t
n

−

=−

− =
+ ∑  

which implies  

( ) ( ) ( )2 1
2π

2 1 1 22 0 0

1 e d d
4π

t iqt i j
n nQ D t t p t p t−= −∫ ∫  

Hence,  
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( ) ( ) ( )2 1
2π

2 2 1 12 0 0

1 d e d
4π

t iqtj i
n nQ p t D t t p t−= −∫ ∫  

From Equation (4), when 0α =  and we have two assets then,  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )2
22π

2 1 1 2 1 1 1 12 0 0
1

1 d cos sin d d
4π

tj i k i
n n k

k
Q p t qt i qt D t t t B t M tσ

=

 = − − + 
 
∑∫ ∫  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )2
222π2

2 1 1 2 1 1 1 12 0 0
1

1 d cos sin d d
4π

tj i k i
n n k

k
Q p t qt i qt D t t t B t M tσ

=

  = − − +  
  
∑∫ ∫  

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )2

22 222
2 2 22 0

1

22

1 1 2 1 1 1 10
1

1 d d
4π

cos sin d d

j k j
n k

k

t i k i
n k

k

Q t B t M t

qt i qt D t t t B t M t

π
σ

σ

=

=

  = +      

  × − − +  
  

∑∫

∑∫
 

Let  

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

2

2

2222
2 1 2 1 1 1 10

1

222
1 2 1 1 1 10

1

cos d d , d d 0

cos d d

t i k i
n k t t

k

t i i
n k

k

t qt D t t t B t M t M B

qt D t t t t N t

ς σ

σ

=

=

 = − + ⋅ = 
 
  = − +     

∑∫

∑∫
 

(15) 

and  

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

2

2

2222
2 1 2 1 1 1 10

1

222
1 2 1 1 1 10

1

sin d d

sin d d

t i k i
n k

k

t i i
n k

k

t qt D t t t B t M t

qt D t t t t N t

ϖ σ

σ

=

=

 = − + 
 
  = − +     

∑∫

∑∫
  (16) 

( ) ( ) ( ) ( )
222π2 2 2

2 2 2 2 24 0
1

1 d d
16π

j j
n k

k
Q t t N t t tσ ς ϖ

=

     = + +           
∑∫  

( ) ( ) ( )( ) ( )( )2 22π24 2 2
2 2 2 2 20

1
16π d dj j

n k
k

Q t t t t N tς ϖ σ
=

 = + + ∑∫  

then using Itô energy identity Equation (1) we have,  

( ) ( ) ( )( ) ( )( )2 22π24 2 2
2 2 2 2 20

1
16π d d .j j

n k
k

E Q E t t t t N tς ϖ σ
=

    = + +     ∑ ∫  (17) 

Expressing Equation (17) using Cauchy-Schwarz inequality we have 

( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

22 4 22π24
2 2 20

1

422π
2 1 1 1 1 1 20 0

1

422π
2 1 1 1 1 1 20 0

1

16π 4 d d

cos d d d

sin d d d

j j
n k

k

t i k i
n k

k

t i k i
n k

k

E Q E t t N t

E D t t qt t B t M t t

E D t t qt t B t M t t

σ

σ

σ

=

=

=

   ≤ +    

      × − +   
     

     + − +   
     

∑ ∫

∑∫ ∫

∑∫ ∫

 

But ( )( ) ( )( ) ( )( )4 4 22π 2π
2 2 20 0

[ d ] d di j i
k kE t t E t t N tσ σ < ∞⇒ + < ∞  ∫ ∫  then eva- 

luating the rest of the terms using Burkholder-Gundy’s inequality, we have 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

2

2

2

422π
2 1 1 1 1 1 20 0

1

422π 4 4
2 1 1 1 1 1 20 0

1

2 4 22π 4 4
2 1 1 1 1 1 20 0

1

cos d d d

4 cos d d d

4 cos d d d

t i k i
n k

k

t i k i
n k

k

t i i
n k

k

E D t t qt t B t M t t

E D t t qt t B t M t t

E D t t qt t t N t t

σ

σ

σ

=

=

=

    − +  
    

    ≤ − +  
    
  = − +  

  

∑∫ ∫

∑∫ ∫

∑∫ ∫

 

( )11 cos 1qt− ≤ ≤  and ( )4
1cos qt  takes the interval ( )4

10 cos 1qt≤ ≤  and 
since the maximum of cos  is 1, we have 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

2

2

422π
2 1 1 1 1 1 20 0

1

2 4 22π 4
2 1 1 1 1 20 0

1

cos d d d

4 d d d

t i k i
n k

k

t i i
n k

k

E D t t qt t B t M t t

E D t t t t N t t

σ

σ

=

=

    − +  
    

  ≤ − +  
  

∑∫ ∫

∑∫ ∫
 

Similarly for  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

2

2

2

422π
2 1 1 1 1 1 20 0

1

422π 4 4
2 1 1 1 1 1 20 0

1

2 4 22π 4
2 1 1 1 1 20 0

1

sin d d d

4 sin d d d

4 d d d

t i k i
n k

k

t i k i
n k

k

t i i
n k

k

E D t t qt t B t M t t

E D t t qt t B t M t t

E D t t t t N t t

σ

σ

σ

=

=

=

    − +  
    

  ≤ − +  
   

  = − +  
  

∑∫ ∫

∑∫ ∫

∑∫ ∫

 

we have  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

2

2

2

2

422π
2 1 1 1 1 1 20 0

1

422π
2 1 1 1 1 1 20 0

1

2 4 22π 4
2 1 1 1 1 20 0

1

2π

0 0

cos d d d

sin d d d

4 d d d

4

t i k i
n k

k

t i k i
n k

k

t i i
n k

k

t

E D t t qt t B t M t t

E D t t qt t B t M t t

E D t t t t N t t

E

σ

σ

σ

=

=

=

    − +  
    
    + − +  
    
  ≤ − +  

  

+

∑∫ ∫

∑∫ ∫

∑∫ ∫

∫ ( ) ( )( ) ( )( )
2 4 24

2 1 1 1 1 2
1

d d di i
n k

k
D t t t t N t tσ

=

  − +  
  
∑∫

 

Let 1 2 1,t u t t ν= − = , then by change of variables we have, 2t u ν= + , 
1

d 1
d

u
t
= , 

2

d 1
d

u
t
= , 

2

d 1
dt
ν
=  

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

2

2

2 4 22π 4
0 0

1
2 4 22π 4

0 0
1

2 4 22π 2π 4
0 0

1
2 4 22π 2π 4

0 0
1

2π

0

4 d d d

4 d d d

4 d d d

4 d d d

8

t i i
n k

k

t i i
n k

k

i i
k n

k

i i
k n

k

k

E D u u N u u

E D u u N u u

E u u N u D

E u u N u D

E

ν σ ν

ν σ ν

σ ν ν

σ ν ν

=

=

=

=

=

  + +  
  

  + + +  
  

  = +  
  

  + +  
  

=

∑∫ ∫

∑∫ ∫

∑∫ ∫

∑∫ ∫

∫ ( )( ) ( )( ) ( )
2 4 2 2π 4

0
1

d d di i
k nu u N u Dσ ν ν

   +  
  
∑ ∫
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We have ( ) 1nD ν ≤ , and  

( ) ( ) ( )2π 2π 2π4 2
0 0 0

d d d ,n n nD D Dν ν ν ν ν ν≤ ≤∫ ∫ ∫  

( )2π 2
0

2πd
2 1nD

n
ν ν =

+∫  

This implies that as n →∞ , ( )2π 2
0

d 0nD ν ν =∫ . 2 0 0n nQ Q= ⇒ = . If 0nQ = , 
then 0ij

nH = . 
Evaluating ( )ij

nY q ; 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2
2π

0
=0

2 2
2π 2π

0 0
=0

2π

2 0
=0

1 1 e d d
2 1 2π

1 1 1e d d e d
2 1 2π 2π

1 1 e d d 2
2 14π

n d
ij iqt j i l

n l
s n l

n d
iqt j j l iqt j

l t
s n l

d
iqt j i l

l
l

Y q M t t B t
n

M t t B t N
n

M t t B t
n

σ

σ

σ

−

=−

− −

=−

−

  =    +    
     + +     +       

   =     +    

∑ ∑∫

∑ ∑∫ ∫

∑∫ ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2π 2π

2 0 0
=0

2π

2 0
=0

=0

1

1 1 e d d 2 1 e d 2 1
2 14π

1 e d d
4π

e d d e d

d
iqt j j l iqt j

l t
l

d
iqt j i l

l
l

d
iqt j j l iqt j

l t
l

n

M t t B t n N n
n

M t t B t

M t t B t N

σ

σ

σ

− −

−

− −

 
+ 

 
    + + + +     +     

  =       
 + +  

  

∑∫ ∫

∑∫

∑

 

but  

( ) ( )( )2π

2 0

1 1e d d
2π4π

iqt N t N q− =∫   

Hence,  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( )

2π

2 0
=0 =0

1 e d d e d d
4π

1 d
2π

d d
ij iqt j i l iqt j j l

n l l
l l

j

Y q M t t B t M t t B t

N q

σ σ− −    = +    
    

+

∑ ∑∫



 

We express e iqt−  as ( ) ( )cos sinqt i qt+   

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( )

2π

2 0
=0

2π

2 0
=0

1 cos sin d d
4π

1 1cos sin d d d
2π4π

d
ij j i l

n l
l

d
j j l j

l
l

Y q qt i qt M t t B t

qt i qt M t t B t N q

σ

σ

  = +  
  

  + + +  
  

∑∫

∑∫ 

 

When i j= , we have  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( )( )

2π

2 0
=0 =0

1 cos sin d d d
4π

1 d
2π

d d
ij j j l j l

n l l
l l

j

Y q qt i qt M t t B t t B t

N q

σ σ
  = + +  

  

+

∑ ∑∫



 

Let 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
=0 =0

cos sin d d d .
d d

j j l j l
l l

l l
t qt i qt M t t B t t B tη σ σ = + + 

 
∑ ∑  
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We have, 

( ) ( ) ( )( ) ( ) ( ) ( )
=0

cos sin 2 d d
d

j l j
l

l
t qt i qt t B t M tη σ = +  

 
∑  

Taking the square of both sides  

( ) ( ) ( )( ) ( ) ( ) ( )
2

22

=0
cos sin 4 d d

d
j l j

l
l

t qt i qt t B t M tη σ = +  
 
∑  

From De-moivre’s formula, ( ) ( )( ) ( ) ( )cos sin cos sin
n

x i x nx i nx+ = +  it im- 
plies  

( ) ( ) ( )( ) ( )( ) ( )22

0
cos 2 sin 2 4 d d

d
j j

l t
l

t qt i qt t t Nη σ
=

 = +  
 
∑  

but ( ) ( )2d d 0 0 0j
tt N t tη η⋅ = ⇒ = ⇒ = . It follows that, 

( )( )1 d
2π

ij j
nY N q=   

Now,  

( ) ( )( ) ( )( )1 1 d
2π 2π

ij ij j
q N q N qϑ = Σ +   

From Equation (12),  

( ) ( ) ( )

( )( ) ( )( )

( ) ( )( )( )

1 2π 2π
2 1

1 d d
2 1

d d

n
ij i j
q q s s

s n
n

i j

s n

i j
B

N
n

p s p q s
n

p p q

ϑ + −
=−

=−

= Γ Γ
+

= − +
+

= ∗

∑

∑ 

 

 

This implies  

( ) ( )( )( ) ( )( ) ( )( )1 1d d d
2π 2π

i j ij j
Bp p q q N q∗ = Σ +     

where ( )( )d jN q  is defined as  

( )( ) ( )
0

1d e d .
2π

tj iks jN q N s−= ∫  

Theorem 7. Suppose p  is the price process satisfying Equation(3), then the 
instantaneous volatility function with a compensated Poisson jump is  

( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( )

2πlim 1 d d
2 1

1 2π 0 exp
2π

n
j j

n q n s n

q
Vol p p s p q s

n n

q N q N N iqt
i

→∞ < =−

 = − −  + 
+ − − 


∑ ∑ 



 

where ( )Vol p  is the volatility of the price process ( )p t  at time t  and ,q n  
are integers.  

Proof. From Equation (7) 

( )( ) ( ) ( )( ) ( )1 2π 0 d
2π

ik k
k

φ φ φ φ = − −  
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( ) ( )( ) ( ) ( )( )1d 2π 0
2π

kk k
i

φ φ φ φ= − + −   

then it implies that 

( )( ) ( )( ) ( ) ( )( )1d 2π 0 .
2π

qN q N q N N
i

= − + −            (18) 

Then from Proposition 2 and 3, the identity that relates the Fourier transform 
of the price process with a compensated Poisson jump and the volatility is 
simplified as,  

( ) ( )( )( ) ( )( ) ( )( )1 1d d d
2π 2π

i j ij j
Bp p q q N q∗ = Σ +     

( ) ( )( )( ) ( )( ) ( )( )2π d d di j ij j
Bp p q q N q∗ = Σ +     

( ) ( )( )( ) ( )( ) ( )( ) ( ) ( )( )12π d d 2π 0
2π

i j ij
B

qp p q q N q N N
i

∗ = Σ − + −     

( )( ) ( ) ( )( )( ) ( )( ) ( ) ( )( )12π d d 2π 0
2π

ij i j
B

qq p p q N q N N
i

Σ = ∗ + − −     

But, 

( ) ( )( )( ) ( )( ) ( )( )1d d lim d d
2 1

n
i j j j

B n s n
p p q p s p q s

n→∞ =−

∗ = −
+ ∑     

then it implies that 

( )( ) ( )( ) ( )( )

( )( ) ( ) ( )( )

2πlim d d
2 1

1 2π 0
2π

n
ij j j

n s n
q p s p q s

n
q N q N N
i

→∞ =−

Σ = −
+

+ − −

∑  


 

The Fourier-Fejer summation function for ( )ij tΣ  which is continuous is 
given as;  

( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( )

2πlim 1 d d
2 1

1 2π 0 exp
2π

n
ij j j

n q n s n

q
t p s p q s

n n

q N q N N iqt
i

→∞ < =−

 Σ = − −  + 
+ − − 


∑ ∑ 



 

From Definition 8, to obtain the instantaneous volatility function  
( ) ( )2Vol p tσ≡ , we extract the diagonals of the matrix and sum them, that is 

when i j= , ( ) ( )( ) ( )
2 2

1
djj j

iit t tσ σ
=

Σ = =∑ , which gives the Fourier estimator 
of the instantaneous volatility with a compensated Poisson jump as, 

( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( )

2πlim 1 d d
2 1

1 2π 0 exp
2π

n
j j

n q n s n

q
Vol p p s p q s

n n

q N q N N iqt
i

→∞ < =−

 = − −  + 
+ − − 


∑ ∑ 



 

where ( )( ) ( )( ) ( ) ( )( )1d 2π 0 .
2π

j j j jsp s p s p p
i

= − + −   

Comparing the results obtained in Theorem 2.1 of Malliavin and Mancino’s [9] 
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article, for a process p  where , 1, 2i j =  satisfying  
( ) ( ) ( ) ( )d , d , dp t t B t t B B tα σ= +  and the conditions in (QA), the identity that 

relates the price process and the volatility matrix was  

( )( ) ( ) ( )( )( )1 d d .
2π

ij i j
Bq p p qΣ = ∗    

In comparison with the one obtained in this paper, the identity that relates the 
price process and the volatility matrix with the addition of compensated Poisson 
jump is  

( )( ) ( ) ( )( )( ) ( )( )1 1d d d .
2π 2π

ij i j j
Bq p p q N qΣ = ∗ −     

Also, the instantaneous multivariate volatility obtained by Malliavin and Man- 
cino [9] was  

( ) ( )( ) ( )( ) ( )1lim 1 d d exp
2 1

n
ij j j

n q n s n

q
t p s p q s iqt

n n→∞ < =−

  Σ = − −  +  
∑ ∑   

and when compensated Poisson jump was added to it we obtained  

( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( )

2πlim 1 d d
2 1

1 2π 0 exp .
2π

n
ij j j

n q n s n

q
t p s p q s

n n

q N q N N iqt
i

→∞ < =−

 Σ = − −  + 
+ − − 


∑ ∑ 



 

This means that the addition of compensated Poisson jump had an effect on 
the volatility of the price process. 

4. Stochastic Volatility Estimation for a Specific Case 

Suppose the price process follows the process, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

d d d d , , 1, , ,
d

j j k i j j j
i i

i
p t t t B t t t t M t j k nσ σ α β

=

= + + =∑   

then its Fourier transform is  

( )( ) ( ) ( )( ) ( )( )
1

d d d d , 1, ,
d

j j k i j j j
i i

i
p q B q t q M q j nσ σ α β

=

 = + + = 
 
∑      

but ( ) ( )1d ddj j k i
i iip t B tσ σ σ

=
=∑ , then,  

( )( ) ( )( ) ( )( ) ( )( )d d d d .j j j j jp q p q t q M qσ α β= + +     

Let ( )( ) ( )
1

dj j
MM q qβ φ= , then from the theory of convolution,  

( ) ( )
( )( )

1 1

1 1 1

*

* * * * *

B

B B B B B

M M

M M M M

σ α σ α

σ α σ α σ σ

φ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ

+ + + +

= + + + + = +
 

From Equation (10), the Bohr’s convolution of the jump diffusion process is: 

( )( ) ( ) ( )
1 1 1 1*

1lim .
2 1B

n

M M M Mn s n
q s q s

n
φ φ φ φ

→∞ =−

= −
+ ∑  

Then, 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1 1* **

* *

2 20 0

d d

d d d d

1 1d ,d d , d
2π 2π
1 1e d , e d , d

4π 4π

B BB

B B

i j
M M

i j j j j j

i j j j j j

t tiqs i j iqs j j j j

p p

p p M M

p p M M

p p s M M s

σ σ

σ σ

σ σ

σ σ

φ φ φ φ

β β

β β

β β− −

= ∗ + ∗

= +

   = +   

   = +   ∫ ∫

 

   

 
 

( ) ( ) ( )2d , d d
jj j j j jM M s s N sβ β β  =  , then,  

( ) ( ) ( ) ( )2
2 20 0*

1 1d d e d , e d
4π 4π

j

B

t ti j iqs i j iqs jp p p p s N sσ σ β− − = + ∫ ∫   

Then we have,  

( )( ) ( )( ) ( ) ( )2

*

1 1 d d d
2π 2π

j

B

ij j i jq N q p pβΣ + =     

which gives the identity relating the price process to the volatility matrix and the 
jump diffusion process. It implies that,  

( ) ( )( )( ) ( )( ) ( )( )2

*

1 1d d d .
2π 2π

j

B

i j ij jp p q q N qβ= Σ +     

Then, 

( )( ) ( )( ) ( )( ) ( )( )2 2πd lim d d .
2 1

j n
ij j j j

n s n
q N q p s p q s

n
β

→∞ =−

Σ + = −
+ ∑     

Its Fourier-Fejer summation function is given as;  

( ) ( )( ) ( )( ) ( )( ) ( )22πlim 1 d d d exp
2 1

jn
ij j j j

n q n s n

q
t p s p q s N q iqt

n n
β

→∞ < =−

  Σ = − − −  +  
∑ ∑    

Its instantaneous volatility function ( )Vol p  is given as  

( ) ( )( ) ( )( ) ( )( ) ( )22πlim 1 d d d exp
2 1

jn
j j j

n q n s n

q
Vol p p s p q s N q iqt

n n
β

→∞ < =−

  = − − −  +  
∑ ∑    

For one asset we have, 

( ) ( )( ) ( )( ) ( )( ) ( )22πlim 1 d d d exp
2 1

n

n q n s n

q
Vol p p s p q s N q iqt

n n
β

→∞ < =−

  = − − −  +  
∑ ∑    (19) 

where  

( )( ) ( )( ) ( ) ( )( )1d 2π 0 .
2π

sp s p s p p
i

= − + −   

Numerical Example 

When 0.1β = ,  

( ) ( )( ) ( )( ) ( )( ) ( )22πlim 1 d d 0.1 d exp
2 1

n

n q n s n

q
Vol p p s p q s N q iqt

n n→∞ < =−

  = − − −  +  
∑ ∑    

but 
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( )( ) ( )( ) ( ) ( )( )1d 0
2π

qN q N q N t N
i

= − + −   

and N  has a jump height of 1 and 0 otherwise and ( )0 0N = , then we have, 

( )( ) ( )( ) ( )( ) ( ) ( )( )0

1 1d e d
2π 2π 2π

t iqsq qN q N q N t N s s N t
i i

−= − + = − +∫   

From Definition 1, without making any assumptions in the jump, if ( ) 0N t =  
then ( )( )d 0N q =  but if ( ) 1N t = , then  

( )( )
0

1 1 1 1d e e
2π 2π π 2π

t
iqs iqtqN q

i iq
− − 

= − − + = − 
 

  

( ) ( )( ) ( )( ) ( )2π 0.01 0.01lim 1 d d e exp
2 1 π 2π

n
iqt

n q n s n

q
Vol p p s p q s iqt

n n
−

→∞ < =−

  = − − − +  +  
∑ ∑   

where  

( )( ) ( )( ) ( ) ( )( )1d 2π 0 .
2π

sp s p s p p
i

= − + −   

This example shows that the price process is directly proportional to the 
volatility meaning that with all other parameters constant, an increase in 
volatility, ( )( )Vol p  will increase the price process and vice versa. 

Comparing the result obtained in Theorem 7 to Equation (19), the parameter 
( )tβ  added to the jump component had an effect on the volatility. An increase 

or decrease in the parameter ( )tβ  will affect the volatility in direct pro- 
portionality. 

5. Conclusion and Future Work 

We have shown the theoretical basis for estimating stochastic volatility with the 
presence of a compensated Poisson jump. This has been achieved by use of 
Fourier transforms incorporating Bohr’s convolution. We further established an 
identity relation for the Fourier transform of the price process with a compen- 
sated Poisson jump and the volatility, and also estimated the instantaneous 
volatility. We have also shown the identity relation for a specific case when 
( )tβ  was added to the jump and concluded that it was directly proportional to 

the volatility with all other parameters constant. This estimate can be used for 
both univariate and multivariate volatility settings. As a future work, it will be 
interesting to know how other types of jump diffusion processes together with 
microstructure noise effect the dynamics of volatility in the financial markets.  
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