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Abstract 
This research makes two contributions: 1) use a term structure framework to price 
analytically the put option implicit in borrowers’ extendible credit commitments and 
2) use the latter to compute in a ratings-based model the capital charge corresponding 
to the credit-risk exposure of such commitments. Since the term structure of interest 
rates is stochastic, the zero-coupon bonds in the put closed-form solution delink 
discounting factor from the credit and funding rates that define the credit spread 
appearing in the put payoff. By essence, extendible commitments straddle the term- 
based commitment classification of Basel-3 simplified approach. To improve this, we 
formulate a ratings-based model that combines extendible put values with new coef-
ficients (forward funding proportion and exposure at funding) as well as a matrix 
that captures credit-ratings migration over time. Moreover, the combination is ver-
satile enough to deal with a borrower’s credit downgrade and its attendant incre-
mental Basel-3 capital charge. 
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1. Introduction 

This paper offers a solution to the following problem: How to account for the credit- 
risk exposure of extendible loan commitments subject to Basel-3 micro-prudential 
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regulation. There are two steps to the solution: Derive first in a term structure frame-
work the put value embedded in borrowers’ extendible credit commitments and use it 
next in a ratings-based model to compute the capital charge corresponding to the 
credit-risk exposure of once-extendible commitments. 

Longstaff [1] was the first to derive analytical solutions for extendible options, and 
more specifically for the holder-extendible put option examined here. As reported in 
Shevchenko ([2], under Equation (32)), there are several typographical errors in Long- 
staff’s Equation (12) for the holder-extendible put (some being also repeated in Haug 
[3]). To the best of our knowledge, the first mathematically correct expression for the 
holder’s (here the borrower’s) once-extendible put option is to be found in Wu [4]; 
subsequently a more general treatment of single-period extendible puts is given by 
Shevchenko [2] and the general closed-form solution for n-time extendible options is 
provided by Chung and Johnson [5]. Gukhal [6] provides valuation of extendible op- 
tions under the jump-diffusion process and Peng and Peng [7] under the more restric- 
tive jump-fractional Brownian process. Extendible options find applications in several 
fields of finance: let us mention but a few. They are applied to real estate by Longstaff 
[1], warrants by Hauser and Lauterbach [8], bonds by Athanassakos, Carayannopoulos 
and Tian [9] and Longstaff ([1], Section 4), corporate finance by Wu, Yu and Nguyen 
[10] and Wu and Yu [11], and petroleum concessions by Dias and Rocha [12]. Ibrahim, 
O’Hara and Constantinou [13] apply the fast Fourier transform to improve their com-
putational efficiency when the once-extendible options are derived as semi-analytic ex-
pressions. Regarding their application to credit commitments more specifically, we 
found but one reference, Chateau and Wu [14]. Yet in their borrower’s extendible ex-
pression, Equation (9)1, discounting is done over two different periods with a constant 
risk-free rate of interest. Yet keeping a constant discounting rate becomes problematic 
when simultaneously stochastic credit and funding rates are defining the credit spread2 
that appears in the put payoff. To solve the problem, we derive a put expression that re- 
lies on a stochastic term structure of interest rates (hereafter referred to as stochastic 
Tsir). Here the latter is formalized by one factor, the short-term riskless rate of interest; 
and all rates (credit, funding and discounting ones) are stochastic with discounting 
done with zero coupon bonds (ZCBS). The Feynman-Kac theorem and a change of nu- 
meraire enable us to delink discounting factor and spread rates appearing in the put 
payoff. This approach leads to pricing the extendible put and its extension premium 
under forward risk neutrality at the extension date. 

Since Thakor, Hong and Greenbaum [15], the credit or spread risk of loan commit- 
ments is apprehended by an embedded put option that is used to compute the Risk- 
Weighted Amount (RWA) of commitments and their capital charge mandated by 
Basel-3 micro-prudential regulation—see Basel Committee on Banking Supervision 
[16] and [17]. According to Basel-3 standardized simplified approach, the initial term 

 

 

1It also presents typographical errors: In the third term of Equation (9), 2e Tδ  should read 2e Tδ−  and in the 
seventh ( )1

2e T Zδ −  should be changed to ( )1
2e T zδ− − . 

2The markup or credit spread of loan commitments is define as the difference between the floating prime rate 
and the rate in the banker’s acceptances market. 
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of commitments (less than or longer than one year) determines the way credit-conver- 
sion and principal-risk coefficients as well as RWAS of irrevocable commitments are 
computed. Yet, our reference scenario, namely a one-year commitment extendible for 
another one, straddles this Basel time divide and thus challenges this term-based 
granularity. For instance, should our one-year commitment extendible for another one 
be classified as less or longer than one year? It is obviously less than one year if it is ex-
ercised in the initial period or if the borrower does not choose to extend beyond the 
initial period, but it is indeed longer than one year if exercised at or after the extension 
date or not at all at the end of two years. Since extendible commitments are term-wise 
hybrid instruments, we propose to replace Basel simplified approach by an Advanced 
Internal-Ratings Based (AIRB) model that allows credit risk to be spread over at least 
two time periods. The capital charge regarding the credit-risk exposure of extendible 
commitments is computed by combining the embedded put value with two new coeffi-
cients. The first one is a forward funding proportion (namely the credit line take-down 
proportion relevant for the commitment extension period) and the other one is the ex-
posure at funding (practically the first coefficient applied to the bank’s aggregate 
amount of still unused loan commitments). In extendible commitments moreover, banks 
also have to assess the borrower’s creditworthiness over multiple periods. To wit, assume 
that a prime-rate borrower of a once-extendible commitment is initially benchmarked as 
a triple-A credit rating; yet at the extension date, the bank will extend the commitment 
under the initial conditions only if the borrower maintains this triple-A rating. If it is not 
the case, any rating downgrade relies on transition probabilities that capture the 
credit-ratings migration over time. The mapping of indebtedness values (namely the 
marked-to-market value of line commitments) into credit-risk ratings allows banks to 
determine the incremental credit-risk capital charge caused by a rating downgrade of any 
fraction of their extendible commitments. In addition, the ratings-based model is versatile 
enough to deal with downgraded borrowers who may face higher spreads. 

The layout of the paper is as follows. Beyond a short review of how Basel-3 appre-
hends commitment credit risk, Section 2 introduces the analysis-relevant features spe- 
cific to extendible commitments as well as the indebtedness forward value and its log- 
returns. Next the closed-form expression of the European forward put option embed-
ded in once-extendible commitments is derived and the transition probabilities of 
credit-ratings migration over time are formalized. Section 3 explains simulation pa- 
rameters and estimate meaning before highlighting two significant patterns emerging 
from the estimates of extendible put values and extension premiums. In Section 4 the 
previous simulations are used in an AIRB model to compute the capital charge for ex-
tendible commitments as well as the incremental cost implied by a borrower’s credit 
downgrade. Short concluding remarks close the paper in Section 5. 

2. The European Put Option Embedded in a Once-Extendible 
Credit Commitment 

2.1. How Commitment Credit Risk Is Apprehended under Basel-3 

Since Thakor, Hong and Green baum [15], the credit risk of loan commitments is ap- 
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prehended by an embedded put option that oftentimes is used to compute the risk- 
weighted amount of commitments subject to Basel-3 capital requirements (see Basel 
Committee on Banking Supervision, [16] and [17]). Before examining extendible com- 
mitments specifically, three Basel-3 relevant commitment features have to be briefly re- 
viewed: the origin of the implicit put option, when and why it is European, and how to 
endogenize any credit line draw-down3. They are integrated in the decision chart below. 

A floating prime-rate credit commitment allows a borrower to draw, say, over a 
one-year period [0, T1] up to K = $100 at a floating prime rate 0 jm c+ , namely a date-0 
fixed markup plus a date-j stochastic cost of funds, j being the date at which funding 
takes place, with 0 ≤ j ≤ T1. The funding risk jc  being borne by the borrower, the lat- 
ter is not relevant for computing the bank’s capital charge for commitment credit risk 
under Basel-34. It is the fixed markup 0m  that generates the embedded put option, for 
any prime-rate borrower can secure date-0 funding either through a credit-line com- 
mitment or a demand loan characterized by a stochastic spot markup m0 = l0 – c0—(l0) 
denoting the spot floating prime rate and c0 the bank’s funding rate in the banker’s ac- 
ceptances market (the rate on certificates of deposit is also used as exogenous index). 
Fixed and variable markups enable us to define the j-month-old indebtedness forward5 
value Fj as: 

( )( ){ }*
0 1expj jF m m T T K= − −  with *

10 j T T≤ < < ,          (1) 

where ( )0 jm m−  is the difference between the date-0 fixed markup and the date-j spot 
markup, (T* – T1) is loan duration (say one year) once the commitment has been exer-
cised and K is the constant line par value. In the decision chart for instance, for an ini-
tially one-year commitment starting July 1st and running to June 31st, F6 denotes a 
six-month-old indebtedness value (j = 6) which still has a remaining six-month term to 
maturity (T1 – j). The monthly log returns of an indebtedness forward value that is con- 
tinuously j-month old are given by 

( )1ln dt j t j tF F t Wσ− =                      (2) 

where σ denotes the volatility of the indebtedness forward value and W the Wiener 
process. 

At any date j, fluctuations in the variable markup of spot loans result in either 

0 jm m<  or 0 jm m> . In the first case, the rational commitment holder decides to 

 

 

3This cursory description only focuses on the analysis-relevant features of commitment credit risk. For more 
detailed developments, consult Saunders and Cornett [18] or articles devoted to credit line commitments 
such as Chava and Jarrow [19], Standhouse, Schwarzkopf and Ingram [20], Thakor [21], or Thakor, Hong 
and Greenbaum [15]. 
4Discussing the markup determinants is beyond the scope of this research. Consult, for instance, Collin-  
Dufresne, Goldstein and Spencer [22] or Jimenez, Lopez and Saurina [23]. Sufi [24] reports that, for his sam-
ple covering 4011 American firms over the period 1996 to 2003, credit lines account for 74.8% of bank fi-
nancing to U.S. public firms; with the vast majority of lines being of the floating-rate type. 
5We speak of a forward value for at least two good reasons. Firstly, since the bank contracts up to $100 at date 
t = 0 and delivers up to $100 at T1, it is better to speak of the indebtedness forward value than of the indeb-
tedness spot value as in Thakor, Hong and Greenbaum [15]. Secondly, the additive markup or spread is the 
difference between the prime rate and the rate on bankers’ acceptances, both rates being market-determined. 
As a quasi-market value, the spread is thus denoted as a forward (instead of futures) value. 
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draw on the line because the latter fixed markup is less than the stochastic spot markup. 
This then gives rise to an implicit put option as the borrower’s debt value Fj is less than 
the option strike price K. On the other hand, when 0 jm m>  the rational borrower 
chooses a spot loan instead of drawing on the credit line; there then is no embedded 
credit-risk put. In short, spot markup fluctuations at valuation date j give rise to a 
j-month put option embedded in an initially one-year line commitment. 

At yearend, usually the date of the bank’s audit under Basel-3 regulation, j-month old 
commitments have various remaining time to expiry. By making date j the option 
valuation date and by assuming for clarity that it coincides with Basel yearend audit 
date, the time remaining to commitment expiry then becomes the remaining life of 
contract—as in Merton [25]. For instance our one-year (July to June) commitment is 
6-month old at the end of December when the Basel audit takes place, so generating a 
6-month put option. It is thus the Basel framework that makes the put option Euro- 
pean6. Finally, when the commitment is j-month old, the borrower can still draw on the 
credit-line unused portion over the forward period T1 – j. The magnitude of this line 
draw-down 

1T jπ −  is a function of the time remaining to commitment maturity: the 
longer this forward period, the greater is the borrower’s potentialline draw-down7. 

 

In short, indebtedness value and credit-line remaining term to maturity are the two 
most important determinants in valuing the implicit commitment put. Granted these 
features, the European put option on indebtedness forward values is usually priced as a 
Black [27] one-period European forward put option8: namely 

 

 

6There also exists an American commitment put option relevant to the bank’s day-to-day management. But 
for computing Basel capital charge regarding commitment markup (credit) risk, the relevant put is the Euro-
pean one. 
7Discussing the take-down determinants (default, breaking covenants and changes in credit ratings, among 
others) is beyond the scope of this research. Consult, for instance, Jimenez, Lopez and Saurina [23], Norden 
and Weber [26] or Sufi [24]. 
8In Black [27], since δ = r (with δ denoting the continuous dividend yield in % per annum), the discounting 
factor is outside the square bracket. Then use a change of numeraire to go from r to a ZCB as discounting 
factor. See, for instance, Hull [28]. 
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( ) ( ) ( )1
1 2 0 1,0,BP P r T KN d F N d = − − −  ,                  (3) 

where 20
1 1 1ln 2Fd T T

K
σ σ

  = +    
, and 2 1 1–d d Tσ= . 

In Equation (3), ( )1, 0,P r T  denotes the date-0 zero coupon bond that pays $1 at T1, 
N[∴] the standard univariate cumulative normal distribution function, d1 the standard 
moneyness with 2 1 1–d d Tσ=  and σ the volatility of the indebtedness forward value. 
A ZCB discount factor is chosen for consistency with the stochastic Tsir and for- 
ward-risk neutral valuation of the extendible put option introduced in Subsection 2.3. 

2.2. Features Specific to Borrowers’ Extendible Credit Commitments 

The decision chart also captures the salient features of our reference scenario, the one- 
period commitment extendible for another one: the purpose is to value the embedded 
extendible put within Basel time frame, and thus not to value the various components 
of loan commitments9. In the chart, the bank originates at date 0 a commitment with 
the following features: (1) the initial one-year commitment period, [0, T1], is extended 
at T1 for a single one-year period, [T1, T2], at the borrower’s option, (2) loan duration, 
[T2, T*], is one year from date T2 if the credit line (CL) is drawn down, (3) the latter face 
value remains constant over both commitment and extension periods (namely K1 = K2 
= $100), and (4) the floating prime-rate formula is 0jc m+ . As explained in the previ-
ous subsection, only the date-0 fixed forward markup 0m  is relevant for Basel-3 
commitment credit-risk analysis. And it remains constant over the two one-year peri- 
ods, say at 1.5% per annum, under the following condition: the extension is granted 
only if the date-0 triple-A rated prime borrower remains so at date T1. 

Thakor and Udell [29]10 provide the economic rationale for the bank’s optimal de-
ployment of up-front and rear-end fees in non-extendible commitments. When their 
sorting variables are adapted to the borrower-extendible commitment, fees (here stan- 
dardized for argument sake at 1/4 of 1% per annum of the line maximum face value, 
namely 25 cents per $100) are deployed at origination (t = 0), extension (T1) and end 
(T2) dates in the decision chart. The first fee is the upfront commitment fee 0

Cf , the 
second one is an extension fee, 

1
25E

Tf =  cents, and the third one is a rearend or so- 
called usage fee, 

2

U
Tf  (The latter may or may not be paid at T2 on the un-drawn por- 

tion of the credit line). Only the extension fee is of relevance for pricing the put implicit 
in extendible commitments. We are now in a position to state how the decision se- 
quence runs. The borrower does not draw down the CL in the initial commitment pe- 
riod but then triggers the extension at date T1 upon paying the extension fee 

1

E
Tf  with 

two possible outcomes up to date T2. From date T1 and up to date T2, the CL is either 
exercised and partial or total funding of the $100 results in an on-balance-sheet loan, or 
alternatively the commitment simply expires at T2 with the borrower paying the rear- 

 

 

9Regarding total valuation, see among others Chava and Jarrow [19] or Standhouse, Schwarzkopf and Ingram 
[20]. 
10Borrower self-selection as a screening and risk-sharing device with optimal fee mix is also examined, among 
others, in Saunders and Cornett [18] or Shockley and Thakor [30]. 
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end fee on the unexercised lines. He also pays the latter on the un-funded portion of the 
exercised lines. To be complete, notice that the one-year non-extendible commitment is 
but a special case nested in the extendible-commitment model. In that case, the bor- 
rower draws on the line at any date up to date T1, with the one-year corporate loan, [T1, 
T*], becoming outstanding immediately. 

At this juncture, it is already worth indicating that three of the decision-chart as- 
sumptions will be relaxed in subsequent developments. There are: (1) the extension pe- 
riod can be lengthened to two or more years, (2) the prime markup that captures credit 
risk can be adjusted by add-ons or discounts (±25 basis points, ±50 basis points, and so 
on) for non-prime commitments11, and (3) higher credit spreads of non-prime com- 
mitments are associated with lower credit ratings of external rating agencies (more on 
this in Subsection 2.4). Finally, the parameters I1 and I2 defining the extension interval 
are introduced in the upcoming subsection. 

2.3. Valuing the Borrower’s Put Embedded in a Once-Extendible Credit 
Commitment 

We denote the European extendible put payoff as 

( ){ }1 1 111 2 2 1max ma , , , 0,x E
TT T TK F P F fK T T − − −  ,               (4) 

where K1 and K2 are the line par value at dates T1 and T2 respectively, 
1TF  is the in- 

debtedness forward value at date T1 and 
1

E
Tf  the date-T1 extension fee. We label g(T1) 

and g(T2) the payoff components with date T1 and date T2 respectively, and now deal 
with them in turn. 

According to the Feynman-Kac theorem, the date-0 extendible put value is written as 

( )
1

0 d*
0 1e

T
u urP E g T−∫ =   

,                         (5) 

where E* denotes expectation taken with respect to the probability distribution implied 
by the risk neutral process 

( ) ( ) ( )*d , d , dtr r t t s r t W tµ = +  , 

where μ*(.) and s(.) are the drift and volatility of the process and dW(t) its Wiener dif- 
ferential. To delink discount factor and payoff in Equation (5), namely to eliminate the  

covariance between discount factor and payoff, ( )
1

0 d
1Cov e ,

T
u ur g T−∫ 

  
, we use a change  

of numeraire12 such that 



( )
0

0
1,0,

PP
Z r T

= , 

where ( )1, 0,Z r T  denotes a ZCB that pays off $1 at time T1. Underlying the ZCB is 
the one-factor risk-neutral Tsir characterized by the stochastic short-term interest rate, 

 

 

11The magnitude of such spreads over the floating prime rate is examined among others in Angbazo, Pei and 
Sanders [31], Shockley and Thakor [30], Simkins and Rogers [32] or Sufi [24]. 
12See for instance chapter 21 in Veronesi [33]. 
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r. This implies using the date-T1 forward risk-neutral bond price process and short rate 
process 

( ) ( ) ( )d , d , dZ Z
Z r t t r t W t
Z

µ σ= +  

( ) ( ) ( ) ( ) ( )*d , , , d , dt Zr r t r t s r t t s r t W tµ σ = + +  , 

where µz and σz are the drift and volatility of the ZCB. The drift of drt has been adjusted 
for the forward expectation operator. We can now write that 

 ( )*
0 1fP E g T =   ,                            (6) 

where *
fE  denotes expectation under forward risk neutrality. Equation (5) is then re- 

written 

( ) ( )*
0 1 1,0, fP Z r T E g T =   .                       (7) 

Equation (7) has the advantage to delink the discount factor from the credit-risk 
spread embedded in 

1TF , the indebtedness value appearing in the put payoff g(T1). Re-
peating the same procedure (Feynman-Kac, change of numeraire and forward risk- 
neutrality) for the g(T2) component with a date-T2 payoff yields13 

( ) ( ) ( ) ( ) ( )* *
0 1 1 2 2 2 2,0, , , ,0,f fP Z r T Z r T T E g T Z r T E g T   = ⋅ =    .         (8) 

At extension date T1, the borrower can either (1) let the put expire worthless if 

1 1TF I> , or (2) exercise the put and get 
11 TK F−  if 

1 2TF I< , or (3) pay 
1

E
Tf  to extend 

the put to T2 if 
12 1TI F I≤≤ . As shown in the decision chart, I1 denotes the higher 

bound of the extension region and I2 the lower one (I2 < K1 < I1 implies moving from 
out-of-the money to in-the-money)). Case (3) comprising the extension is now devel- 
oped as follows 

( ) ( )1 2 1 2 1 1 2 11 11 12 2 1 1, , 1 1 1 ,
T T TT I F I I F I T I F K

E
TP F K T T Ff K≤ ≤ ≤ ≤ ≤ ≤− − − −            (9) 

where condition

1 if condition is verified
1

0 if not
=




. The values of the two bounds to the exten-  

sion region in Equation (9) are found by solving two nonlinear equations, using for in-
stance the Newton-Raphson algorithm coupled with a bisection algorithm when de-
rivatives are close to zero. This means solving 

( )
11 2 2 1, , 0E

TP I K T T f− =−                        (10) 

and 

( ) ( )
12 2 2 1 1 2, , 0E

TP I K T T f K I− − − =−                   (11) 

Equation (10) has one solution but Equation (11) may have one solution or none 
since r = δ in forward or futures options. The derivation of the closed-form solution to 
Equation (9) is tedious but straightforward – the solution is outlined in the Appendix. 

 

 

13Since we posit a flat Tsir in the subsequent numerical application, the discounting factor becomes Z(r, 0, 
T2). For any other Tsir, two different ZCBS have to be used. 
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The value of the extension premium (EPi)14 (with i denoting the length of the extension 
period in years) is: 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

1
0 1 1 1 1 2 1 0 2

1 2 1 1 1

* *
2 2 2 2 2 1 0 2 2

* *
2 2 2 2 1 1 0 2 1

, , , 0,

, 0,

, 0, , ; , ;

, 0, , ; , ; .

B

E
T

P F K T Z r T K N z T F N z

Z r T N z T N z T

Z r T K N x T z T F N x z

Z r T K N x T z T F N

f

x z

σ

σ σ

σ σ ρ ρ

σ σ ρ ρ

 − + ⋅ − + − − 
 + ⋅ − + − − + 

 + − + − − − − − 
 − − + − − − − − 

     (12) 

In Equation (12) ρ, x, x*, z1 and z2 are defined as follows when t = 0: 

( )1 2
1 2T Tρ =  

( ) 2
0 1 1 1ln 0.5x F K T Tσ σ  = +    , ( )* 2

0 2 2 2ln 0.5x F K T Tσ σ  = +     

( ) 2
1 0 1 1 1ln 0.5z F I T Tσ σ = +  , ( ) 2

2 0 2 1 1ln 0.5 .z F I T Tσ σ = +   

In addition N[∴] is the standard univariate cumulative normal distribution function, 
N2(∴, ∴, −ρ)15 is the standard bivariate cumulative normal distribution function with 
correlation −ρ, and 1

BP  the one-year Black’s forward put option at date 0 --the other 
terms having been defined previously. Adding the one-year straight put to Equation 
(12) yields the once-extendible put value, EVPi, with i denoting again the length of the 
extension period in years: 

1.i i BEPV EP P= +                          (13) 

Rearranging further Equation (12) provides a more intuitive interpretation based on 
the ZCBS generated by the Tsir: 

[ ]
12

2 1

1 put with strike probability-weighted

put with strike put with strike 

E
TB f

I

P I

I

−  + + 
+ −

          (14) 

Equation (13) highlights the fact that Black one-year straight put as well as the next 
two terms are discounted with a one-period ZCB, while the last two ones are dis- 
counted with a two-period ZCB. The second term is a put having boundary I2 as strike 
(more precisely as strike in moneyness z2), the third is the probability-weighted (the 
square-bracket term in the third term of Equation (12)) discounted fee and the last two 
terms, the difference of two puts with boundaries I2 and I1 as strike values in their z2 and 
z1 moneyness respectively. As three put values depend on the I1 and I2 strike values in 
Equation (13), it is worth focusing on the two forces that impinge on the width of the 
extension interval: 

1) When the duration of the extension period increases (say from one to five years as 
in the numerical illustration in Section 3 below), the extension interval [I2, I1] widens 

 

 

14Since δ = r in a European forward put and the Tsir is assumed flat, discounting is done in terms of ZCBS 
(for instance exp(−δT2) becomes P(r, 0, T2)). This is consistent with the ZCB discounting introduced in Equ-
ation (3). 
15The expression ( ) ( ) ( ) ( ) ( )2 2 2 2 2, , , ; , ; , ;  , ; , ;N a b c d N b d N a d N b c N a cρ ρ ρ ρ ρ− = − − − − − + −  reduces to 

( ) ( )2 2, ; , ;N b d N a dρ ρ− − −  when c = −∞, which is the case here. 
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progressively about $100. This effect is apprehended by the term condition of Equation 
(10). 

2) But when the bank increases the extension fee, the other parameters remaining 
constant, the extension interval [I2 < I1] first shrinks continuously up to being reduced 
to a point before reversing to [I2 > I1] --with the unattractive result of a negative exten- 
sion premium. For the once-extendible commitment, the extension premium shrinks to 
0 when 

1

E
Tf  increases to $1.499855; and when the bank raises the fee beyond this 

value, the borrower’s extension premium turns negative. Yet the borrower has to 
weight the fee paid to the bank against the benefit expected from the extension, namely 
the extension premium. The impact of the magnitude of the extension fee on the 
bounds of the extension interval is apprehended by Equation (11), which may have one 
solution or none. 

Finally, it remains to determine how the ZCB values are computed in Equation (12). 
The easiest way is to use the actual market values of the Canadian ZCBS, with the Tsir 
estimation computed daily by the Bank of Canada (see Bolder, Johnson and Metzler 
[34]). The alternative to market values is to use the class of “normal” models of the in- 
terest rate, namely models such as Ho and Lee [35], Vasicek [36] or Hull and White 
[37]. The latter based on the term structure of volatilities has the advantage to reconcile 
model and market values. In the numerical illustration a flat Tsir is used for the sake of 
simplicity. 

2.4. Transition Probabilities between Commitment Credit Ratings 

The value of the put just derived is conditional on the borrower continuously remain- 
ing a floating prime rate borrower with a triple-A credit rating. Yet, the borrower who 
is bank-classified as prime at the time of commitment writing may actually turn out to 
be less than prime over the life of the extendible commitment. Does a rating downgrade 
at the extension date leads to an incremental credit-risk charge, and if so, how is the 
latter computed? We propose to compute the latter in three steps: select relevant transi- 
tion probabilities between borrowers’ credit ratings, map declining risk ratings into 
progressively in-the-money (ITM) indebtedness values, and combine the transition 
probabilities with the values of the extendible put option derived in Subsection 2.3. 

In the first step, borrowers’ downgrades should ideally be apprehended by transition 
probabilities specific to commitment credit ratings. Yet presently, since Basel-3 com- 
mitment granularity is term-based instead of credit-ratings-based, this type of informa- 
tion is not publicly available. So by default, we fall back on a credit-migration matrix 
based on corporate bonds. More specifically, we choose the one-year transition prob- 
abilities from the model of Xing, Sun and Chen [38], which are based on Markov chains 
with stochastic structural changes in the credit-rating probability transitions16. In Ex-
hibit 1, only the transition probabilities between ratings of investment grade bonds are 
shown. This matrix assigns an S&P triple-A rating to a borrower who is bank-classified  

 

 

16Concerning alternative ratings transition matrices, consult among others, Farnsworth and Li [39], Feng, 
Gourieroux and Jasiak [40], Frydman and Schuermann [41], Kiefer and Larson [42] or Stefanescu, Tunaru 
and Turnbull [43]. 
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Exhibit 1. Posterior means of the transition probabilities (in per cent) estimated from the model 
of Xing, Sun and Chen [38]: their Tableau 1 is based on Standard & Poor’s credit ratings for the 
period spanning October 2008 to September 2009. Probabilities reported here are only between 
investment-grade credit ratings. 

Mapping indebtedness values, F in $ 100 99.5 99.0 98.5 98.0 97.5 

into borrowers’ credit-risk ratings AAA AA A BBB BB B 

  Ratings at year-end   

Ratings at origination AAA 89.97 9.45 0.6 0.01 0.00 0.00 

 AA 0.00 88.76 10.81 0.42 0.01 0.00 

 A 0.00 0.12 92.42 7.19 0.26 0.01 

 BBB 0.00 0.00 0.99 95.15 3.50 0.24 

 BB 0.00 0.00 0.01 1.46 89.34 8.01 

 B 0.00 0.00 0.00 0.01 1.16 88.76 

 
as a floating prime-rate borrower at the time of commitment writing, with an 89.97% 
probability of remaining prime over a one-year commitment term. But suppose that at 
any time up to commitment extension, the bank concludes that it wrongly assessed the 
prime borrower’s credit worthiness, which happens to be one notch lower at double-A. 
The commitment being a binding contract, the borrower keeps her initial fixed markup 

0m , while she normally would be subject to a greater spread say prime plus a 
50-basis-point add-on17. Then, 0 0 50jm m m< = +  bps implies in Equation (1) that Fj 
= $99.5 < K1 = $100. In other terms, a credit downgrade translates into a greater 
non-prime spread and hence a lower indebtedness forward value. This second step is 
formalized by the two rows above the matrix of Exhibit 1, where progressively ITM 
indebtedness values are mapped into declining credit-risk ratings18. In the third step, 
the transition matrix is twinned with the extendible put values computed in the next 
section. 

3. Simulation Results of Extendible Put Values and Extension 
Premiums 

3.1. Simulations and Estimate Meaning 

As indebtedness values are non-traded banking assets, put values embedded in extendi- 
ble commitments are but notional values to be estimated by simulations based on the 
statistical evidence presented in Exhibit 2 below. To be consistent with our reference 
scenario (the one-year commitment extended for another one), the indebtedness val- 
ues are computed with a one-year markup differential ( 0 jm m− ) between the commit- 
ment fixed spread and subsequent stochastic markup of spot loans. The min and max 
values in Exhibit 2 imply that the indebtedness value Fj ≡ F12 varies in the value range  

 

 

17Regarding the magnitude of yield spreads between S&P’s credit-rating categories consult among others Col-
lin-Dufresne, Goldstein and Spencer [22] or Simkins and Rogers [32]. 
18This mapping corresponds to the one proposed for investment-grade commercial loans in Basel second 
consultative document (Basel Committee on Banking Supervision[44]). 
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Exhibit 2. Statistical analysis of ln[tFj/t−1Fj], the indebtedness-value monthly change relatives, 
computed from Equation (2) for the period 1988.01 to 2015.12 (n = 336 monthly observations). 
Date j is always 12 months after commitment origination. 

Mean Std. dev. Min Max Outliers Skewness Kurtosis 

4.95E−06 0.004329 −0.0348 0.0323 4 −0.71832 29.322 

Source: Spot markups and markup differentials used in computing Equations (1) and (2) are based on Statistics 
Canada monthly time series V122495 and V122504 of the prime credit rate and one-month banker’s acceptance of 
chartered (commercial) banks, respectively. 

 
$96.52 to $103.23, with $100 being par value: we thus set Fj at $100, $99.5, $99, $98.5, 
$98 and 97.5, since under Basel-3 we are only interested in commitments puts that 
move progressively ITM19. Granted these indebtedness values, simulation experiments 
are performed for the one- and two-year non-extendible commitments 1

BP  and 2
BP  

and several borrower-extendible commitments; for the latter ones, the initial commit- 
ment runs from date t = 0 up to T1 with one-to-five year extension periods starting at 
date T1. The following parameters are common to all simulations: the credit-line strike 
price remains constant through time, K1 = K2 = $100, the interest rate in the flat Tsir is 
r = 0.04, and ρ = (T1/T2)1/2. Since the volatility of the indebtedness-value change rela- 
tives reported in Exhibit 2 is low (σ = 0.004329 or 1.499% on an annual basis), the 
simulations are performed with a 3% annualized volatility, namely σ = 0.03. 

Next, we clarify the meaning of the values computed for the reference scenario when 
the indebtedness value is slightly ITM at F = $99. Put values and extension premiums 
are shown in the entries in column (3) of the matrices of Table 1. According to the first 
boldfaced entry in column (3), the estimate 1

BP  = $1.688 means that the European put 
embedded in a one-year straight commitment has an equilibrium value of 1.688% of 
the $100 par value if the floating prime-rate commitment with a 1.5%-p.a. fixed for- 
ward markup is priced when the stochastic markup on spot loans is 2.5% p.a. By way of 
contrast, when the original one-year commitment is extended for another year, the 
value of the extendible put, EPV1, shown in the cell corresponding to row (1a) and 
column (3) of matrix 1, is greater at $1.919. Put values of commitments with longer ex-
tensions are also computed, with EPV5 = $2.56 corresponding to a commitment with a 
five-year extension period. The magnitude of the extension premiums comprised in 
borrower-extendible commitments is shown in matrix 2. For our reference scenario in 
column (3) again, EP1 = $0.23, namely the extension premium amounts to only 12.1% 
of the one-year extendible put value; but when the extension duration increases to five 
years, EP5 = $0.874, namely it increases to 34.12% of the five-year extendible put value. 

3.2. Risk-and-Term Patterns Emerging from Extendible Put Values and 
Extension Premiums 

Two patterns of extendible put values are emerging from the matrices in Table 1; they 
are also visualized in Figure 1. The first pattern highlights the magnitude of the notional  

 

 

19Values below $97.5 are of limited interest since out of 336 observations only two of the four outliers are 
lower than $97.5. 



J.-P. D. Chateau 
 

759 

Table 1. European put values (EPVi) and extension premiums (EPi) embedded in extendible 
credit commitments. 

Fj in $ 100 99.5 99 98.5 98 97.5   

1
BP  in $ 1.149 1.403 1.688 2.004 2.348 2.718   

2
BP  in $ 1.562 1.8 2.059 2.34 2.642 2.963   

Matrix 1: EPVi, Extendible put value in $, with i: 1, 2, ∙∙∙, 5 I2 I1 

a) EPV1 1.396 1.644 1.919 2.219 2.542 2.889 I2 = 97.631239 I1 = 103.003982 

b) EPV2 1.648 1.887 2.149 2.432 2.737 3.063 I2 = 96.817322 I1 = 104.992807 

c) EPV3 1.939 2.075 2.326 2.596 2.886 3.196 I2 = 96.450205 I1 =106.609386 

d) EPV4 1.996 2.219 2.46 2.719 2.997 3.296 I2 = 96.272026 I1 = 108.010883 

e) EPV5 2.114 2.329 2.562 2.812 3.081 3.369 I2 = 96.192438 I1 = 109.263586 

Matrix 2: EPi, Extension premium, with i: 1, 2, ∙∙∙, 5   

a) EP1 in $ 0.249 0.241 0.23 0.216 0.194 0.171   

      in % 17.64 14.66 12.01 9.74 7.62 5.93   

b)EP2 in $ 0.498 0.484 0.461 0.428 0.389 0.345   

      in % 30.21 25.66 21.45 17.62 14.21 11.26   

c) EP3 in $ 0.789 0.672 0.637 0.592 0.538 0.477   

      in % 40.69 32.39 27.41 22.8 18.63 14.94   

d)EP4 in $ 0.847 0.816 0.772 0.715 0.649 0.577   

      in % 42.4 36.78 31.38 26.31 21.67 17.51   

e) EP5 in $ 0.964 0.927 0.874 0.808 0.733 0.651   

      in % 45.61 39.78 34.12 28.75 23.8 19.33   

Valuation date is t = 0. Entries on row 1: Fj indebtedness forward values computed in Equation (1). Entries in row 2 
and row 3: 1

BP  and 2
BP  the European put values implicit in one- and two-year straight commitments. Entries in 

matrix 1: extendible put values in dollars, EPVi, from Equation (13), with extension terms i: 1, ∙∙∙, 5 years. Entries in 
matrix 2: extension premiums, EPi from Equation (12), with i: 1, ∙∙∙, 5 years, in $ and in % of the corresponding ex-
tendible put values, respectively. Parameter definitions: Fj indebtedness forward value in $; K1 = K2: credit line exer-
cise value in $; r = short rate characterizing the term structure of interest rates, in % per annum; σ = indebtedness- 
value volatility in % per annum; T1 and T2 initial and terminal commitment maturity dates. Common variable values: 
K1 = K2 = 100; r = 0.04; σ = 0.03; T1 − t = 1; T2 − T1 = 1, ∙∙∙, 5; 

1
0.25E

Tf = . 
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Figure 1. $ Sensitivity of extendible put values (EPVi) and extension premiums (EPi) to (i) in-
debtedness forward values with corresponding credit-risk ratings and (ii) i-term extension. 
 
liability incurred by the bank for carrying unused credit lines with varying extension 
terms. The rows and columns of matrix 1 show the put sensitivities to risk and term: 
credit-risk variations (namely indebtedness-value variations) are shown across rows 
while extension-term variations are shown down columns. Visual inspection of matrix 
1 as well as the upper surface in Figure 1 reveal that put values, and hence commitment 
credit risks, increase (1) steadily when indebtedness values are moving progressively 
ITM, but (2) more slowly when extension periods are growing longer. To wit, in row 
(1a) for a commitment that offers a one-year extension, EPV1 increases from $1.396 for 
an at-the-money (ATM) indebtedness value to $2.889 for the deeper ITM indebtedness 
value of $97.5. The other rows depict similar put-like value curves. By way of contrast, 
the matrix columns capture the put sensitivity to extension terms. More concretely, for 
Fj = $97.5 in the last column, put values are increasing from $2.889 for a straight com- 
mitment to $3.369 for a commitment with a five-year extension period. In brief, matrix 
1 of Table 1 and the upper surface of Figure 1 clearly indicate that extendible put val- 
ues and hence bank credit-risk costs are more sensitive to indebtedness-value risk 
variations than to extension-period duration. 

The other pattern, revealed from the rows and columns of matrix 2, shows that the 
extension premiums expressed in $ terms or as a percentage of the EPVi-values are: (1) 
increasing with the length of the extension period (down any column), but (2) declin- 
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ing when the indebtedness value moves deeper ITM (across each row). According to 
entries on row (a) of matrix 2 for instance, the one-year extension premium as a per- 
centage of EPV1 declines from 17.64% to 5.93% when the indebtedness values move 
deeper ITM. But from the other rows of matrix 2, the extension premiums implicit in 
longer-term extendible commitments are percentage wise much larger than those em- 
bedded in short-term commitments: they vary for instance from 45.61% to 19.33% for 
the five-year extension premium. Figure 1 highlights the dichotomy for $ values: when 
indebtedness values are moving ITM the extendible put upper surface is upward slop- 
ing whereas simultaneously the extension-premium lower surface is downward sloping. 
Yet both surfaces react positively but to different degrees to longer extension terms. 

These simulation results are used in the next section to quantify Basel-3 risk- 
weighted capital charge for extendible commitments. 

4. Application: A Basel-3 Ratings-Based Model of Extendible Loan 
Commitments 

4.1. Basel-3 Commitment Framework 

Beyond its macro-prudential reform, Basel-3 also targets bank-level or micro-prudential 
regulation (see Basel Committee on Banking Supervision [17] or Le Lesle and Avra- 
mova [45]). Presently, according to Basel-3 standardized approach, the initial term of 
commitments determines the way the RWAS of irrevocable commitments are computed. 
Regarding those with an initial term less than one year, a 20% credit-conversion factor 
(CCF) is first applied to the commitment face value and next, a 100% principal- risk 
factor (PRF) is applied to this credit-equivalent amount. For longer-term irrevocable 
commitments, Basel-2 50% CCF and 100% PRF remain in force and, for all revocable 
commitments irrespective of their term-to-maturity, 0% CCF and PRF apply. Moreover 
and independently of initial term, Basel-3 does not distinguish between prime- and 
non-prime-rate commitments, nor does it take into account their credit ratings. By way 
of contrast, outstanding corporate loans are classified according to the credit ratings of 
external rating agencies, with maturity being only a secondary adjustment. The prob- 
lem is that, when an off-balance-sheet commitment is drawn upon, this amount be- 
comes an on-balance-sheet loan alongside the other spot loans, with the same coeffi- 
cients applying to draw-downs and spot loans in the computation of their RWAS. It 
thus makes sense that the credit risk of both unexercised commitments and out-
standing spot loans be assessed in a way that although not perfectly similar is at least 
internally consistent. 

Yet, accounting for the credit-risk of extendible commitments is challenging the 
term-based commitment granularity of Basel-3 standardized approach. Should a one- 
year extendible commitment be classified as less or more than one year? It is obviously 
less than one year if it is exercised in the initial period or the borrower does not extend 
the initial period, but it is indeed longer than one year if exercised at or after the exten- 
sion date or not at all. Since term-wise extendible commitments are hybrid instru- 
ments, we propose to formulate an advanced internal ratings-based (AIRB) model that 
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accounts for the features specific to extendible commitment: credit-risk spread over at 
least two time periods captured by an embedded put value conditioned on a given ini- 
tial credit rating. 

4.2. Coefficients of the AIRB Model 

For the proposed AIRB model, we now introduce the coefficients required in comput-
ing Basel-3 capital charge for extendible commitments. The initial one, *

2T j
π

−
, the 

credit line take-down proportion applied to the forward period *
2T j− , is referred to 

as the forward funding proportion (FFP). Since Basel micro-prudential regulation 
takes place at the bank’s aggregate level, FFP applies to the aggregate amount of still 
unused extendible credit lines. The product of this aggregate amount and FFP consti- 
tutes the bank’s exposure at funding (EAF) at Basel audit date20. But since the em- 
bedded put option constitutes the credit-risk exposure (CRE) of extendible commit- 
ments, the product of EAF and embedded put values defines the risk-weighted assets 
(RWAS), namely the bank’s balance of risk-weighted extendible commitments. Finally, 
the credit-risk capital charge for extendible commitments obtains by multiplying RWA 
by the common-equity-tier-1 (namely CET1) capital charge. Yet, before proceeding 
with any numerical illustration, there remains the question of what is the contractual 
amount of extendible commitments, since nowhere are extendible commitments pub- 
licly reported as such. It has been observed that due to their low risk coefficient banks 
originate 364-day commitments and then renewed them as most of them remain in- 
deed undrawn: this looks suspiciously like extendible commitments but in name. For 
simulation purpose, we propose classifying as extendible commitments 50% of the 
up-to-one-year irrevocable commitments (a wider estimation could include also a frac- 
tion of the straight two-year commitments). 

4.3. Computation of the Capital Charge of Once Extendible 
Commitments 

In Table 1, the one-year commitment extended for another one with an indebtedness 
value slightly ITM at Fj = $99 and a forward funding proportion *

2T j
π

−
 of 60% is used 

to compute the capital charge corresponding to the extendible commitment credit-risk 
exposure. It is applied to an estimate of the contractual amount of extendible commit- 
ments of Canada’s six largest banks21 (93.27 billion is 50% of the $186.54 billion of the 
irrevocable short-term commitments they reported in 2015). The computation of the 
results shown under the column heading PE in Table 2 is as follows: 

 

 

20Yet when actual draw-downs of extendible commitments take place, the on-balance-sheet resultant loans 
become Basel-3 exposure at default (EAD) with a given probability of default (PD). The symmetry with 
the proposed EAF and FFP is intended so as to improve the internal consistency of the credit continuum of 
commitments and spot loans. 
21Figures are from the 2015 annual reports of Canada’s six largest banks, namely Bank of Montreal, Bank of 
Nova Scotia, Canadian Imperial Bank of Commerce, National Bank, Royal Bank and TD Canada Trust. More 
specifically, the commitment amounts are reported in the note “Guarantees, Commitment and Contingent 
Liabilities” to the consolidated financial statements or in the “Supplementary Data” from the section Man-
agement’s Discussion and Analysis of their annual reports. 
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Table 2. Credit-risk capital charge for extendible commitments: charge for the proposed AIRB model versus those for straight one-and 
two-year commitments or the one under Basel-3 simplified approach. 

 

Basel-3 AIRB approaches PE, 1
BP  and 2

BP  
based on the reference scenario Fj = $99 

Basel-3 simplified approach 
Accounting-based computation 

aE
P  1a

BP  2a
BP   

(1) Contractual amountb, K, C$ in billions 93.27 93.27 93.27 93.27 Contractual amount 

(2) Forward funding proportion, 
2 *T jπ − , in % 60% 60% 60% 20% Credit conversion factor 

(3) Exposure at funding, C$ in billions 55.96 55.96 55.96 18.65 Credit-equivalent amount 

(4) Credit risk exposure per billion 0.01919 0.01688 0.02059 100% Principal risk factor 

(5) Risk-weighted assets, C$ in billions 1.074 0.945 1.152 18.65 Risk-weighted balance 

(6) AIRB credit-risk capital charge, C$ in billions 0.08591 0.07557 0.0922 1.492 CET1 8% capital charge 

(7) PE capital difference with 1
BP , 2

BP  and 
Basel-3 simplified approach, C$ in millions 

 10.34 −6.29 1,406  

Notes: a PE, 1
BP  and 2

BP  indicate that the computation is based on the extendible put or Black’s straight one- and two-year put, respectively. b This amount is 50% 
of the 2015 aggregate contractual amount of short-term irrevocable commitments reported by the six largest Canadian banks. 

 
K × *

2T j
π

−
 = EAF that is $93.27 billion × 0.6 = $55.962 billion, 

EAF × EPV1 = RWAS namely $55.962 billion × 0.01919 = $1.0739 billion, and 
RWAS × CET1 coefficient or 1.0739 billion × 0.08 = 85.912 million, the credit-risk 

capital charge for extendible commitments. 
On the first line, the 60% forward funding proportion converts the contractual 

amount into the exposure at funding (EAF). On the second line, the latter is then mul- 
tiplied by the extendible put value (EPV1 = 0.01919 is the credit risk exposure per $ bil- 
lion from matrix 1 in Table 1) to arrive at the balance of risk-weighted extendible 
commitments. And on the third line, the $85.912-million credit-risk capital charge ob- 
tains by applying the CET1 8% capital coefficient to the risk-weighted balance of ex- 
tendible commitments; this amount is also reported on line (6) in the PE column of Ta-
ble 2. For the sake of comparison, we next compute the capital charge corresponding to 
Basel-3 simplified approach as well as the one corresponding to AIRB models for one- 
and two-year straight commitments ( 1

BP  = $1.688 and 2
BP  = $2.059 at the top of 

column 3 of Table 1 become respectively $0.01688 and $0.02059 per billion here). The 
computational details are shown in the last three columns of Table 2, with resultant 
credit-risk capital charges of $0.07557 billion, 0.0922 billion and 1.492 billion for the 
two straight-commitment variants and the simplified approach respectively—figures 
shown on line (6) in Table 2. Thus choosing the extendible put as assessment bench-
mark results in $1,406.09 million of capital relief ($1,492 - $85.91) with respect to 
Basel-3 simplified approach (last figure on line (7) in Table 2). On the other hand, 
when one-year commitments extendible for another one are slightly ITM, they require 
a slightly larger capital charge (an incremental 10.34 million) by comparison with 
straight one-year commitments; yet they require slightly less capital (minus 6.29 mil- 
lion) when compared to straight two-year commitments (both figures also shown on 
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line (7) of the table). These figures confirm the hybrid temporal nature of extendible 
commitments. 

4.4. The Incremental Capital Charge Caused by a One-Notch Rating 
Downgrade of an Initially Triple-A-Rated Floating Prime-Rate 
Borrower 

In our reference scenario, the bank writes a one-year commitment extendible for an-
other one to a triple-A rated floating prime-rate borrower whose probability to remain 
so is 89.97% according to the matrix of Exhibit 1. But when rechecking his creditwor-
thiness up to extension date T1, the bank concludes that the latter has deteriorated and 
his credit rating is now at best double-A. According to the matrix of Exhibit 1, the 
probability of dropping one notch from a triple-to-double-A credit rating is 9.45% 
(underlined) with a corresponding decline in indebtedness value from $100 to $99.5. 
For this declines according to row (a) of matrix 1 in Table 1, the EPV1 value increases 
from $1.396 to $1.644: thus the incremental credit-risk cost per $100 of still unused 
one-year extendible commitment is ($1.644 - $1.396) = $0.248. Since the probability of 
a one-notch downgrade is 9.45%, the expected incremental cost per $100 of one-year 
extendible commitments amounts to ($0.248 × 0.0945) = $0.0235 or about 2.3 cents. 
And to make the illustration more concrete, we now apply the downgrade incremental 
cost to the contractual amount of one-year extendible commitments reported in Table 
2. Suppose that 9.45% of the $93.27 billion of extendible commitments, that is $8.814 
billion, are downgraded from triple to double A (since the banks’ annual reports do not 
report whether all less-than-one-year commitments are prime ones, this is an illustra-
tive approximation at best). The downgrade-induced cost then amounts to $21.86 mil-
lion ($8.814 billion × $0.00248), which in turn translates for the six chartered banks 
into a modest incremental capital charge of $1.7487 million ($21.86 million × 0.08). 
Beyond the actual amount, this computation shows the importance of selecting a put 
option that accurately measures the credit-risk exposure of extendible-commitments 
and transition probabilities that reflect as close as possible the credit-rating migrations 
over time. In short, combining a recent transition matrix with relevant put values al-
lows banks to determine more precisely the incremental credit-risk capital charge 
caused by a rating downgrade of a fraction of their extendible commitments. 

5. Concluding Remarks 

There are two steps to our treatment of the credit risk embedded in borrowers’ extendi-
ble loan commitments subject to Basel-3 micro-prudential regulation. The first one 
provides the closed-form solution of the put option embedded in once-extendible credit 
commitments and the second one determines in a ratings-based model the capital charge 
corresponding to the credit risk exposure of such commitments. Since discount factor 
and credit and funding rates are all stochastic, put pricing is set in a term-structure-of- 
interest-rates framework. Put valuation taking place at the future date T1 is based on 
forward risk neutrality with zero-coupon bonds as discount factor. This approach has 
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the advantage to delink discounting factor from the credit and funding rates that define 
the spread appearing in the put payoff. Simulations are used to estimate extendible puts 
and extension premiums and their three-dimensional representation shown in Figure 1 
highlights the following dichotomy: with indebtedness values moving in the money, the 
extendible put surface is upward sloping whereas simultaneously the extension pre-
mium one is downward sloping. Yet both surfaces react positively but to different de-
grees to longer extension terms. 

According to Basel-3 simplified approach, commitments are classified according to 
their initial term to maturity, less than or longer than one year. Yet in essence, a one- 
year commitment extendible for another one straddles this arbitrary time divide, so we 
formulate a ratings-based model that combines the extendible put to two new coeffi-
cients. The first one is a forward funding proportion (namely the credit line take-down 
proportion relevant for the forward period T2 - j*) and the other one is the exposure at 
funding (practically the forward funding proportion applied to the bank’s aggregate 
amount of still unused extendible credit lines). The fair capital charge corresponding to 
the actual credit-risk exposure of extendible commitments results from the combina-
tion of these three coefficients, but only when the borrower’s initial credit rating re-
mains unchanged over both time periods. When it is not the case, the ratings-based 
model needs to be twinned to a matrix of credit-ratings migration over time; this com-
bination is versatile enough to deal with a borrower’s credit downgrade and its atten-
dant incremental Basel capital charge. A promising avenue for further study is how to 
account for any skewness and excess kurtosis present in the indebtedness value distri-
bution. This raises the challenging question of developing a closed-form solution that 
integrates a four-moment bivariate distribution. 
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Appendix 

The appendix provides an outline of the solution for a commitment that is extendible 
once.The starting point is the extension condition from Equation (9) in the text: 

( ) ( )1 2 1 2 1 1 2 11 1 112 2 1 1, , 1 1 1
T T T

E
T I TF I I F I T I F KP fF K T T K F≤ ≤ ≤ ≤ ≤ ≤− − − − ,       (A1) 

where condition

1 if condition is verified
1

0 if not


= 


. For the sake of clarity, the development in-  

tegrates the discounting ZCBS from the start so as to be consistent with the final equa-
tion in the text. Starting with the first of the three terms in (A1), we have: 

( ) ( ) ( ){ }1 2 1 11 1

* *
1 2 2 1 2 2 1, 0, , , 1 , , 1

T TT F I T F IZ r T E P F K T T E P F K T T≥ ≥
   − − −     

The expression is then developed by repeated but tedious changes of variables along 
the lines of Wu [4] so as to yield 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* *
0 2 2 1 2 2 2 2 1 1

* *
0 2 2 2 2 2 2 2 2 1

,0, , ;  ,0, , ;

,0, , ;  ,0, , ; .

F Z r T N x z K Z r T N x T z T

F Z r T N x z K Z r T N x T z T

ρ σ σ ρ

ρ σ σ ρ

− − − − + − −

− − − + −

⋅ ⋅ ⋅ ⋅

⋅ ⋅ +⋅ −⋅ −
(A2) 

The second fee term is also developed along the same two steps; this yields 

( ) ( )
1 21 11 1

* *
1 1, 0, 1 ,0, 1

T TF I
E

F I
E

T TfZ r T E Z r T E f≤ ≤
   − ⋅ + ⋅     

and 

( ) ( ) ( ) ( )1 11 1 1 1 2 1, 0, , 0,E E
T TZ r T N z T Z r T Nf z Tf σ σ− ⋅ ⋅ − + + ⋅ − +⋅ .    (A3) 

The same two steps also apply to the last put term: namely 

( ) ( ) ( ) ( )1 1 1 1 1 2

* *
1 1 1 1, 0, , 0,T T K T T IZ r T E K F F Z r T E K F F≤ ≤

   − ⋅ − + ⋅ −     

and 
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0 1 1 1 1
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σ

σ
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or 

( ) ( ) ( ) ( ) ( )1
0 1 1 0 1 2 1 1 2 1, , , 0, , 0,BP F K T F Z r T N z K Z r T N z Tσ⋅ ⋅ ⋅− − − +⋅− +   (A4) 

Collecting the terms of (A2), (A3) and (A4) gives the value of the extension premium 
in the text, namely Equation (12): 

( ) ( ) ( ) ( )
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1 1
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, 0, , ; , 0, , ;
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⋅ ⋅ ⋅ ⋅
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−
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(A5) 

Finally the once-extendible put value, Equation (13) in the text, obtains by adding 
( )1

0 1 1, ,BP F K T to Equation (A5). 
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