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Abstract 
In this paper, we propose a model of exchange rate target zone based on a specifica-
tion of the economic fundamentals known as a Geometric Brownian Motion. The ra-
tionale behind this specification is that the fundamentals series is not necessarily 
normally distributed as commonly assumed, as indicated by its excess kurtosis and 
ARCH properties. Therefore, assuming a normal specification can be problematic. 
The main difficulty is that with such a specification finding a closed form solution 
for the model becomes somehow more involved. We present some results in which 
the exchange rate formula is explicitly derived. Then we look at several types of cen-
tral bank interventions in the foreign exchange market such as Krugman’s marginal 
interventions, central bank interventions a la Caballero and central bank interven-
tions a la Flood-Garber. In addition, we present some empirical investigations where 
it is found that, for the most part, these exchange rate models do not fit the data well 
and a case where the model performs satisfactorily. We believe that the sources of the 
problem may reside in the complexity of estimating the models efficiently given that 
the theoretical approach is quite sound. 
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1. Introduction 

A target zone model is an exchange rate model where the monetary authorities are 
committed to keeping the exchange rate within some specific bands commonly known 
as a target zone [1]. Establishing a zone is one type of central bank interventions. One 
of the main goals is to stabilize the currency. Given the weak empirical support for 
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most of the basic target zone models [2] [3] [4] as provided by Jong [2] and Spencer 
and Smith [5], a number of alternative models of target zone modeling have been in-
troduced by relaxing the two main assumptions of the basic target zone model [6], 
namely infinitesimal marginal interventions and perfect credibility [3] [7] [8] [9] [10] 
[11]. However, regardless of the alternative model being introduced, no serious atten-
tion has been given to the fundamentals’ variable behavior and therefore an agnostic 
arithmetic Brownian motion process is commonly used to describe the stochastic 
process governing the fundamentals, though some models include the possibility of 
jump in the diffusion process for the fundamentals [12]. But assuming an arithmetic 
Brownian Motion (ABM) process for the fundamentals is basically assuming the varia-
ble has a normal distribution, at least within the band, an assumption would be hard to 
be maintained given a related work on an empirical study of the specific fundamental 
determinant of exchange rate determination in a working paper where we have seen 
that the fundamentals for the most part exhibit kurtosis and skewness properties and 
even ARCH properties. It is true that which fundamentals to be used depend on the 
model of exchange determination being considered. Our analysis is based on the mon-
etary model of exchange rate determination [13] [14] [15] [16], the most commonly 
used model of exchange rate determination in empirical work, which leads to the fol-
lowing fundamental equation of exchange rate determination. 

( ) ( ) ( )d 1
d

t s t f t
s t

t α α
   − = −


 

Equivalently, we can write 

( ) ( ) ( )1 d
d ts t f t s t
t

α= +     

Here, we propose a model where the fundamentals follow a geometric Brownian 
Motion (GBM). We will also consider the predictions of the model for target zone 
modeling under Krugman interventions as well as under discrete interventions by the 
monetary authorities. First, we present some background about the behavior of the 
fundamentals assumed to drive exchange rate movements. 

2. Some Computational Aspects of the Fundamentals 

The model assumes that the fundamentals follow a Geometric Brownian Motion (GBM) 

( ) ( ) ( ) ( )d d df t f t t f t W tµ σ= +                     (1) 

where W(t) is a standard brownian motion or Wiener process. Here,the drift parameter, 
( )f tµ , and the volatility or diffusion parameter, ( )f tσ , are time-varying. In fact, this 

is more consistent with empirical examinations of the fundamentals where it is found 
that the fundamentals do often exhibit ARCH effects. The ABM formulation assumes 
that such parameters are constant over time. From stochastic calculus, it can be shown 
easily that if the fundamentals follow an ABM process, then we have 

( ) ( ) 2~ 0 ,f t N f t tµ σ +                        (2) 
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Now, we want to investigate the distribution of the GBM process. The equation 
above is a diffusion stochastic differential equation. If we can solve the SDE, probably 
that can shed some light on the distribution of the process. The fact is that this class of 
linear stochastic differential equations can be solved analytically. For completeness, we 
will present the details of the solution method. Also, we will calculate some moments. 
First, to find the mean, we rewrite the SDE in an equivalent integral form 

( ) ( ) ( ) ( ) ( )
0 0

0 d d
t t

f t f f s s f s W sµ σ= + +∫ ∫                  (3) 

The first integral is the integral of a random function with respect to a standard 
measure, the Riemann measure, and the second integral is an Ito stochastic integral. 
We have 

( ) ( )
0

d 0
t
f s W s  =  ∫                          (4) 

( ) ( ) ( )
2

2
0 0

d d
t t

f s W s f t s   =    ∫ ∫                     (5) 

The last equation results from the Ito isometry theorem. Taking expectations, we ob- 
tain 

( ) ( ) ( )
0

0 d
t

f t f f s sµ= +      ∫                      (6) 

Setting ( ) ( )y t f t=    , the moment equation becomes 

( ) ( ) ( )
0

0 d .
t

y t f y s sµ= + ∫                         (7) 

This equation is an integral equation of the first kind which occurs commonly in the 
theory of integral equations and can be easily solved. Differentiate both sides to obtain 

( ) ( )y t y tµ′ =                              (8) 

The solution to this linear differential equation is given by 

( ) ( )0 e tf t f µ=                             (9) 

Now, we look at the second moment, the variance of the process. To do that, we first 
try to compute ( )2f t   . To do so, a standard technique is to use Ito’s lemma. De- 
fine a new process, ( ) ( ) ( )2 : ,Y t f t F t f= = . Ito’s lemma implies 

( ) ( ) ( ) ( ) ( )2 2 2 2d 2 d 2 dY t f t f t t f t W tµ σ σ = + +   

Then 

( ) ( ) ( ) ( ) ( )2 2 2 2 2
0 0

0 2 d 2 d
t t

f t f f s s f s W sµ σ σ = + + + ∫ ∫         (10) 

This implies that 

( ) ( ) ( )2 2 2 2
0

0 2 d
t

f t f f s sµ σ     = + +     ∫               (11) 

Let ( ) ( )2y t f t =   . We obtain the following integral equation 

( ) ( ) ( )2 2
0

0 2 d
t

y t f y s sµ σ = + + ∫                   (12) 
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Therefore, we obtain the following ODE 

( ) ( )22 dy t y t tµ σ ′ = +                         (13) 

The solution is given by 

( ) ( ) ( )222 2 0 e
t

f t f
µ σ+

  =                        (14) 

The variance is given as 

( ) ( ) ( ) ( ) ( ) 22 2 2 2ar 0 exp 2 exp 2 0 e e 1t tf t f t t f µ σµ σ µ    = + − = −           (15) 

Now, we would like to determine the distribution of the process f(t). The interesting 
property of such a formulation is that we can solve explicitly the SDE as it is known in 
the literature. The SDE 

( ) ( ) ( ) ( )d d df t f t t f t W tµ σ= +  

is a linear SDE with nonconstant coefficients,we can solve the SDE using the integrating 
factor technique. But, using this method leads to stochastic integral equation which is 
more difficult to solve than the SDE itself. Alternatively, we use the common solution 
technique, though a general method of solving linear SDEs. Let ( ) ( )logY t f t= . Using 
Ito’s lemma, we have 

( ) ( )
2

d d d
2

Y t t W tσµ σ
 

= − + 
 

                    (16) 

( ) ( ) ( )
2

0
2

Y t Y t W tσµ σ
 

= + − + 
 

                  (17) 

That is 

( ) ( )
( )

2

20 e
t W t

f t f
σµ σ

  
  − +    =                       (18) 

This solution does not tell us much about the distribution of the stochastic process 
governing the fundamentals. But, we can find out about the nature of the distribution 
by observing the following. 

Rewrite (18) as 

( )
( ) ( )

2

log
0 2

f t
t W t

f
σµ σ

   
= − +   
  

                  (19) 

It is clear that 

( )
( )

2
2log ~ ,

0 2
f t

N t t
f

σµ σ
    

−    
    

                  (20) 

It follows that 

( )
( )

2
2~ log ,

0 2
f t

N t t
f

σµ σ
    

−    
    

                  (21) 
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That is, ( )
( )0

f t
f

 
 
 

 has a lognormal distribution. The lognormal probability distribu-  

tion function is very important in applied work. We can analyze its kurtosis and skew-
ness by using a very powerful statistical technique, namely, the moment generating 
function technique without having to rely on some relatively tedious calculations. We 
briefly define the lognormal distribution and show how the moment generating func-
tion technique can be applied to calculate some of the moments. 

Suppose that the random variable X has a lognormal distribution with μ and variance 
σ2. Now, we apply the moment generating function technique to find the first and 
second moment. Define the random variable logY X= . The mean is given by 

( ) [ ]
2

2e eY
Xm t X

σµ
 
 + 
  = = =                    (22) 

Similarly, we obtain 
22 2 2 2e eYX µ σ+   = =                         (23) 

Therefore, the variance of X is given by 

( ) ( )2 2 2 22 2 2 2ar e e e e 1X µ σ µ σ µ σ σ+ + += − = −               (24) 

We see that we could have used this result on lognormal probability distribution 
functions to calculate the first moments of the f(t) process. A final remark to be made 
about the stochastic process governing the fundamentals f(t) is that the SDE that de-
fines the process has two unknown parameters, µ  and σ . Empirically, such para-
meters defined this way in an SDE can be estimated by simulation. In the target zone 
model we will analyze, such a method would not be appropriate. The model’s parame-
ters should be estimated simultaneously. Besides, the target zone model is based on the 
so-called regulated stochastic differential equations. Now, it is time to tackle the main 
topic of this subject given the rationale behind the set up of the SDE describing the be-
havior of the fundamentals, at least within the band. 

3. Estimating the Fundamentals’ Parameters 

In this section, we pay a special attention to the task of estimating the parameters µ  
and σ  of the GBM specification for the fundamentals process, f(t). In the above sec-  

tion we showed that ( )
( )0

f t
f

 follows a log-normal distribution when the fundamentals  

are modeled as a geometric Brownian motion. More specifically, 

( )( ) ( )( ) 2 21log ~ log 0 , .
2

f t N f t tµ σ σ  + +  
  

 

In this specific case the parameters can be estimated by exact maximum likelihood. 
For the sample 0 1, , , Nf f f , the likelihood can be written as 
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( )

2
2

11

2
0 1

1log log
21, ; exp .

22π

i i iN

i ii i

f f
L f

f

µ σ
µ σ

σσ

+−

= +

     − + + ∆   
    =  
∆∆  

 
 

∏  

µ  and σ  can be estimated by maximizing the logarithm of the preceding likelih-
ood. 

However, for more general cases, in particular when the geometric Brownian is re-
gulated, the exact likelihood function is unknown and the researcher has to rely on ap-
proximation methods. A large body of literature has been devoted to parameter estima-
tion of SDEs such as Discrete Maximum Likelihood (DML) methods, Hermite Poly-
nomial Approximations, Infinitesimal Operator methods advocated by [17]. In essence, 
most of these numerical methods focus on approximating the transitional PDF of the 
process, which, in general, does not have a closed form expression. 

For an SDE of the form 

( ) ( )d ; d ; d ,X X t X Wµ σ= Θ + Θ                     (25) 

where Θ  is a vector of parameters. 
The transitional PDF satisfies the Fokker-Plank equation with initial and boundary 

conditions 

( ) ( )( )
( )

2 ,, 1 ;
2

g x ff x t
x f

t x x
µ

 ∂ Θ∂ ∂  = − Θ
 ∂ ∂ ∂ 

 

( ) ( )0 0, ,f x t x x x Sδ= − ∈  

( ) ( ) ( )
( )( )2

0

,1, ; , 0, ,
2

g x f
q x t x f x t x S t t

x x
µ

 ∂ Θ∂  = Θ − = ∈∂ >
 ∂ ∂ 

 

where S is the state space, 0t  is the initial time and 0x  is the initial state of the pro- 
cess at time 0t . Discrete Maximum Likelihood methods have been very popular in em-
pirical work. The traditional DML uses an Euler-Maruyama algorithm with one step of 
duration: 

( ) ( )1 ; d ;j j j j j jX X X t g X Uµ+ = + Θ + Θ ∆                (26) 

where ( )~ 0,1jU N . 
Other methods use a Milstein approximation algorithm which, in most cases, give 

superior estimators compared to the Euler-Maruyama scheme. Our model specification 
for the fundamentals process states that 

d d df f t f Wµ σ= +  

Letting 1j j jt t+∆ = − , an Euler-Maruyama algorithm with one step of duration gives 
the discretization 

1j j j j j j jf f f f Uµ σ+ = + ∆ + ∆                     (27) 
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where jU  is a standard normal random variable.Hence, the approximated transitional 
PDF is assumed to be normal with mean j j jf fµ+ ∆  and variance 2 2

jf tσ ∆ . 
Now, take a sample 0 1, , , Nf f f  of N + 1 observations of the process f at time 

0 1, , , Nt t t . The likelihood function of the sample observation 0 1, , , Nf f f  is given by 

( ) ( )

( )
( )

2
1

1
2 22 20

2
1

1
2 21

02 2

0

2

1, exp
22π

1 exp
2

2π

exp

N
j j j j

j j jj j

N j j j j
N N

j j j
j j

j

N

f f f
L f

ff

f f f
f

f

B

µ
µ σ

σσ

µ

σ
σ

σ σ

−
+

=

−
+

−
=

=

 − − ∆ = −
 ∆∆  

 − − ∆
 = −
 ∆

∆  

Ψ = −  

∏

∑
∏

 

where we define 

( )2
1

1
2

0 2

N j j j j

j j j

f f f
f

µ−
+

=

 − − ∆
 Ψ = −
 ∆
 

∑  

( )
1

2

0

1

2π
NN

j j
j

B
f

−

=

=
∆∏

 

The log-likelihood function is given by 

( ) 2log logL B N σ
σ
Ψ

= + +  

The first order conditions entail 

1 1
1

2
0 0

1 0
N N

j
j

j jj

f
N

f
µ

σ

− −
+

= =

  
− − ∆ =      

∑ ∑                    (28) 

3
2 0N

σ σ
Ψ

− =                                     (29) 

1
1

0

1

0

1
ˆ

1

N
j

j j
N

j
j

f
Nf

N

µ

−
+

=

−

=

 
−  

 =
∆

∑

∑
                                (30) 

( )2
1

12
2

0

ˆ1ˆ
N j j j j

j j j

f f f
N f

µ
σ

−
+

=

 − − ∆ = −
 ∆
 

∑                  (31) 

As indicated above, in our formulation, no approximation is necessary for estimation 
purposes given that a closed form solution for the likelihood function is available. We 
present the exact maximum likelihood estimation results as well as the pseudo maxi-
mum likelihood results below where we use velocity as economic fundamentals, as in 
[6]. This is slight departure from the monetary fundamentals specification based on the 
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monetary model of exchange rate determination. 
The estimates are presented below (Table 1). 
It is clear that the model is consistent with the data. 

4. The Target Zone Model 

The target zone model considered here is driven by the behavior of the process govern-
ing the fundamentals process. We argued previously that a formulation of the series 
governing the fundamental determinant of exchange rate, f(t), is supposed to be guided 
by empirical considerations on the behavior of the series f(t) and therefore, models, 
whatever variables being considered as economic fundamentals, should not be agnostic 
about such behavior. In effect, the fundamental series f(t), as we have previously hig-
hlighted, depends on the model of exchange rate determination being considered. 
Again, the emphasis is put on the classical monetary model of exchange rate determi-
nation as in [18]. 

As before, we assume that the dynamic behavior of the fundamentals is governed by 
the stochastic differential equation 

( ) ( ) ( ) ( )d d df t f t t f t W tµ σ= +  

where µ  and σ  are parameters to be estimated along with the other parameter of 
the model, which is α  in our model. As before, we use the fundamental equation for 
the exchange rate derived from the monetary model in continuous time 

( ) ( ) ( )1
d ts t f t f t
t

α= +     

or equivalently, 

( ) ( ) ( )d 1
d

t s t f t
s t

t α α
   − = −


 

where α  is positive. 
The model’s parameters are ( ), ,α µ σ . These parameters need to be estimated si-

multaneously. Though the solution to the SDE governing the dynamic behavior of the 
fundamentals is not required for estimation purposes, it is necessary to find a closed 
form solution for the exchange rate, s(t), satisfying the fundamental equation. The solu-
tion is given in the following proposition. 

Proposition 1. Suppose that the fundamentals, f(t), satisfy the stochastic differential 
equation 
 
Table 1. Estimates of the parameters of the fundamentals process. 

 Exact MLE Pseudo MLE 

 estimates ste p-value estimates ste p-value 

µ 0.010 0.004 0.021 0.010 0.005 0.038 

σ 0.033 0.002 0.000 0.034 0.002 0.000 

Log-likelihood −183.333 0.000 0.000 −177.237 0.000 0.000 
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( ) ( ) ( ) ( )d d df t f t t f t W tµ σ= +                    (32) 

Also, assume that the exchange rate is determined by the equation 

( ) ( ) ( )1
ts t f t f t

dt
α= +     

Then a family of solutions for the exchange rate is given by 

( ) ( ) ( ) ( )1 21
1

s t f t A f t B f t
λ λ

αµ
= + +      −

              (33) 

where 
2

1 2 2 2
1 1 2
2 2

µ µλ
σ σ ασ

   = − + − +   
   

                 (34) 

2

2 2 2 2
1 1 2
2 2

µ µλ
σ σ ασ

   = − − − +   
   

                 (35) 

where A and B are arbitrary constants. 
Proof. The fundamentals are assumed to satisfy the SDE or GBM 

( ) ( ) ( ) ( )d d df t f t t f t W tµ σ= +                   (36) 

Guess that the exchange rate function is a time invariant function of the current 
fundamentals, that is, s(t) has the strong Markov property. Thus, we can set 
( ) ( )s t G f t=    . By Ito’s lemma also known as Ito’s stochastic change of variable 

formula, we have 

( ) ( ) ( ) ( )2 21d d d
2

s t G f t f G t G f t W tµ σ σ ′′′ ′= + +     
        (37) 

Then we obtain 

( ) 2 21d d
2

s t G f f G tµ σ ′ ′′= +     
                 (38) 

This leads to the following second order differential equation given by 
2

2 1 1
2

f G fG G fσ µ
α α

′′ ′+ − = −                  (39) 

This is a functional equation of the form 

( )2ax y by cy h x′′ ′+ + =                      (40) 

This belongs to a well known class of ordinary differential equations known as the 
Cauchy-Euler or Equidimensional equation. Closed form solutions for such a class of 
differential equations exist. There are several methods for solving this class of ODEs. 
One such methods is he to use the theory of Laplace transforms. But, finding the in-
verse Laplace transform may be not that simple. The easiest solution method is to set 

etx =  and obtain 

( )
2

2
d d 1 e

dd
ty ya b a cy

tt α
+ − + = −                  (41) 
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As usual, we solve the second order homogeneous ODE 

( )
2

2
d d 0

dd
y ya b a cy

tt
+ − + =                       (42) 

The characteristic equation is given by 

( )2 0a b a cλ λ+ − + =                         (43) 

Given the definition of a, b, c, we have 
2

1 2 2 2
1 1 2
2 2

µ µλ
σ σ ασ

   = − + − +   
   

 

2

2 2 2 2
1 1 2
2 2

µ µλ
σ σ ασ

   = − − − +   
   

 

Therefore, the general solution to the homogeneous equation is given by 

( ) 1 2e et t
hy t A Bλ λ= +                         (44) 

To find a particular solution, suppose it is given by ( ) ( )et
py t C Dt= + . 

Assuming that 1µ
α

≠ , it can be shown that the coefficients are given by 

1
1

C
αµ

=
−

 

0D =  

Finally, the general solution is given by 

( ) ( ) ( ) 1 2 1e e e
1

t t t
h py t y t y t A Bλ λ

αµ
= + = + +

−
             (45) 

Moreover, since logt x= , we have 

1 2 1
1

y Ax Bx xλ λ

αµ
= + +

−
                     (46) 

Since y G=  and x f= , we obtain then 

( ) ( ) ( ) ( )1 21
1

s t f t A f t B f t
λ λ

αµ
= + +      −

 

where 1λ  and 2λ  are as defined above. 

5. Monetary Interventions 

The next task is to definitize the coefficients A and B. To do that, we consider different 
types of central bank interventions. As before, we consider a target zone [ ],L Uf f . In-
troducing a target zone of this sort defines the fundamentals as a regulated Brownian 
motion. The point of the matter is that whenever the exchange rate falls within the 
band, the central bank or the monetary authorities do not intervene. Whenever the 
fundamentals touch one of the bands, the authorities do intervene. In the next section, 
we will consider the most widely used types of interventions we have previously ex-
amined such as Krugman’s infinitesimal marginal intervention [6], Flood-Garber in-



J. R. Cupidon, J. Hyppolite 
 

876 

terventions [19], and interventions in the sense of Bertola and Caballero [10]. Each type 
of interventions leads to different estimates of the integration coefficients A and B. 

5.1. Krugman’s Type Interventions 

As we have previously mentioned, Krugman infinitesimal marginal interventions assume 
that the monetary authorities intervene in the foreign exchange market so as to prevent 
the exchange rate from ever leaving the target zone band. At the time of interventions, 

( )d 0s t = . “Smooth-pasting” conditions imply that ( ) 0Us f′ = , and ( ) 0Ls f′ = . These 
two boundary conditions are sufficient to determine or definitize the constants of inte-
gration A and B. We have the following result which we will state as a corollary. 

Corollary 2. Under Krugman interventions and with a geometric brownian motion 
for the fundamentals: ( ) ( ) ( ) ( )d d df t f t t f t W tµ σ= + , the exchange rate series, s(t), is 
given by 

( ) ( ) ( ) ( )1 21 ,
1

s t f t A f t B f t
λ λ

αµ
= + +      −

              (47) 

where A and B are given by 

( )
( )

2 2

1 2 2 1

1 1

1 1 1 1
1

L U

L U L U

c f f
A

f f f f

λ λ

λ λ λ λλ

− −

− − − −

−
=

−
                    (48) 

( )
( )

1 1

1 2 2 1

1 1

1 1 1 1
2

U L

L U L U

c f f
B

f f f f

λ λ

λ λ λ λλ

− −

− − − −

−
=

−
                    (49) 

1
1

c
αµ

=
−

                                    (50) 

Furthermore, assuming symmetry, in the sense that L Uf f= −  and 0µ = , then we 
have 

( )( )
( ) ( )

2

1 21 1
1

1 1

1 1U

c
A

f

λ

λ λλλ −

+ −
=

 − − − 
                     (51) 

( )( )
( ) ( )

1

1 22 1
2

1 1

1 1U

c
B

f

λ

λ λλλ −

+ −
=

 − − − 

                    (52) 

Proof. We have 

( ) 1 21 1
1 2

1
1

G f A f B fλ λλ λ
αµ

− −′ = + +
−

                (53) 

“Smooth-pasting” conditions imply 

1 21 1
1 2

1 0
1 L LA f B fλ λλ λ

αµ
− −+ + =

−
                  (54) 

1 21 1
1 2

1 0
1 U UA f B fλ λλ λ

αµ
− −+ + =

−
                  (55) 

We obtain 
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2 2

1 2 2 1

1 1

1 1 1 1
1

L U

L U L U

c f f
A

f f f f

λ λ

λ λ λ λλ

− −

− − − −

 − =
 − 

                      (56) 

1 1

1 2 2 1

1 1

1 1 1 1
2

U L

L U L U

c f f
B

f f f f

λ λ

λ λ λ λλ

− −

− − − −

 − =
 − 

                      (57) 

For the symmetric case, we target zone becomes [ ],U Uf f−  so that the zone is 
symmetric about zero. We have 

( )

( ) ( )

( )

( ) ( )

2 22 2

1 2 1 21 2 1 2 1

1 1 1

1 12 2 1
1 1

1 1 1

1 1 1 1

U U

U U U

c f f c
A

f f f

λ λλ λ

λ λ λ λλ λ λ λ λλ λ

− − −

− −+ − + − −

   − − + −   = =
   − − − − − −   

      (58) 

A similar expression is obtained for B 

( )

( ) ( )

( )

( ) ( )

1 11 1

1 2 1 21 2 1 2 2

11 1

1 12 2 1
2 2

1 1 1

1 1 1 1

U U

U U U

c f f c
B

f f f

λ λλ λ

λ λ λ λλ λ λ λ λλ λ

−− −

− −+ − + − −

   − − + −   = =
   − − − − − −   

      (59) 

Also, in the symmetric case, we have 

1
1 1 2
2 4

λ
α

= + +                           (60) 

2
1 1 2
2 4

λ
α

= − +                           (61) 

5.2. Flood-Garber Interventions 

It is widely accepted in the literature that discrete interventions are more realistic than 
infinitesimal marginal interventions à la Krugman due to the fact that the central bank 
starts with a fixed amount of reserves which will eventually be exhausted [19]. In this 
section, we discuss the behavior of the exchange rate in the case of discrete interven-
tions à la Flood-Garber. This type of intervention assumes perfect credibility of the 
zone from the point of view of market participants. We start by rewriting the exchange 
rate function as follows 

( ) 1 2

1 2

1 2

1 2

1
1

1
1

1
1

U L
U L

U L

s t f Af Bf

f ff Af Bf
f f

f ff A B
f f

λ λ

λ λ
λ λ

λ λ

αµ

αµ

αµ

= + +
−

   
= + +   −   

   
= + +   −   

 

 

where 1
UA Af λ=  and 2

LB Bf λ= . That is, we obtain 

( ) [ ]
1 21/ ,

1L U
U L

f fs t G f f f f A B
f f

λ λ

αµ
   

= = + +   −   
             (62) 
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The monetary authorities intervene in the foreign exchange market whenever f hits 
either the upper or lower bound of the target zone by placing the fundamental back in 
the middle of the band. 

 

 
 
When the fundamentals hit the lower band Lf  at time 0t , we have 

( ) [ ]
1 2

1

0 / ,

1
1

1
1

L L U

L L
L

U L

L
L

U

s t G f f f

f ff A B
f f

ff A B
f

λ λ

λ

αµ

αµ

=

   
= + +   −   

 
= + + −  

 

 

                 (63) 

At time 0 dt t+ , market participants know with certainty that the monetary authori-  

ties will reset f at the middle of the band, that is, at 
2

L Uf f+ . 

Hence, 

( )
0

1 2

1 2

0 d / ,
2

2 2 2

1 1
2 2 2 2 2

L U
t L U

L U L U L U

U L

L U UL

U L

f fs t t G f f

f f f f f fc A B
f f

f f ffc A B
f f

λ λ

λ λ

+ + =   

   + + + = + +    
    

   + = + + + +    
    

 

 



        (64) 

UIP implies no jumps and therefore 

( ) ( )
0 0 0d 0

lim dtt
s t t s t

→
+ =  

That is, 

1 1 21 1
2 2 2 2 2

L U UL L
L

U U L

f f ff fcf A B c A B
f f f

λ λ λ
     + + + = + + + +      

      
    

1 1 21 11
2 2 2 2 2

UL L

U U L

ff f cA B
f f f

λ λ λ
β        

   − + + − + =     
          

                  (65) 

Similarly, at the instant 1t  where the fundamentals hit the upper bound of the target 
zone, 
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we see that 

( ) [ ]
1 2

2

1 / ,U L U

U U
U

U L

U
U

L

s t G f f f

f fcf A B
f f

fcf A B
f

λ λ

λ

=

   
= + +   

  

 
= + +  

 

 

 

                  (66) 

At the next instant 1 dt t+ , we have, as before 

( ) ( )1 1d 0
lim d
t

s t t s t
→

+ =                        (67) 

That is, 

12 21 1
2 2 2 2 2

U L U UL
U

L U L

f f f ffcf A B c A B
f f f

λλ λ
    + + + = + + + +      

     
    

Equivalently, we can write 

1 2 21 11
2 2 2 2 2

U UL

U L L

f ff cA B
f f f

λ λ λ
β        

   − + + − + = −     
          

   

We obtain the following system of linear equations 

1 2 21 11
2 2 2 2 2

U UL

U L L

f ff cA B
f f f

λ λ λ
β        

   − + + − + = −     
          

            (68) 

1 1 21 11
2 2 2 2 2

UL L

U U L

ff f cA B
f f f

λ λ λ
β        

   − + + − + =     
          

              (69) 

To solve the system, we set 

1
1
2 2

L

U

fa
f

= +  

2
U

L

fa
f

=  

3
1
2 2

U

L

fa
f

= +  

The solution to the system is therefore obtained as 
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2 2

2 1 2 1 1 2 1 2

2 3

3 1 2 2 3 1 2

1 2
2

1

c a a
A

a a a a a a a

λ λ

λ λ λ λ λ λ λ λ

β

− −

 + − 
= −

− − − + +
                (70) 

1 1

2 1 2 1 1 2 1 2

2 1

3 1 2 2 3 1 2

1 2
2

1

c a a
B

a a a a a a a

λ λ

λ λ λ λ λ λ λ λ

β −

− −

 + − 
=

− − − + +
                 (71) 

The complete solution to the model under Flood-Garber interventions can be sum-
marized in the following proposition 

Proposition 3. Under Flood-Garber interventions, the solution to the target zone 
model is given by 

( ) [ ]
1 21,

1L U
U L

f fs t G f f f f A B
f f

λ λ

αµ
   

= = + +   −   
   

where 

2 2

2 1 2 1 1 2 1 2

2 3

3 1 2 2 3 1 2

1 2
2

1

c a a
A

a a a a a a a

λ λ

λ λ λ λ λ λ λ λ

β

− −

 + − 
= −

− − − + +
  

1 1

2 1 2 1 1 2 1 2

2 1

3 1 2 2 3 1 2

1 2
2

1

c a a
B

a a a a a a a

λ λ

λ λ λ λ λ λ λ λ

β −

− −

 + − 
=

− − − + +
  

2

1 2 2 2
1 1 2
2 2

µ µλ
σ σ ασ

   = − + − +   
   

 

2

2 2 2 2
1 1 2
2 2

µ µλ
σ σ ασ

   = − − − +   
   

 

1
1

c
αµ

=
−

 

1
1
2 2

L

U

fa
f

= +  

2
U

L

f
a

f
=  

3
1
2 2

U

L

f
a

f
= +  

U Lf fβ = −  

To complete the discussion under this type of interventions, we consider the symme-
tric case. This has only a theoretical value given that for our model, the fundamentals 
are either positive or negative. 

Suppose that 0µ =  and L Uf f= −  so that the target zone is symmetric about zero. 
Then, it follows that 1 0a = , 2 1a = − , and 3 0a = . Also, 
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1 2
1 1 2
2 4

λ
ασ

= + +  

2 2
1 1 2
2 4

λ
ασ

= − +  

( )( )
( )

2

2 1

1 1

1 1

Uf
A

λ

λ λ−

+ −
=

− −
  

( )( )
( )

1

2 1

1 1

1 1

Uf
B

λ

λ λ−

+ −
=

− −
  

We present below a possible graph (Figure 1) for the exchange under some specific 
value of the target zone band. 

5.3. Bertola-Caballero Interventions 

This type of intervention is justified by the fact that the monetary authorities start with 
a fixed amount of reserves which will eventually be exhausted and hence the target zone 
cannot be completely credible. Therefore, the assumption of perfect credibility is re-
laxed here. When the exchange rate hits either band limits, the monetary authorities 
either realign or mount a defense of the zone. Let p be the probability of realignment 
and 1 − p the probability that the monetary authorities mount a target zone defense. 
Suppose further that the fundamentals hit the upper bound, Uf . At time 0t  when 

Uf  is hit, we have 

( ) [ ]
2

0 / , U
U L U U

L

fs t G f f f cf A B
f

λ
 

= = + +  
 

                (72) 

At the next instant 0 dt t+ , we have 
 

 
Figure 1. Relationship between f and s when f follows a GBM and Flood- 
Garber interventions. 
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1) With realignment (with probability p), we have a new band [ ],U Uf f β+  and 

( )

1 2

1 2

0 d / ,
2

2 2
2

2 1
2 2 2 2

U U U

U U

U
U U

U
U

U U

s t t G f f f

f f
c f A B

f f

fc f A B
f f

λ λ

λ λ

β β

β β
β

β

ββ β
β

 + = + +  

   + +    = + + +     +     
   

   + = + + + +     +     

 

 

 

2) If a defense is mounted, then the monetary authorities place the fundamentals 
back to the middle of the band: 

( )

1 2

1 2

0 d / ,
2

2 2
2

1
2 2 2

U L U

U U

U
U L

U
U

U L L

s t t G f f f

f f
c f A B

f f

fc f A B
f f f

λ λ

λ λ

β

β β
β

β β β

 + = −  

   − −    = − + +    
     

   

    = − + − + −    
    

 

 

 

Uncovered interest parity implies 

( ) ( )
0 0 0d 0

lim dtt
s t t s t

→
+ =                       (73) 

But, it is seen that 

( )

( )

1 2

0

1 2

1 2

1

0
2d 1

2 2 2 2

1 1
2 2 2

2 1
2 2 2 2

1
2

U
t U

U U

U
U

U L L

U
U

U U

U

fs t t pc f pA pB
f f

fp c f A B
f f f

fc p f pA pB
f f

A
f

λ λ

λ λ

λ λ

λ

ββ β
β

β β β

ββ ββ
β

β

   + + = + + + +     +     
      + − − + − + −          

   + = + − + + +     +     

 
+ − + 

 

 

 

 





2

1 2

2

1
2 2

U

L L

U

U L L

fB
f f

fpA pB
f f f

λ

λ λ

β

β β

 
− 

 

   
− − − −   

  



 

 

As before, UIP implies 

1 1
1
2

a A b B c pβ  + = − 
 

                        (74) 

where 
1 1 1

1
21 1 1

2 2 2 2
U

U U U

fa p p
f f f

λ λ λ
ββ β
β

     +
= − − − + −     +     
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( )
22 2

1 1 1
2 2

U U

L U L L

f fb p p
f f f f

λλ λ
β β    

= − + − − −     
    

 

Now we consider the case where f hits the lower bound at time 1t . Then 

( ) [ ]
1

1 / , L
L L U L

U

fs t G f f f cf A B
f

λ
 

= = + + 
 
                  (75) 

If realignment occurs, then at time 1 dt t+ , we have a new band [ ],L Lf fβ−  

( )

1 2

1 d / ,
2

21
2 2 2 2

L L L

L
L

L L

s t t G f f f

fc f A B
f f

λ λ

β β

ββ β
β

 + = − −  

   − = − + − +     −     
 

          (76) 

If a defense is mounted, then we obtain 

( )

1 2

1 d / ,
2

1
2 2 2

U L U

U
U

U L L

s t t G f f f

f
c f A B

f f f

λ λ

β

β β β

 + = −  

    = − + − + −    
    

 

 

This implies that 

( )
1 2

1

1 2

1 2

1
2d 1

2 2 2 2

1
2 2

1
2 2

L
t U

L L

U

U L L

U

U L L

fs t t c p f pA pB
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As before, UIP implies that exchange rate does not jump so that 
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We can rearrange this equation to obtain 
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Finally, we consider the symmetric case. Suppose that 0µ = , L Uf f= − , so that the 
target band is symmetric about zero. Then, we have 
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These results are summarized in the following proposition. 
Proposition 4. Under Flood-Garber interventions, the solution to the target zone 

model is given by 
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and as given above 
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and 1λ  and 2λ  are as before. 
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Table 2. SMM estimates of the Flood-Garber target zone model for Japan. 

Parameter estimate t-statistic J-Statistic 

σ  0.0728 2.2338  

α  0.3257 4.8284  

Uf  6.253 3.7351  

Lf  0.2594 2.1443  

µ  5.2138 2.8573  

   2.9744 

6. Estimation Results of the Model’s Parameters 

In this section, we present some estimates of the model’s parameters for the Krugman’s 
and Flood-Garber’s types of interventions. We use Daily exchange rate data for Japan 
and Sweden from 1987 to 1990. Though the data are relatively old, we use it to illustrate 
the findings that the model gives some satisfactory results contrary the basic target 
zones models in the literature. The estimation technique being used is the Simulated 
Method of Moments (SMM) procedure [17]. Our task here is to estimate the parame-
ters µ , σ , α , Lf  and Uf  of the model. We obtain the following estimates for 
Japan data (Table 2). 

As indicated by the table, the estimates are quite reasonable in magnitude and, as 
expected, have the correct signs. Moreover, the J-Statistic of the one overidentifying 
restriction is not rejected and therefore the model does a good job in fitting the data, at 
the most commonly used significance levels. 

We also found that the model does not perform well in the case for the Krugman 
marginal interventions. The estimates are reasonable in signs and magnitudes. However, 
the high value of the J-Statistics indicates that the model is not supported by the data. 
In essence, this can be due to the fact that it is commonly not easy to estimate these 
models efficiently. 

7. Conclusion 

In this paper, we have derived analytical or closed form expressions for the exchange 
rate function under the assumption that the fundamentals follow a geometric Brownian 
motion within the target zone band. Preliminary estimates from Simulated Method of 
Moments (SMM) show that the data do not show great support for the Krugman infi-
nitesimal marginal interventions in the foreign exchange market, as indicated by the 
high value of the J-statistic. However, we found strong evidence for the target zone 
model for Flood-Garber interventions for the case of Japan, as indicated by the low 
value of the J-statistic. This indicates that it is likely that Japan has used an unofficial 
exchange rate target zone band during the 1987-1990 period. This is not a surprise due 
to the fact that central banks do not often reveal their intervention strategies. No such 
evidence has been found for the case of Germany. 
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