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Abstract 
In this paper, we consider the Markov-dependent risk model with multi-layer dividend strategy 
and investment interest under absolute ruin, in which the claim occurrence and the claim amount 
are regulated by an external discrete time Markov chain. We derive systems of integro-differential 
equations satisfied by the moment-generating function, the nth moment of the discounted divi-
dend payments prior to absolute ruin and the Gerber-Shiu function. Finally, the matrix form of 
systems of integro-differential equations satisfied by the Gerber-Shiu function is presented. 
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1. Introduction 
The dividend problem has long been an important issue in finance and actuarial sciences. Due to the importance 
of the dividend problem, the study of the risk model with dividend strategy has received more and more at- 
tention. Most of the strategies considered are of two kinds: one is the barrier strategy; another is the threshold 
strategy. For more recent studies about dividend problems, see [1]-[4]. In these papers, they extend the threshold 
dividend strategy to the multiple case, and make in-depth study of the model by the probabilistic and differential 
equation approaches. Under such a dividend strategy, many authors have extensively studied the Gerber-Shiu 
function for both the classical and the renewal risk model. 

In classical insurance theory, we usually say that ruin occurs when the surplus is below zero. But in reality, 
the insurer could borrow an amount of money equal to the deficits at a debit interest rate to continue his business 
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when the surplus falls below zero. Meanwhile, the insurer will repay the debts from his premium income. If 
debts are reasonable, the negative surplus may return to a positive level. However, when the negative surplus is 
below some certain level, the insurer is no longer allowed to run his business and absolute ruin occurs at this 
situation.   

Absolute ruin probability has been frequently considered in recent research works. Dassios and Embrechts 
considered the absolute ruin, and by a martingale approach they derived the explicit expression for the 
probability of absolute ruin in the case of exponential individual claim in [5]. Cai defined Gerber-Shiu function 
at absolute ruin and derived a system of the integro-differential equations satisfied by the Gerber-Shiu function 
in [6].  

Most of the literature in finance is based on the assumption that the inter-arrival time between two successive 
claims and the claim amounts are independent. However, the independence assumption can be inappropriate and 
unrealistic in practical contexts. So in recent years, the risk model with dependence structure between inter- 
arrival times and claim sizes has got more and more attention. For example, see [7]-[9]. Yu and Huang [8] 
studied the dividend payments prior to absolute ruin in a Markov-dependent risk process. Zhou et al. [9] 
proposed a Markov-dependent risk model with multi-layer dividend strategy.  

To the best of our knowledge, Markov-dependent risk model with multi-layer dividend strategy and investment 
interest under absolute ruin has not been investigated. This motivates us to investigate such a risk model in this 
work. Generally, the authors only extensively consider Gerber-Shiu function in risk models with multi-layer 
dividend strategy. In this paper, we study not only Gerber-Shiu function, but also the moment-generating func- 
tion and the nth moment of the discounted dividend payments prior to absolute ruin.  

The rest of the paper is organized as follows. In Section 2, the model is described and basic concepts are 
introduced. In Sections 3, we get integro-differential equations for the moment-generating function of the dis- 
counted dividend payments prior to absolute ruin and boundary conditions. In Section 4, the integro-differential 
equations satisfied by higher moment of the discounted dividend payments prior to absolute ruin and boundary 
conditions are derived. In Section 5, we obtain the systems of integro-differential equations for the Gerber-Shiu 
function and its matrix form. Section 6 concludes the paper. 

2. The Model 
In this section, we investigate the Markov-dependent risk model with multi-layer dividend strategy and investment 
interest under absolute ruin, in which the claim occurrence and the claim amount are regulated by an external 
discrete time Markov chain { } 0n n

J
≥

. First, let { } 0n n
J

≥
 be an irreducible discrete time Markov chain with finite 

state space { }1, 2, ,S d=   and transition matrix ( )ijpΛ = . Similar to Albrecher and Boxma [7], we define  

the structure of a semi-Markov dependence type insurance problem as follows. Let iW  denote the time be- 
tween the arrival of the ( )1 thi −  and the ith claims and 0 0 0W X= =  a.s., then  

( )( )
( ) ( ) ( )

1 1 1

1 1 1 0

, , | , , , ,0

, , | 1 e ,i

n n n n t t t

x
ij j

P W x X y J j J i W X J t n

P W x X y J j J i p F yλ

+ + +

−

≤ ≤ = = ≤ ≤

= ≤ ≤ = = = −
                   (2.1) 

where nX  is the amount of the nth claim. Thus at each instant of a claim, the Markov chain jumps to a state j 
and the distribution jF  of the claim depends on the new state j, and has a positive mean jµ . Then, the next 
interarrival time is exponentially distributed with parameter jλ . Note that given the states 1nJ −  and nJ , the 
quantities nW  and nX  are independent, but there is an autocorrelation among consecutive claim sizes and 
among consecutive interclaim times as well as cross-correlation between nW  and nX .  

In our risk model, we assume that the insurer could borrow money with the amount equal to the deficit at a debit 
interest force 0β >  when the surplus falls below zero or the company is on deficit. And when the surplus 
becomes positive, the insurer could earn interest at an investment rate ( )0r r β< < . We also assume that the 
premium rate is a step function, instead of a constant, dependent on the current surplus level. More precisely,  
define N layers 0 10 Nb b b= < < < = ∞ . When the surplus ( )gU t  is in layer k, i.e. ( )1k g kb U t b− ≤ < , 

premium is collected with rate ( )( )g kc U t c=  until a claim causes the surplus to a lower layer or the surplus  

grows to the next higher layer. Meanwhile, the premium will be collected with rate cβ  when the surplus 
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becomes negative. In reality, we assume 1 2 Nc c c cβ = ≥ ≥ ≥ . When the surplus is in layer k, dividends are 
paid continuously at a constant rate 1k kc cε = − . Furthermore, we assume the net profit condition is fulfilled in 
each layer, that is  

1 1

1 ,
d d

i i k i
i i i

cπ µ π
λ= =

<∑ ∑                                     (2.2) 

where ( )1, , dπ π π=   is the stationary distribution of process { } 0n n
J

≥
. We denote the surplus by ( )gU t . 

Then the dynamics of ( )gU t  can be expressed as  

( )
( )( )

( )
( )

( )( )
( )

( )

1

1
1

d d , 0,
d

d d , , 1, 2, , .

N t

g n g
n

g N t

k g n k g k
n

c U t t X U t
U t

c rU t t X b U t b k N

β β
=

−
=


+ − <

= 
 + − ≤ < =

∑

∑ 

            (2.3) 

where ( )N t  is the number of claims up to time t.  
Note that the surplus is no longer able to become positive when the negative surplus attains the level cβ β−  

or is below cβ β− , because the insurer cannot repay all his debts for his business. We denote the absolute ruin  
time of the model (2.3) by gτ , which is defined by ( ){ }inf 0 :g gt U t cβτ β= ≥ ≤ − , and gτ = ∞  if 

( )gU t cβ β≥ − , for all 0t ≥ . Given the initial surplus u, and the force of interest δ , the present value of all 

dividends until time of absolute ruin gτ  is defined by  

( ), 0
e d ,g t

u gD D t
τ δ−= ∫                                  (2.4) 

where ( )D t  is the cumulative amount of dividends paid out up to time t. In the sequel we will be interested in 
the moment-generating function  

( ) ,
0, e | ,u gyD

iM u y E J i i S = = ∈                            (2.5) 

and the n th moment function  

( ), , 0| ,n
n i u gV u E D J i i S = = ∈                             (2.6) 

with ( )0, 1iV u = , and the expected discounted penalty function, for i S∈   

( ) ( ) ( )( ) { } ( ) 0e , | 0 , ,g

gi g g g g gu E w U U I U u J iδτ

τ
τ τ−

<∞
 Φ = − = =  

             (2.7) 

where, ( )g gU τ −  is the surplus prior to absolute ruin and ( )g gU τ  is the deficit at absolute ruin. The penalty 

function ( )1 2,w x x  is an arbitrary nonnegative measurable function defined on ( ) ( ), ,c cβ ββ β− +∞ × +∞ .  

For fix i S∈ , throughout this paper we assume that ( ),iM u y , ( ),n iV u  and ( )i uΦ  are sufficiently smooth 
functions in u and y in their respective domains.  

3. Integro-Differential Equations for ( )iM u y,  
In this section, we give the integro-differential equations for the moment-generating function ( ),iM u y . Clearly, 

the moment-generating function ( ),iM u y  behaves differently. For i S∈ , we define  

( ) ( )
( )

,

, 1

, , 0,
,

, , , 1, 2, , .
i

i
k i k k

M u y c u
M u y

M u y b u b k N
β β β

−

 − < <=  ≤ < = 

 

For notational convenience, let ( ) ( ), e e 1t th u t u cβ β
β β β= + − , ( ) ( ), e e 1 , 1,2, ,rt rt

k kh u t u c r k N= + − =  . 

Theorem 3.1. For i S∈ , 0c uβ β− < < ,  
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( ) ( ) ( ) ( )

( ) ( ) ( )

, ,
,

,0
1

, ,
,

, d ,

i i
i i

d u c
i ij j j j

j

M u y M u y
u c y M u y

u y

p M u x y F x F u cβ

β β
β β

β
β β

β δ λ

λ β
+

=

∂ ∂
+ = +

∂ ∂

 − − + +  ∑ ∫
                  (3.1) 

and, for 1k kb u b− ≤ < , 1, 2, ,k N= 
,  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

, ,
1 ,

, 1,0
1

,

, ,
,

, d , d

, d .

k

k i k i
k i k k i

d u b u
i ij k j j j ju b

j

u c
j j ju

M u y M u y
ru c y c c y M u y

u y

p M u x y F x M u x y F x

M u x y F x F u cβ β
β β

δ λ

λ

β

−−

−
=

+

∂ ∂
 + = + − − ∂ ∂

− − + + −

+ − + + 

∑ ∫ ∫

∫

              (3.2) 

Proof. Fix i S∈ , and 0c uβ β− < < , let 0t  be the solution to the equation of ( ), 0h u tβ = , namely 
1

0 ln
c

t
c u

β
β

β β

 
=   + 

, which is the time when the surplus returns to the level zero if no claim occurs to time 0t . 

Then ( ),h u tβ  is the surplus at time 0t t≤  if no claim occurs prior to time 0t . We consider a small time 

interval ( ]0, t , where 0t t≤ . In view of the strong Markov property of the surplus process ( ){ } 0g t
U t

≥
, we 

have  

( ) ( )( ), , e .t
i i gM u y E M U t y δ− =                               (3.3) 

Thus conditioning on the time and the amount of the first claim, we obtain,  

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( )

, ,
1

,
,0

, 1 , , e

, , e d , .

d
t

i i i i ij
j

h u t c t
j j j

M u y t E M h u t y t p

E M h u t x y F x F h u t c o tβ β

δ
β β β

β δ
β β β β

λ λ

β

−

=

+ −

 = − + 

 × − + + +  

∑

∫
        (3.4) 

By Taylor's expansion, we have  

( )( ) ( ) ( ) ( ) ( ), ,
, ,

, ,
, , e , .i it

i i

M u y M u y
E M h u t y M u y u c t yt

u y
β βδ

β β β ββ δ− ∂ ∂
  = + + −  ∂ ∂

       (3.5) 

Substituting (3.5) into (3.4), and then dividing both sides of (3.4) by t and letting 0t → , we get (3.1).  
Similarly, when 1 , 1, 2, ,k kb u b k N− ≤ < =  , we still consider a small time interval ( ]0, t , where ( )0t t >  is 

sufficiently small so that the surplus process will not reach kb . Conditioning on the event occurring in the 
interval ( ]0, t , we obtain  

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

1 1
, ,

1

,

0

, 1 e , , e e

, , e d , .

k k

k

d
c c yt c c ytt

k i i k i k i ij
j

h u t c t
j k j j k

M u y t E M h u t y t p

E M h u t x y F x F h u t c o tβ

δ

β δ
β

λ λ

β

− −−

=

+ −

 = − + 

 × − + + +  

∑

∫
         (3.6) 

By Taylor’s expansion, we have  

( )( ) ( ) ( ) ( ) ( ), ,
, ,

, ,
, , e , .k i k it

k i k k i k

M u y M u y
E M h u t y M u y ru c t yt

u y
δ δ− ∂ ∂  = + + −  ∂ ∂

       (3.7) 

Substituting (3.7) into (3.6), and then dividing both sides of (3.6) by t and letting 0t → , we get (3.2). So the 
proof is completed.  
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Theorem 3.2. For i S∈ , ( ), ,iM u yβ  and ( ), , , 1, 2, , ,k iM u y k N=   satisfy  

( ), , 1,iM c yβ β β− =                                (3.8) 

( ) ( ), 1,0 , 0 , ,i iM y M yβ − = +                             (3.9) 

( ) ( ), 1,, , , 1, 2, , 1k i k k i kM b y M b y k N+− = + = −                     (3.10) 

( ) ( )1
,lim , e ,kc c y

N iu
M u y δ−

→∞
=                            (3.11) 

( ) ( )

( ) ( ) ( ) ( )

,

1,
1 1 ,

,

,
, , 1, 2, , 1.

k

k

k i
k k u b

k i
k k u b k k k i k

M u y
rb c

u
M u y

rb c c c M b y k N
u

= −

+
+ = + −

∂
+

∂
∂

= + + − − = −
∂



      (3.12) 

Proof.  
1) If u cβ β= − , the absolute ruin is immediate and no dividend is paid, so (3.8) holds.  

2) For 0c uβ β− < < , letting 0τ  be the time that the surplus reach 0 for the first time from 0u <  and 

using the Markov property of the surplus process ( ){ }, 0gU t t ≥ , we have  

( ){ } ( )

( ){ } ( )
( ) ( )

, ,

0 0

0

0

0
0 0

,

0 00

0

1, 0

( , ) e e

exp e d

exp e e d

0, .

u g u g
g g

g

g

g

g

yD yDu u
i i i

u t
i g

u t
i g

i g

M u y E I E I

E I y D t P

E I y D t P

M y P

β τ τ τ τ

τ τ δ
τ τ

τδτ δ
τ τ τ

τ τ τ

τ τ

τ τ

< ≥

− −
<

− −
<

   = +   
 = + + ≥  
 = + ≥  

≤ + ≥

∫

∫
                 (3.13) 

Similarly, we have  

( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

, ,

0 0 0 0

0
0 0 0

0

0

, ,

1, , 0

1, 1 0 0

1, 0

, e e

0, e

0, e

e 0, ,

u g u g
g g

g

i

yD yDu u
i i t i

u
i i t g

i g

t
i g

M u y E I E I

M y E I P

M y P T t P

M y P

β τ τ τ τ τ

δτ
τ τ τ

δτ

λ δ

τ τ

τ τ

τ τ

< = ≥

−
< =

−

− +

   ≥ +   
 = + ≥ 

= > + ≥

= + ≥

                  (3.14) 

where 1T  is the time of the first claim.  
When 0u ↑ , we notice that 0τ  and 0t  both go into zero. Letting 0u ↑  in (3.13) and (3.14) and in view 

of ( )00lim 0gu P τ τ↑ ≥ = , we derive (3.9).  

3) For Eq. (3.10), the method is similar to Equation (3.9), so we omit it here.  
4) If u →∞ , then gτ = ∞ , so (3.11) holds.  
5) For k m= , letting mu b↑  in (3.2), and 1mu b +↓  in (3.2) when 1k m= + , 1, 2, , 1m N= − , we can get 

(3.12).  
The proof of Theorem 3.2 is complete.  

4. Integro-Differential Equations for ( )n iV u,  
In this section, we get the integro-differential equations for ( ),n iV u , i S∈ . First, for i S∈ , define  

( ) ( )
( )

, ,
,

, , 1

, 0,
, , 1, 2, , ,

n i
n i

n k i k k

V u c u
V u

V u b u b k N
β β β

−

 − < <=  ≤ < = 
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with ( )0,1, 1iV u = .  
Using the representation  

( ) ( ), , ,
1

, 1 ,
!

n

i n i
n

yM u y V u
nβ β

∞

=

= +∑                               (4.1) 

( ) ( ), , ,
1

, 1 , 1, 2, , ,
!

n

k i n k i
n

yM u y V u k N
n

∞

=

= + =∑                         (4.2) 

we have the following integro-differential equations.  
Theorem 4.1. For i S∈ , 0c uβ β− < < ,  

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,0
1

d ,
d u c

n i i n i i ij n j j
j

u c V u n V u p V u x F xβ β
β β β ββ δ λ λ

+

=

′+ = + − −∑ ∫            (4.3) 

and, for 1k kb u b− ≤ < , 1, 2, ,k N= 
,  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1

1

, , , , 1 1, ,

, , , 1,0
1

,1, , ,

d d

d d .

k k

k

k n k i i n k i k n k i

d u b u b
i ij n k j j n k j ju b

j

u u c
n j j n j ju b u

ru c V u n V u n c c V u

p V u x F x V u x F x

V u x F x V u x F xβ β
β

δ λ

λ − −

−

−

− −

−−
=

+

−

′+ = + − −

− − + −

+ + − + − 

∑ ∫ ∫

∫ ∫

         (4.4) 

Proof. Substituting (4.1) into (3.1), and then equating the coefficients of ny , we can get (4.3). Similarly, sub- 
stituting (4.1) and (4.2) into (3.2), and then equating the coefficients of ny , we obtain (4.4).  

Theorem 4.2. For i S∈ , ( ), ,n iV uβ  and ( ), , , 1, 2, , , 1, 2, ,n k iV u k N n= =   satisfy  

( ), , 0,n iV cβ β β− =                                       (4.5) 

( ) ( ), , ,1,0 0 ,n i n iV Vβ − = +                                    (4.6) 

( ) ( ), , , 1, , 1, 2, , 1n k i k n k i kV b V b k N+− = + = −                           (4.7) 

( ) 1
, ,lim ,

n
k

n N iu

c cV u
δ→∞

− =  
 

                                  (4.8) 

( )
( ) ( ) ( )

, ,

1 , 1, 1 1, , , 1, 2, , 1.
k

k

k k n k i u b

k k n k i u b k k n k i k

rb c V

rb c V c c V b k N

= −

+ + = + + −

′+

′= + + − − = −

               (4.9) 

Proof. This method is similar to Theorem 3.2.  

5. The Gerber-Shiu Function 
In this section, systems of integro-differential equations for the Gerber-Shiu function are presented. For i S∈ , 
define  

( ) ( )
( )

,

, 1

, 0,
, , 1, 2, , ,

i
i

i k k k

u c u
u

u b u b k N
β β β

−

Φ − < <Φ = Φ ≤ < = 

 

Theorem 5.1. For i S∈ , 0c uβ β− < < ,  

( ) ( ) ( ) ( ) ( ) ( ), , ,0
1

( ) d ,
d u c

i i i i ij j j j
j

u c u u p u x F x A uβ β
β β β ββ δ λ λ

+

=

 ′+ Φ = + Φ − Φ − +  ∑ ∫       (5.1) 

and, for 1k kb u b− ≤ < , 1, 2, ,k N= 
,  
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( ) ( ) ( ) ( ) ( ) ( ) ( ), , 0
1

d ,
d u c

k k i i k i i ij j j j
j

ru c u u p u x F x A uβ β
δ λ λ

+

=

 ′+ Φ = + Φ − Φ − +  ∑ ∫      (5.2) 

with boundary conditions  

( ) ( ), 1,0 0 ,i iβΦ − = Φ +                              (5.3) 

( ) ( ), 1, , 1, 2, , 1k i k k i kb b k N+Φ − = Φ + = −                    (5.4) 

( ) ( ), 1 1, , 1, 2, , 1
k kk k k i u b k k k i u brb c rb c k N= − + + = +′ ′+ Φ = + Φ = −             (5.5) 

where ( ) ( ) ( ), dj ju c
A u w u x u F x

β β

∞

+
= −∫ .  

Proof. Fix i S∈ , and 0c uβ β− < < . Similar to argument as in Section 3, conditioning on the events that 

can occur in the small time interval ( ]0, t , we obtain,  

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) } ( )

,
, , ,0

1

,

, e 1 , , d

, , , d ,

d h u t ct
i i i i ij j j

j

jh u t c

u y t h u t t p h u t x F x

w h u t x h u t F x o t

β β

β β

βδ
β β β β β

β ββ

λ λ
+−

=

∞

+

 Φ = − Φ + × Φ − 

+ − +

∑ ∫

∫
      (5.6) 

By Taylor’s expansion, we have  

( )( ) ( ) ( ) ( ) ( ), , ,, 0 .i i ih u t u u c t u tβ β β β ββ ′Φ = Φ + + Φ +                    (5.7) 

Substituting (5.7) into (5.6), and then dividing both sides of (5.6) by t and letting 0t → , we get (5.1).  
Similarly,when 1 , 1, 2, ,k kb u b k N− ≤ < =  , we still consider a small time interval ( ]0, t . We obtain  

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) } ( )

,
, , 0

1

,

e { 1 , , d

, , , d .

k

k

d h u t ct
k i i k i k i ij j k j

j

k k jh u t c

u t h u t t p h u t x F x

w h u t x h u t F x o t

β

β

βδ

β

λ λ
+−

=

∞

+

Φ = − Φ + × Φ −

+ − +

∑ ∫

∫
        (5.8) 

By Taylor’s expansion, we have  

( )( ) ( ) ( ) ( ) ( ), , ,, 0 .k i k k i k k ih u t u ru c t u t′Φ = Φ + + Φ +                    (5.9) 

Substituting (5.9) into (5.8), and then dividing both sides of (5.8) by t and letting 0t → , we get (5.2). For the 
boundary conditions (5.3)-(5.5), the method is similar to Theorem 3.2. So the proof is completed.  

Integro-differential Equations (5.1) and (5.2) can be rewritten in matrix form. 
Let  

( ) ( ) ( ) ( )( )T
, ,1 ,2 ,, , ,g du u u uβ β β βΦ = Φ Φ Φ  

and  

( ) ( ) ( ) ( )( )T
, ,1 ,2 ,, , , , 1, 2, ,g k k k k du u u u k NΦ = Φ Φ Φ =   

where T denoting transpose. We have the following theorem.  
Theorem 5.2. ,g βΦ  and , , 1, 2, ,g k k NΦ =   satisfy the following integro-differential equations  

( ) ( ) ( ) ( ) ( ) ( ), 1 , 1 , 10
d , 0

u c
g g gu P u u G x u x x A u c uβ β
β β β β β

+
′Φ = Φ + Φ − + − < <∫     (5.10) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2

1

1

, 2, , 2, , 2, , 10

0
2, ,1 2, , 2, 1

d d

d d ,

k k

k

u b u b
g k k g k k g k k g ku b

u c
k g k g k k ku b u

u P u u G x u x G x u x x

G x u x x G x u x x A u b u bβ β
β

− −

−

− −

−−

+

−−

′Φ = Φ + Φ + Φ − +

+ Φ − + Φ − + ≤ <

∫ ∫

∫ ∫



 (5.11) 
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with boundary conditions  

( ) ( ), ,10 0 ,g gβΦ − = Φ +                             (5.12) 

( ) ( ), , 1 , 1, 2, , 1g k k g k kb b k N+Φ − = Φ + = −                       (5.13) 

( ) ( ), 1 , 1 , 1, 2, , 1
k kk k g k u b k k g k u brb c rb c k N= − + + = +′ ′+ Φ = + Φ = −              (5.14) 

where ( ) 1 2
1 , , , dP u diag

u c u c u cβ β β

λ δλ δ λ δ
β β β

 ++ +
=   + + + 

 , ( ) 1 2
2, , , , d

k
k k k

P u diag
ru c ru c ru c

λ δλ δ λ δ ++ +
=  + + + 


,  

( )
( )

( )

1

1

1 ,

d d

u c f x
G u

f x
u c

β

β

λ
β

λ
β

 
 +      = − Λ       
 + 

   

( )
( )

( )

1

1

2,

k

k

d d

k

ru c f x
G u

f x
ru c

λ

λ

 
 +      = − Λ    
   
 + 

   

are all d d×  matrices, ( )1A u  and ( )2,kA u  defined by  

( ) ( ) ( ) ( ) ( ) ( )1 1 2, 2,, d , , d ,k ku c u c
A u w u x u G x I x A u w u x u G x I x

β ββ β

∞ ∞

+ +
= − = −∫ ∫  

are all d-dimensional vector, in which ( )T1,1, ,1I =   is an 1d ×  column vector.  

6. Conclusions  
In this paper, we investigate the Markov-dependent risk model with multi-layer dividend strategy and investment 
interest under absolute ruin. This complex model is more realistic. We derive systems of integro-differential 
equations satisfied by the moment-generating function, the nth moment of the discounted dividend payments 
prior to absolute ruin and the Gerber-Shiu function. Generally, many authors only extensively consider Gerber- 
Shiu function in risk models with multi-layer dividend strategy. However, due to the importance of the dividend 
problem, the problems considered by this paper are more important and interesting.  

In addition that, we only obtain systems of integro-differential equations. As far as we know, it is not easy to 
derive the explicit expressions for the moment-generating function, the nth moment of the discounted dividend 
payments prior to absolute ruin and the Gerber-Shiu function. But, maybe we find some numerical method 
which can solve these equations. We leave it for the further research topic. 
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