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Abstract 
In this paper, we revisit the optimal consumption and portfolio selection 
problem for an investor who has access to a risk-free asset (e.g. bank account) 
with constant return and a risky asset (e.g. stocks) with constant expected re-
turn and stochastic volatility. The main contribution of this study is twofold. 
Our first objective is to provide an explicit solution for dynamic portfolio 
choice problems, when the volatility of the risky asset returns is driven by the 
Ornstein-Uhlenbeck process, for an investor with a constant relative risk 
aversion (CRRA). The second objective is to carry out some numerical expe-
riments using the derived solution in order to analyze the sensitivity of the 
optimal weight and consumption with respect to some parameters of the 
model, including the expected return on risky asset, the aversion risk of the 
investor, the mean-reverting speed, the long-term mean of the process and the 
diffusion coefficient of the stochastic factor of the standard Brownian motion.  
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1. Introduction 

Portfolio selection is a classical problem in mathematical finance, where the 
main objective is to seek the best proportion of wealth to invest in risky assets in 
order to benefit from market opportunities. The derivation of an optimal portfo-
lio poses a considerable challenge for market participants because they operate 
in an uncertain environment. The pioneer work of Markowitz [1] [2], who first 
introduced the so-called mean-variance (MV) model, formulated the portfolio 
selection problem as an optimization problem, which consists of minimizing the 
variance (measure of investor’s risk) of the terminal wealth for a desired level of 
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expected return. Michaud [3] found that the MV-optimized portfolios are quite 
unintuitive and difficult for practitioners to implement. Moreover, in a realistic 
setting, the Markowitz model doesn’t take in account the consumption of the 
investor.  

Another line of research in portfolio optimization is based on the Utility 
Theory and Expected Utility Maximization, where the preferences of an investor 
are described by a utility function. In this setting, the objective of the investor is 
to maximize the expected value of a utility function of the terminal wealth. The 
combined continuous-time problem of optimal portfolio selection and con-
sumption rules was first studied by Merton [4] [5], who established the frame-
work for dynamic portfolio choice under environmental uncertainty. Using Dy-
namic Programming, Merton’s framework leads to a nonlinear partial differen-
tial equation (PDE), which is a general and rather complex problem, depending 
on the process governing the volatility; this aspect makes it difficult to find the 
optimal weights for the portfolio as well as the corresponding optimal consump-
tion. Merton [4] explicitly solved the PDE under a constant volatility of the risk 
asset. 

Recently, there has been a growth of interest in portfolio optimization prob-
lems under stochastic volatility. In [6], the authors analyzed the optimal con-
sumption and portfolio selection problem, respectively, where the stochastic vo-
latility is correlated with the diffusion process of the risky asset, whereas Goll 
and Kallsen [7] derived explicit solutions for log-optimal portfolios in complete 
markets in using semi-martingale characteristics of the price process. In [8], the 
authors established some existence and uniqueness results for the optimal in-
vestment problem, for an arbitrage-free model. Chacko and Viceira [9] obtained 
an exact solution in incomplete markets, when the volatility process is driven by 
CIR (Cox, Ingersoll and Ross) model [10]. Bae et al. [11] introduced a stock 
market model with time-varying volatilities coupled with each other via a regime 
switching mechanism and a constant interaction weighting. A problem similar 
to the one posed by Merton was analyzed by Brennan and Xia [12] [13] [14] and 
Wachter [15] a well as some of the references therein. In [16], Liu established an 
explicit solution to a dynamic portfolio selection problem, when the returns of 
the risky asset are driven by a “quadratic process”, which is a Markovian diffu-
sion process and where the investor has a constant relative risk aversion (CRRA) 
utility function. In [17], Coulon attempted to numerically solve the Merton 
model using an iterative process based a finite difference scheme. However, the 
author acknowledged that the convergence conditions have been investigated, 
and the proposed algorithm required some fine-tuning of the time discretization 
to converge. 

In this study, we reexamine the optimal consumption and portfolio selection 
problem for an investor who has access to a risk-free asset, e.g. bank account, 
with constant return and a risky asset, e.g. stocks, with constant expected return 
and stochastic volatility. The main contribution of the research work in this pa-
per is twofold. First we establish an explicit solution for dynamic portfolio 
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choice problems, when the volatility of asset returns is driven by the Ornstein- 
Uhlenbeck process, for an investor with CRRA. Afterwards, we carry out some 
sensitivity analysis of the optimal weight and consumption with respect to vari-
ous parameters of the model, including the expected return on risky asset, the 
aversion risk of the investors, the mean-reverting speed, the long-term mean of 
the process and the diffusion coefficient of the stochastic factor of Brownian 
motion. For the derivation of the explicit solution, unlike in [16], here we pro-
vide an alternative to the tensor theory approach, thus making results more ac-
cessible to practitioners. The approach proposed in this study, provides a rigor-
ous, relatively complete and self-contained treatment of the nonlinear PDE, as 
well as numerical simulations.  

The outline of this paper is as follows. Section 2 presents the derivation of an 
explicit solution for stock portfolio problem when the stock return volatility is 
described by the Ornstein-Uhlenbeck model. We derive a closed-form solution 
for optimal portfolio selection and consumption problems for the investor with 
CRRA utility. Section 3 is dedicated to some sensitivity analysis of the optimal 
weight and consumption with respect to various parameters of the model. The 
effects of the financial parameters have been analyzed and economic interpreta-
tions of the optimal portfolio selection and consumption are given. The last sec-
tion summarizes our findings and hints on possible improvements and future 
directions.  

2. Consumption and Portfolio Decision 
2.1. Model Formulation 

In our formulation, a portfolio consists of a risk-free asset (e.g. bank account) 
and a risky asset (e.g. stock) whose price are driven by geometric Brownian mo-
tion. 

The risk-free asset is described by  

( ) ( )0 0d d ,S t rS t t=                        (1) 

where ( )0S t  denotes the price of one unit of the risk-free asset at time t  and 
r  is the instantaneous rate of return from the risk-free asset, and it is assumed 
to be constant. 

The dynamics of the risky asset is driven by the following equation:  

( ) ( ) ( ) ( ) ( )1 1 1d d d ,S t S t t V t S t B tµ= +                (2) 

where ( )1S t  denotes the price of one share of the risky asset at time t  and 
( )dB t  is the increment of a Brownian a standard motion. In Equation (2), µ  

is the expected return of the risky asset and ( )V t  denotes the instantaneous 
variance of the risky asset’s return process. The expected excess return of the 
risky asset versus the risk-free asset, rµ − , is constant over time. 

The log-volatility ( )( )ln V t  follows an Ornstein-Uhlenbeck process  

( )( ) ( )( ) ( )d ln ln d d ,V t V t t B tνκ δ σ= − +               (3) 

where ,  > 0,  > 0,δ κ σ∈  and ( )dB tν  is the increment of a standard Brow-
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nian motion. The parameter δ  represents a long-term mean of the process, 
whereas κ  is a value of mean-reverting speed, and σ  corresponds to the dif-
fusion coefficient of the stochastic factor ( )dB t . The logarithms of ( )V t  were 
taken in order to avoid negative values of the instantaneous variance of the risky 
asset. 

By applying Itô’s Lemma to Equation (3), while setting ( )( ) ( )eX tf X t =  with 
( ) ( )lnX t V t= , the proportional changes in the volatility of the Ornstein-  

Uhlenbeck process writes as follows:  

( )
( ) ( )( ) ( )

2d
ln d d .

2
V t

V t t B t
V t ν

σκ δ σ
 

= − + + 
 

            (4) 

Following Chacko and Viceira [9], it is assumed that the shocks to precision, 
dBν , are negatively correlated with the shocks, dB , to the return on risky asset, 
i.e. 0ρ < . From Equation (4), we can deduce that the instantaneous correlation 
between proportional changes in variance and the return of the risky asset return 
is given by  

( ) ( )d d d .B t B t tν ρ=                        (5) 

Applying again Itô’s Lemma to Equation (3), by taking ( )( ) ( ), e tf X t t X t κ=  
with ( ) ( )lnX t V t= , and using the identity  

{ }2 2 2
e e ,X Xa aaX µ σ+
  = 

 
where ( )2,X XX µ σ∼   and ,a∈  it follows that 

( ) ( )( ) ( )2 21 e
exp e ln 0 ,

4

t
tV t V

κ
κ

σ
δ δ

κ

−
−

 − = + − +    
  

         (6) 

and  

( )

( )
( )( )( ) ( )2 2 2 2

Var

1 e 1 e
exp 1 exp 2 e ln 0 .

2 2

t t
t

V t

V
κ κ

κ
σ σ

δ δ
κ κ

− −
−

  
    − −    = − + − +           

  (7) 

The investor starts off with an initial endowment ( )0 0S x= , ( )1 0S y= . Let 
us now assume that there are no transaction costs and no constraints on the 
structure of the portfolio. In particular, any investor in this market may instan-
taneously transfer funds from one account to the other and at no costs. Moreo-
ver, the investor may hold short positions of any size in both accounts. In this 
case, we can reparametrize the problem by introducing new variables, namely 
the total wealth, ( ) ( ) ( )0 1W t S t S t= + , and the fraction of total wealth held in  

stock at time t , ( ) ( )
( )

1S t
w t

W t
= . 

The investor consumes the amount in the bank account at rate ( )c t . Fur-
thermore, all incomes are derived from capital gains, and the consumption is 
subject to the constraint that the investor must be solvent i.e. must have non-
negative net worth at all time. Under these assumptions, the market is complete, 
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as defined in the economics literature, e.g. [18], and the investor’s wealth, 
( )W t , at time t  changes according to the following stochastic differential equ-

ation:  

( ) ( ) ( )( ) ( )
( ) ( ) ( )

( ) ( )0 1

0 1

d d
d 1 d .

S t S t
W t W t w t w t c t t

S t S t
 

= − + − 
    

Then, with initial wealth, ( ) 00W W= , the state equation is given by  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 0

d d d ,

0 .

W t r w t W t rW t c t t w t W t V t B t

W W x y

µ = − + − +   


= = +
   (8) 

The investor’s objective is to maximize the net expected utility of consump-
tion plus the expected utility of terminal wealth. In this study, we use a pow-
er-law utility function, which belongs to the CRRA class. The problem of optim-
al portfolio selection and consumption rules is then formulated as follows:  

  
( ) ( )

( )( ) ( ) ( )( )
0,

max  e d 1 , ,
T t

c t w t
U c t t G W T Tλα α− + −  ∫           (9) 

subject to the budget constraint (8) and ( ) 0W t ≥  for all ,t  where T  is the 
date of death, ( )W T  is the value, at time T , of a trading strategy that finances 
the consumption, ( ){ }0 t T

c t
≤ ≤

, over the period [ ]0,T , and ( )( ),G W T T  is a 
specified bequest valuation function usually assumed to be concave in ( ).W T  
Note that the term   in (9), short for 0 , is the conditional expectation opera-
tor, given that ( ) 00 0W W= >  is known. The utility function U  is defined by  

( )   with  1  and  0.cU c
γ

γ γ
γ

= < ≠                 (10) 

The parameter γ , in Equation (9) is the risk aversion coefficient, which is 
equivalent to the inverse of the elasticity of intertemporal substitution, whereas 
α  and λ  in Equation (9) respectively denote the relative importance of the 
intermediate consumption and the subjective discount factor. When 0α = , the 
expected utility depends solely on the terminal wealth, and the problem is then 
called an asset allocation problem. 

2.2. Dynamic Optimization Problem 

In this section, we derive expressions for optimal policies. We apply the dynamic 
programming principle of optimality by rewriting (9) into a dynamic program-
ming form. For this aim, we define the indirect utility function, ( ), ,J t W V , as 
follows:  

( )
( ) ( )

( )( ) ( ) ( )( )
,

, , :  max  e d 1 , ,
T s

t tc t w t
J t W V U c s s G T W Tλα α− = + −  ∫     (11) 

where ( )W t W=  and ( )V t V= . 
Following Merton [4] [5], we derive the Hamilton-Jacobi-Bellman (HJB) equ-

ation for J :  

( ) ( )
( )( ) ( ){ }

,
0 max   e , , ,t

c t w t
U c t J t W Vλα −= +                (12) 

where the differential operator [ ]J  is defined by  
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( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
2 2 2

2

2 22
2 2

2

, , , ,
, , :

, , , ,1 ln
2 2

, , , ,
 ,

2

J t W V J t W V
J t W V w t r W rW c t

t W
J t W V J t W V

w t W V V V
VW

J t W V J t W V
V w t WV

V WV

µ

σκ δ

σ ρσ

∂ ∂
= + − + −      ∂ ∂

∂ ∂ 
+ ⋅ + − +  ∂∂  

∂ ∂
+ +

∂ ∂∂



(13) 

with boundary condition:  

( ) ( ) ( )( ) ( )( ) ( )
, , : 1 ,   with  , e .T W T

J T W V G T W T G T W T
γ

λα
γ

−= − =    (14) 

Taking as trial solution  

( ) ( ) 1
, , : e , ,t WJ t W V K t V

γ
γλα

γ
−−= ⋅ ⋅                 (15) 

where the function ( ),K t V  needs to be found, we can see that ( ), ,J W V t  
must satisfy the following partial differential equation:  

2

1 0,V
t V VV

K
K K K K

K
+Ξ +Θ −Γ + Σ + =               (16) 

where  

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )

2 2 2
2

2

2 2 2

: ,  : 1 ,
1 22 1

: ln ,  : .
1 2 2

r VV r V
V

r VV V V V

µγ λ σγ ρ
γ γ γ

γρσ µ σ σκ δ
γ

 −
Ξ = Ξ = ⋅ − + Γ = Γ = − 

− −  
−  

Θ = Θ = + − + Σ = Σ = −  

  (17) 

with boundary condition ( )
1

11,K T V
γα

α
−− =  

 
 if 0,α ≠  and where the func-

tion ( ),K t V  satisfies  
2

0,V
t V VV

K
K K K K

K
+Ξ +Θ −Γ + Σ =                (18) 

with boundary condition ( ), 1K T V =  whenever 0.α =  

2.3. Exact Solution of Portfolio and Consumption Rules 

In the sequel, we present our main results on an explicit solution for the optimal 
portfolio. The details on the derivation and the proof of the results can be found 
in the appendix.  

It is worth mentioning that Liu [16] established a framework for a general so-
lution of the optimal portfolio. However, in order to achieve this, some restric-
tions have been imposed on the dynamics of the state variables, including the 
assumption that these variables must follow a “quadratic process” as well as the 
application of the solution to the Heston’s model [19]. Furthermore, although 
Liu’s solution is in an explicit form, the abstraction of the results obtained using 
the tensor calculus does not seem easily accessible for the non-mathematician. 
As mentioned earlier, Coulon [17] attempted an iterative process, using a finite 



A. N. Sandjo et al. 
 

205 

difference scheme to solve the resulting PDE and the author emphasised that the 
proposed algorithm required some fine-tuning of the discretization parameters 
to converge.  

In order to address the limitations associated with the aforementioned studies, 
we explicitly solve the Partial Differential Equation (PDE) (16) derived from the 
Ornstein-Uhlenbeck model. By making an appropriate change of variable, we 
found that the PDE can be reduced to a much more tractable Riccati Equation 
(see The Appendix for more details). At a first glance the results in the following 
propositions may look similar to those in [16]. This doesn’t come as surprise 
since the Ornstein-Uhlenbeck model is a quadratic process. However, the details 
of the problem and the method of analysis are substantially different.  

The results within the following propositions characterize the optimal con-
sumption policy and the optimal portfolio choice. 

Proposition 1. Assume that 1γ <  and 0.γ ≠  At time t  with 0 t T≤ ≤ , 
the optimal consumption policy c∗  is given by  

( ) ( ),
Wc t

K t V
∗ =                        (19) 

and the optimal portfolio choice w∗  is given by  

( )
( )

( )( )
2

ln ,
,

1
K t Vrw t

VV
µ ρσ
γ

∗ ∂−
= +

∂−
              (20) 

where the function ( ),K t V  satisfies Equation (16) with the boundary condi-

tion ( )
1

11,K T V
γα

α
−− =  

 
, and ,  ,  Ξ Θ Γ  and Σ  are given in (17) if 0α ≠   

and where the function ( ),K t V  satisfies Equation (18) with the boundary con-
dition ( ), 1K T V =  whenever 0.α =   

Note that Equation (19) and Equation (20) do not represent a complete solu-
tion to the model until they have been solved for ( ), .K t V  

The first term, 
( ) 21

r
V

µ
γ
−

−
, in the expression of ( )w t∗  in (20), represents  

weight in the mean-variance efficient portfolio. It is also called the myopic de-
mand because this is the portfolio weight for an investor who has only a single 
period objective or a very short investment horizon. The second term in Equa-
tion (20) is the intertemporal hedging demand, which is determined by the co-
variance ρσ  and the indirect utility function .J  The term ρσ  selects the 
portfolios that have the maximum correlation with the state variable .V  The  

factor 
( )( )ln ,

V
K t V K

V K
∂

=
∂

 measures the sensitivity of the indirect utility func- 

tion to the opportunity set and summarizes the investor’s attitude toward 
changes in the state variable .V   

For the optimal portfolio selection, as well as for an asset allocation problem 
i.e. 0α =  (no intermediate consumption), we explicitly solve the PDE (16). 
The following proposition characterizes the consumption policy and the optimal 
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weight for the risky asset. The proof of the results is given in the appendix.  
Proposition 2. Assume that 1γ <  and 0γ ≠  and let ( )2 4 .∆ = Θ + Ξ Σ −Γ  
The optimal consumption policy c∗  is given by  

( ) ( ) ( )e d t g tc t W − −∗ =                       (21) 

and the optimal portfolio choice ( )w t∗  is given by  

( )
( )

( )2=
1

rw t d t
V

µ ρσ
γ

∗ −
+

−
                  (22) 

with  

( )

( )
( )( )

( )( )

( )

( )
( ) ( )( )

( )( ) ( )( )

1 2

1 2

2 2
2 2

2

1

2 2 2

2 2

2 2

e2 if  0,
1 1 1 e

if  0,
21 1

sin2 if  0,
sin cos1 1

t T

t TV

t Td t
VV t T

t T

t T t TV

ζ ζ

ζ ζ

ζ ζ
ζσ γ ρ
ζ

σ γ ρ

ω ϑ ω

ϑ ω ω ωσ γ ρ

− −

− −


+ ⋅ ∆ >  − − −  


 Θ −= − ⋅ ∆ =

 − − − +  Θ
 + − ⋅ ∆ < − − − − −  

 (23) 

where  

1,2 , if  0,
2

  and   if   0.
2 2

V

V V

ζ

ϑ ω

 −Θ± ∆
= ∆ >


Θ −∆ = − = ∆ <  

and the domain of ( )d t  when 0∆ <  is such that ( )( )tan t T ωω
ϑ

− ≠  for 

every [ ]0, ,t T∈  and  

( ) ( )
1

11ln e d .
T d s V

t
g t s

γα
α

−−
 −  = +   
 
∫

 
Finally, in the case 0α = , we have ( ) 0g t = .  
In [17], the author found the following result in the case of a stochastic vola-

tility, using a similar utility function.  
Proposition 3 ([17]). The optimal management is given by  

( ) ( )

( )
( )
( )

*

*
2

, ,
,

,
,1

V

Wc W V t
F V t

F V trw
F V tV

µ ρσ
γ

 =



− = + −  
where ( ),F V t  is a solution for the following nonlinear partial differential equ-
ation  

2

1 0V
t V VV

F
F F F F

F
+Ξ +Θ −Γ + Σ + =                (24) 

with the boundary condition ( ), 1F V T = , for all .V   
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As we have mentioned earlier, without analytical solutions available, Coulon 
[17] had to rely on numerical approximations that necessitated a fine tuning of 
the discretization time. By providing explicit analytical solutions to the problem, 
we fill this gap.  

Corollary 1. Reusing notations from Propositions 2 and 3, the optimal port-
folio choice *w  is given by Equation (22) while the optimal consumption 
policy *c  is given by Equation (21).  

Proof. Use Proposition 2 with 1
2

α = .  

3. Numerical Experiments and Economic Interpretations 

In this section we carry out some numerical experiments on the model and ana-
lyze the qualitative changes in the solution with respect to shifts in the financial 
parameters. From Equation (22) and Equation (21), the optimal weight and the 
optimal consumption, respectively, are not always bounded. However for prac-
tical purposes, the quantities need to be bounded. Therefore, in order to high-
light the practical features of the model, we consider the following set-up for the 
numerical experiments, which corresponds to the case without short-selling i.e. 

( ) ( ) ( )( )( )min 1,max e ,0 ;d t g tc t W − −∗ =                (25) 

and 

( )
( )

( )2min 1,max ,
1

rw t d t
V

µ ρσ
γ

∗
  −

= +    −  
            (26) 

where ( )d t  and ( )g t  can be found in Proposition 2. 

3.1. Sensitivity of the Optimal Weight and Consumption with 
Respect to the Expected Return on the Risky Asset 

It can be observed that the higher the return of the risky asset, the greater the 
proportion invested in the risky asset depending on investor risk tolerance. But 
when the return on the risky asset is smaller than the risk free rate, it is wise to 
borrow and invest at the risk-free rate, see Figure 1(a) and Figure 1(b). The 
yields of the risky asset exert a significant impact on investors. The so-called 
risk-return trade-off is validated, that is the principle that potential return in-
creases as the risk increases. In other words, low levels of uncertainty (low-risk) 
are associated with low potential returns, whereas high levels of uncertainty 
(high-risk) are associated with high potential returns. We also observe that 
higher expected return in the risky asset is likely to lead the consumer to in-
crease current consumption and reduce current savings, see Figure 1(c) and 
Figure 1(d). 

3.2. Sensitivity of the Optimal Weight and Consumption with 
Respect to the Return of Risk-Free Asset 

The ups and downs in the return of risk-free asset are an important source of  



A. N. Sandjo et al. 
 

208 

 
Figure 1. Impact the expected return of the risky asset, µ , on the optimal weight ( *w ) 
and the optimal consumption ( *c ): (a) and (b): 15µ = ; (c) and (d): 7µ = . The other 
parameters of the model are set as follows:  

5%,  2,  0.25,  1,  3%,  0.5,  5.r κ ρ σ λ γ δ= = = − = = = =  
 

changes in consumption and saving decision of an individual. An increase in the 
interest rate tends to increase saving and to significantly reduce consumption, 
see Figure 2. The consumer can achieve any future savings target with a smaller 
amount of current savings.  

3.3. Sensitivity of the Optimal Weight and Consumption with 
Respect to the Other Parameters of the Model 

In this section, we investigate the impact of the other parameters of the model 
on the optimal weight and consumption. 

3.3.1. Impact of the Mean-Reverting Speed κ  
We observed that the greater the speed of mean reversion in volatility, the great-
er the proportion invested in the risky asset for an investor with some risk to-
lerance. This proportion is very high at beginning of the period, see Figure 3(a) 
and Figure 3(c). At the same time the investor reduces current consumption, 
see Figure 3(b) and Figure 3(d). It can also be observed that a lower value of the 
mean reversion parameter severely limits the opportunities to invest in the risky 
asset. 
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Figure 2. Impact the parameter r  on the optimal weight ( *w ) and the optimal con-
sumption ( *c ): (a) and (b): 10%r = ; (c) and (d): 5%r = . The other parameters of the 
model are fixed as follows: 15%,  0.5,  0.25,  1,  3%,  0.95,  5.µ κ ρ σ λ γ δ= = = − = = = =  

 

 
Figure 3. Impact the parameter κ  on the optimal weight ( *w ) and the optimal con-
sumption ( *c ): (a) and (b): 0.25κ = ; (c) and (d): 0.5κ = . The other parameters of the 
model are set as follows: 15%,  10%,  0.25,  1,  3%,  0.95,  5.rµ ρ σ λ γ δ= = = − = = = =  
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3.3.2. Impact of the Diffusion Coefficient of the Stochastic Factor σ  
The diffusion coefficient has noticeable effects on the investor. The greater the 
diffusion coefficient, the greater the proportion invested in the risky asset for an 
investor with some risk tolerance, see Figure 4(a) and Figure 4(c). By contrast, 
when the volatility is high, a high risk-averter investor will always choose to in-
crease the present consumption, see Figure 4(b) and Figure 4(d). 

3.3.3. Impact of the Risk Aversion Coefficient γ  

A high risk-averter investor will reduce his/her present consumption if the ex-
pected return in the risky asset is high and will invest even more in that asset, see 
Figure 5(a) and Figure 5(b). Similarly, a low risk-averter investor will change 
his/her consumption as the return in the risk-free asset decreases and will also 
invest more in the risky asset. For a certain degree of relative richness, the in-
vestor will give up some present consumption to attain an expected higher re-
turn in investment, see Figure 5(c) and Figure 5(d). 

3.3.4. Impact of the Correlation Coefficient ρ  in the Portfolio 

The correlation between the risky assets and the volatility of an individual asset 
can change and is often negative [9]. An investor may wish to periodically re- 

 

 
Figure 4. Impact the parameter σ  on the optimal weight ( *w ) and the optimal con-
sumption ( *c ): (a) and (b): 0.05σ = ; (c) and (d): 1.5σ = . The other parameters of the 
model are set as follows: 15%,  5%,  2,  0.25,  3%,  0.5,  5.rµ κ ρ λ γ δ= = = = − = = =  



A. N. Sandjo et al. 
 

211 

 

Figure 5. Impact the parameter γ  on the optimal weight ( *w ) and the optimal con-
sumption ( *c ): (a) and (b): 0.5γ = − ; (c) and (d): 0.5γ = . The other parameters of the 
model are set as follows: 10%,  1%,  2,  0.25,  1,  3%,  5.rµ κ ρ σ λ δ= = = = − = = =  

 
balance his/her portfolio to maintain his/her risk exposure and obtain the op-
timal level of return on the risky asset. It is observed that the strong negative 
correlation has an noticeable effect on investment and consumption. In fact, the 
higher the correlation, the higher the consumption and at the same time, short 
positions are taken in order to increase investments, see Figure 6. 

4. Concluding Remarks 

In this study we derive an explicit solution of a model for optimal portfolio se-
lection under stochastic volatility. Our main result is a characterization of op-
timal portfolio weights and consumption. The major technical difficulties come 
from the nonlinearity of the model due to the market parameters and con-
straints. These difficulties have been overcome using a specific exponential form 
of the trial solution: a natural theoretical approach is to transform the resulting 
PDE into a more tractable one, namely a Riccarti equation. After a complete 
PDE characterization of the value function, we carried out some numerical ex-
periments on the model to draw economic interpretations.  

Furthermore, we also analyzed the dynamics of the desired consumption, 
namely its response to various factors, such as interest rates, mean reverting  
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Figure 6. Impact the parameter ρ  on the optimal weight ( *w ) and the optimal con-
sumption ( *c ). (a) and (b): 0.25ρ = − ; (c) and (d): 0.95ρ = − . The other parameters of 
the model are set as follows: 15%,  5%,  2,  1,  3%,  0.99,  5.rµ κ σ λ γ δ= = = = = = − =  

 
speed, correlation coefficient by examining the consumption decisions of indi-
viduals. An important result is the confirmation of the separation theorem 
proved by Fisher [20] stating that, the portfolio-selection decision is indepen-
dent of the consumption decision and the consumption decision is independent 
of the financial parameters and only depends upon the level of wealth.  

Since the proposed model offers a framework, which is numerically tractable, 
future work will consider the incorporation of accurate estimate of the model 
parameters. In particular, risky assets such as stocks depend on parameters that 
have to be estimated from data. These will provide more specific economic in-
terpretation, depending on the characteristics of the risky assets, enabling to in-
vestigate the response of the model not only to predictable events such as divi-
dend policy announcements or macroeconomic data releases, but also the con-
tagion effect in international markets. 

References 
[1] Markowitz, H.M. (1952) Portfolio Selection. Journal of Finance, 7, 77-91.  

https://doi.org/10.1111/j.1540-6261.1952.tb01525.x 

[2] Markowitz, H.M. (1959) Portfolio Selection. John Wiley and Sons, New York.  

[3] Michaud, R.O. (1989) The Markowitz Optimization Enigma: Is “Optimized” Op-

https://doi.org/10.1111/j.1540-6261.1952.tb01525.x


A. N. Sandjo et al. 
 

213 

timal? Financial Analysts Journal, 45, 31-42. https://doi.org/10.2469/faj.v45.n1.31 

[4] Merton, R.C. (1969) Lifetime Portfolio Selection under Uncertainty: The Conti-
nuous-Time Case. The Review of Economics and Statistics, 51, 247-257.  
https://doi.org/10.2307/1926560 

[5] Merton, R.C. (1971) Optimum Consumption and Portfolio Rules in a Conti-
nuous-Time Model. Journal of Economics Theory, 3, 373-413.  
https://doi.org/10.1016/0022-0531(71)90038-X 

[6] Fleming, W.H. and Hernández-Hernández, D. (2003) An Optimal Consumption 
Model with Stochastic Volatility. Finance and Stochastics, 7, 245-262.  
https://doi.org/10.1007/s007800200083 

[7] Goll, T. and Kallsen, J. (2003) A Complete Explicit Solution to the Log-Optimal 
Portfolio Problem. Annals of Applied Probability, 13, 774-799.  
https://doi.org/10.1214/aoap/1050689603 

[8] Kramkov, D. and Schachermayer, W. (1999) The Asymptotic Elasticity of Utility 
Functions and Optimal Investment in Incomplete Markets. Annals of Applied 
Probability, 9, 904-950. https://doi.org/10.1214/aoap/1029962818 

[9] Chacko, G. and Viceira, L.M. (2005) Dynamic Consumption and Portfolio Choice 
with Stochastic Volatility in Incomplete Markets. Review of Financial Studies, 18, 
1369-1402. https://doi.org/10.1093/rfs/hhi035 

[10] Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985) A Theory of the Term Structure of 
Interest Rates. Econometrica, 53, 385-407. https://doi.org/10.2307/1911242 

[11] Bae, H.O., Ha S.Y., Kim, Y., Lee, S.H. and Lim, H. (2015) A Mathematical Model for 
Volatility Flocking with a Regime Switching Mechanism in a Stock Market. Ma-
thematical Models Methods in Applied Science, 25, 1299-1335.  
https://doi.org/10.1142/S0218202515500335 

[12] Brennan, M.J. and Xia, Y. (2000) Stochastic Interest Rates and Bond-Stock Mix. 
European Finance Review, 4, 197-210. https://doi.org/10.1023/A:1009890514371 

[13] Brennan, M.J. and Xia, Y. (2001) Assessing Asset Pricing Anomalies. Review of Fi-
nancial Studies, 14, 905-942. https://doi.org/10.1093/rfs/14.4.905 

[14] Brennan, M.J. and Xia, Y. (2002) Dynamic Asset Allocation under Inflation. Journal 
of Finance, 57, 1201-1238. https://doi.org/10.1111/1540-6261.00459 

[15] Wachter, J. (2003) Risk Aversion and Allocation to Long Term Bonds. Journal of 
Economic Theory, 112, 325-333. https://doi.org/10.1016/S0022-0531(03)00062-0 

[16] Liu, J. (2007) Portfolio Selection in Stochastic Environments. The Review of Finan-
cial Studies, 20, 1-39. https://doi.org/10.1093/rfs/hhl001 

[17] Coulon, J. (2009) Mémoire longue, volatilité et gestion. de portefeuille. Thèse de 
Doctorat de l’université Claude Bernard-Lyon 1, 1-276.  

[18] Bielecki, T.R. and Pliska, S.R. (2003) Economic Properties of the Risk Sensitive Cri-
terion for Portfolio Management. Review of Accounting and Finance, 2, 3-17.  
https://doi.org/10.1108/eb027004 

[19] Heston, S.L. (1993) A Closed-Form Solution for Options with Stochastic Volatility 
with Applications to Bond and Currency Options. The Review of Financial Studies, 
6, 327-343. https://doi.org/10.1093/rfs/6.2.327 

[20] Fisher, I. (1930) The Theory of Interest. Macmillan, London.  
 
  

https://doi.org/10.2469/faj.v45.n1.31
https://doi.org/10.2307/1926560
https://doi.org/10.1016/0022-0531(71)90038-X
https://doi.org/10.1007/s007800200083
https://doi.org/10.1214/aoap/1050689603
https://doi.org/10.1214/aoap/1029962818
https://doi.org/10.1093/rfs/hhi035
https://doi.org/10.2307/1911242
https://doi.org/10.1142/S0218202515500335
https://doi.org/10.1023/A:1009890514371
https://doi.org/10.1093/rfs/14.4.905
https://doi.org/10.1111/1540-6261.00459
https://doi.org/10.1016/S0022-0531(03)00062-0
https://doi.org/10.1093/rfs/hhl001
https://doi.org/10.1108/eb027004
https://doi.org/10.1093/rfs/6.2.327


A. N. Sandjo et al. 
 

214 

Appendix 

In the sequel, we provide the details of the proof of Propositions 1 and 2.  
Proof of proposition 1. Unlike in [4] [5], the volatility under consideration, in 

our model, is stochastic. Following Merton’s framework [4] [5], if we define  

( ) ( )( ) ( ), ; , , : e , , ,tw c W V t U c t J t W Vλα −Ψ = +              (27) 

then the optimality Equation (12) can be rewritten in the following compact 
form:  

( ) ( )
( )

,
max , ; , , 0.

c t w t
w c W V tΨ =                    (28) 

For the sake of convenience, we respectively denote the derivatives of J  
with respect to ,  ,t W  and ,V  by  

,  ,  ,t W V
J J JJ J J
t W V

∂ ∂ ∂
= = =

∂ ∂ ∂  
2 2 2

2 2,    and  .WW VV VW
J J JJ J J

V WW V
∂ ∂ ∂

= = =
∂ ∂∂ ∂  

The first-order conditions for a regular interior extremum ( ) ( )( ),c t w t∗ ∗  to 
Equation (28) are  

( ) ( )( ), ; , , 0 e ,t
Ww c W V t U c t J

c
λα∗ ∗ − ∗∂Ψ ′= = −

∂
           (29) 

and  

( ) ( ) ( ) 2 2 2, ; , , 0 .W WW VWw c W V t r J w t W V J WV J
w

µ ρσ∗ ∗ ∗∂Ψ
= = − + ⋅ + ⋅

∂
  (30) 

From Equation (29) and Equation (30), the resulting decision rules for con-
sumption and portfolio selection, c∗  and w∗ , are given by  

( ) ( ) 1 e t

Wc t U J
λ

α
−∗  

′=  
 

                    (31) 

and  

( ) 2 .W VW

WW WW

J Jrw t
J W JV W

µ ρσ∗ −
= − ⋅ − ⋅                 (32) 

Observe that Equation (31) and Equation (32) need to be solved for 
( ), , .J t W V  
Since ( ) ( )( ),c t w t∗ ∗  is an extremum of ( ), ; , ,w c W V tΨ , substituting the 

resulting optimal policies, (31) and (32), into (28) yields  

( ) ( )( ) ( )
( ) ( )

( )

2 2 22 2
2

2

2 2
2

, ; , , 0 e

 
22

 ln .
2 2

t
t W

W VW W VW

WW WW WW

VV V

w c W V t U c t J rW c J

r J J J J
V r

J J JV

V J V V J

λα

µ ρ σ ρσ µ

σ σκ δ

∗ ∗ − ∗ ∗Ψ = = + + −

−
− − − −

 
+ + − + 

 

  (33) 

Throughout this section, we use a power-law utility function that belongs to  
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the CRRA family, that is ( ) cU c
γ

γ
=  with 1,  0γ γ< ≠  and taking as trial solu-

tion Equation (15), that is  

( ) ( ) 1
, , : e , ,t WJ t W V K t V

γ
γλα

γ
−−= ⋅ ⋅  

 
where the function ( ),K t V  needs to be found. Now substituting the conjecture 
of J  into Equation (33), one obtains a necessary condition for ( ), ,J t W V  to 
be a solution to Equation (28). Indeed, after obvious simplifications, ( ), ,J t W V  
must satisfy the partial differential equation Equation (16) where the coefficients 
are defined in (17). 

Taking into account the fact that  

( ) ( ) ( )( ) ( )( ) ( )
, , : 1 , and , e T W T

J T W V G T W T G T W T
γ

λα
γ

−= − =
 

we then have the boundary condition ( )
1

11, .K T V
γα

α
−− =  

 
  

Therefore, the consumption (31) and portfolio selection (32) are given by  

( ) ( ),
Wc t

K t V
∗ =                        (34) 

and  

( )
( )

( )( )
2

ln ,
1

K t Vrw t
VV

µ ρσ
γ

∗ ∂−
= +

∂−
              (35) 

This completes the proof of Proposition 1.  
Let us now give the proof of Proposition 2. Beyond the simplification of the 

problem, the main challenge is about solving the PDE (16). 
Proof of Proposition 2. Inspired by Liu’s framework [16] who used 
( ) ( ), ed t VK t V =  as a trial solution, here we chose ( ) ( ) ( ), e .d t V g tK t V +=  Then, 

straightforward calculations show that ( )d t  and ( )g t  must satisfy the iden-
tity:  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )2 , , 1 0d t V d t d t K t V g t K t V′ ′+ Ξ +Θ + Σ −Γ + + =    (36) 

Therefore, a sufficient condition on ( )d t  and on ( )g t  to ensure that 
( ),K t V  is also a solution for Equation (36) is given by  

( ) ( ) ( ) ( )2 0d t V d t d t′ + Ξ +Θ + Σ −Γ =               (37) 

and 

( ) ( ), 1 0.g t K t V′ + =                      (38) 

In addition, the boundary condition ( )
1

11,K T V
γα

α
−− =  

 
 implies that 

( ) 0d T = , since the expression doesn’t depend on V . Consequently, 

( )
1

11eg T γα
α

−− =  
 

 or ( ) 1 1ln
1

g T α
γ α

− =  −  
. Finally, when 0α =  the trial 
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solution becomes ( ) ( ), ed t VK t V =  and after substitution in Equation (18), we 
get  

( ) ( ) ( ) ( )( ) ( )2 , 0.d t V d t d t K t V′ + Ξ +Θ + Σ −Γ =
 

In this case, the boundary condition ( ), 1K T V =  implies ( ) 0.d T =   
First step: finding ( )d t  The Riccati Equation (37) can be rewritten in the 

form  

( ) ( ) ( )2 .d t d t d t
V V V
Ξ Θ Γ −Σ′ = − − +                (39) 

We perform a variable change to transform Equation (39) into a second order 
ordinary equation. To do this, we consider a new function F  defined by  

( ) ( )
( )

.
F tVd t
F t
′

= −
Γ −Σ  

Easy algebraic manipulations lead to  

( )2 0.V F VF F′′ ′+ Θ −Ξ Γ −Σ =                  (40) 

It is actually an easy task to solve Equation (40) since we are now facing a 
second order linear ordinary differential equation. 

The characteristic equation of (40) is given by  

( )2 2 0.V Vζ ζ+Θ −Ξ Σ −Γ =                   (41) 

We then distinguish three cases according to the sign of the discriminant 
( )2 2 4D V  = Θ + Ξ Σ −Γ  , which depends upon the term ( )2: 4 .∆ = Θ + Ξ Σ −Γ  

• Case: 0∆ >   
In this case the roots of the characteristic Equation (41) are real and distinct,  

1 2  et  .
2 2V V

ζ ζ−Θ− ∆ −Θ+ ∆
= =

 
Therefore, the general solution of (40) is given by  

( ) ( ) ( )1 2
1 2e et T t TF t c cζ ζ− −= +  

where 1c  and 2c  are real constants 
and 

( )
( )

( ) ( )

( ) ( )

1 2

1 2

1 1 2 2

1 2

e e
.

e e

t T t T

t T t T

F t c c
F t c c

ζ ζ

ζ ζ

ζ ζ− −

− −

′ +
=

+  
The condition ( ) 0d T =  implies ( ) 0.F T′ =  Therefore, constants 1c  et 2c  

satisfy the following conditions 1 1 2 2 0.c cζ ζ+ =  That is 2
1 2

1

.c cζ
ζ

= −  Therefore, 

( )
( )

( )( )

( )( )

1 2

1 2

2 2

2

1

e
= .

1 e

t T

t T

F t
F t

ζ ζ

ζ ζ

ζ ζ
ζ
ζ

− −

− −

′ +

−
 

• Case: 0∆ =   
In this case 1 2ζ ζ= ; that is, the roots of the characteristic equation are real 
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and equal. Let’s denote by ζ  the common value of 1ζ  and 2 .ζ  Then, from  

(41), we have 
2V

ζ Θ
= −  and the general solution to (40) is given by  

( ) ( ) ( )3 4 exp
2

F t c t T c T t
V
Θ = − + ⋅ −        

and  

( ) ( )( ) ( )3 3 4 exp .
2 2

F t c c t T c T t
V V
Θ Θ   ′ = − − + ⋅ −       

Thanks to the condition ( ) 0F T′ = , the constants 3c  et 4c  satisfy the fol-
lowing conditions  

3 4 4  with  0.
2

c c c
V
Θ

= ≠
 

Hence,  

( )
( )

( )( )
( )

( )

( )

3 3 4

3 4

4 4 4

4 4

2

2 2 2

2

.
22

c c t T cF t V
F t c t T c

c c t T c
V V V

c t T c
V
t T

VV t T

Θ
− − +′

=
− +

Θ Θ Θ − − + 
 =

Θ
− +

Θ −
= −

− +
Θ  

• Case: 0∆ <   
It is clear that the inequality ( )2 4Θ < − Ξ Σ −Γ  can only be satisfied if 0Ξ < , 

since .Σ > Γ  This is indeed the case. In fact, due to  



( ) ( )
2 2

2 2 2

1

1 1 1, we have 1 1 0.
2
Vσγ ρ ρ γ ρ

<

 − < − < Σ −Γ = − − > 
 

In this case, the roots of the characteristic equation are complex numbers  
2i    with  i 1ζ ϑ ω± = ± = −  

where  

  and  .
2 2V V

ϑ ωΘ −∆
= − =

 
The general solution to (40) is then given by  

( ) ( )( ) ( )( ) ( ){ }5 6sin cos exp ,F t c t T c t T t Tω ω ϑ = − + − ⋅ −   

and the derivative of F  is  

( ) ( ) ( )( ) ( ) ( )( ) ( ){ }5 6 5 6cos sin exp ,F t c c t T c c t T t Tω ϑ ω ϑ ω ω ϑ ′ = + − + − − ⋅ −   

where the constants 5c  et 6c  satisfy the following conditions  

6
5 6  with  0.

c
c c

ϑ
ω

= − ≠
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It follows that  

( ) ( )( ) ( )( ) ( ){ }6 sin cos expF t c t T t T t Tϑ ω ω ϑ
ω

 = − − + − ⋅ −    
and  

( ) ( )( ) ( ){ }
2

6 sin exp .F t c t T t Tϑ ω ω ϑ
ω

 
′ = − + − ⋅ − 

   
Thus  

( )
( )

( ) ( )( )
( )( ) ( )( )

2 2 sin

sin cos

t TF t
F t t T t T

ω ϑ ω

ϑ ω ω ω

+ −′
=

− − −
 

with the domain of F  such that ( )( )tan t T ωω
ϑ

− ≠  for 0 t T≤ ≤ .  

Second step: finding ( )g t  Now, Equation (38) leads to  
( ) ( )

10
e e d ,

tg t d s V s C−= − +∫  
where the constant 1C , which can be found using the boundary condition, is 
given by  

( )
1

1

1 0

1 e d .
T d s VC s

γα
α

− −− = + 
  ∫

 
Finally, the function ( )g t  can be written in the following integral form:  

( ) ( )
1

11ln e d .
T d s V

t
g t s

γα
α

−−
 −  = +   
 
∫

 
This completes the proof of Proposition 2.  
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