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Abstract 
This paper compares the performance of the two main portfolio insurance strategies, namely the 
Option-Based Portfolio Insurance (OBPI) and the Constant Proportion Portfolio Insurance (CPPI). 
For this purpose, we use the stochastic dominance approach. We provide several explicit sufficient 
conditions to get stochastic dominance results. When taking account of specific constraints, we use 
the consistent statistical test proposed by Barret and Donald [1]. It is similar to the Kolmogrov- 
Smirnov test with a complete set of restrictions related to the various forms of stochastic domin-
ance. We find that the CPPI method can perform better than the OBPI one at the third order sto-
chastic dominance. 
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1. Introduction 
The goal of portfolio insurance is to provide a guarantee against portfolio downside risk (usually 100% of the 
initial invested amount) while allowing to benefit from significant gains for bullish markets. The two standard 
portfolio insurance methods are the Option Based Portfolio Insurance (OBPI), introduced by Leland and Ru-
binstein [2] and the Constant Proportion Portfolio Insurance (CPPI) considered by Perold [3]. Basically, the 
OBPI portfolio is a combination of a risky asset S (usually a financial index such as the S&P) and a put written 
on it. Whatever the value of S at the terminal date T, the portfolio value will be always higher than the strike of 
the put. Therefore this strike is chosen in order to provide the desired guaranteed level. The standard CPPI me-
thod consists in a simplified strategy to allocate assets dynamically over time. A floor is initially determined 
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such as it is equal to the lowest acceptable value of the portfolio. Then, the amount allocated to the risky asset 
(called the exposure) is defined as follows: the cushion, which is equal to the excess of the portfolio value over 
the floor is multiplied by a predetermined multiple. The remaining funds are usually invested in the reserve asset, 
usually T-bills. As the cushion approaches zero, exposure approaches zero too. In continuous time, this keeps 
portfolio value from falling below the floor. 

To compare these two main portfolio strategies, we search for stochastic dominance (SD) properties since SD 
takes account of the entire return distribution. The major argument for stochastic dominance is that it does not 
require any specific knowledge about the preferences of investors. Indeed, the first stochastic dominance order is 
related to investors with an increasing utility function. Stochastic dominance of order two focuses on investors 
having an increasing and concave utility, meaning that they are risk-averse1. However, at a given order (for ex-
ample 1 or 2), the stochastic dominance criterion cannot always allow to rank all portfolios. There exist cases 
where no stochastic dominance is observable. But there exists a stochastic dominance criteria at each order and, 
the higher the order, the less stringent the criterion. Thus it is reasonable to expect that there exists an order for 
which a portfolio strategy dominates another one (or vice versa). De Giorgi [6] shows that, in a market without 
friction, the market portfolio can be efficient according to the criterion of the second order stochastic dominance. 
Therefore the test of stochastic dominance is consistent with the theory of portfolio choice. To compare with al-
ternative approaches such as those based on performances measures, note that Darsinos and Satchell [7] show 
that n-order stochastic dominance implies Kappa (n − 1) dominance. It means for example that the second order 
stochastic dominance implies the Omega dominance while the third order SD implies dominance according to 
the Sortino measure. 

For the portfolio insurance strategies, Bertrand and Prigent [8] proved that the stochastic dominance at the 
first order is a too strong condition, meaning that neither the CPPI nor the OBPI dominates the other strategy for 
this criterion2. However, as proved theoretically by Zagst and Kraus [10], stochastic dominance of portfolio in-
surance strategies can be obtained mainly from the third order. Our main purpose is to extend previous results 
when taking account of quite general share values and/or of specific constraints such as capped strategies intro-
duced to limit financial risk exposures. 

The paper is organized as follows. In Section 2, we briefly introduce the basic properties of the CPPI and the 
OBPI strategies. In Section 3, we examine the stochastic dominance (SD) framework to compare portfolio in-
surance strategies. First, we provide several sufficient conditions to get stochastic dominance properties for the 
standard portfolio insurance methods. Second, to extend previous results, we introduce specific statistical tests 
and simulation methods for computing p-values when examining SDj with j larger than one. We use the test 
considered by Barret and Donald [1], based on the multiplier central limit theory discussed in Van der Vaart and 
Wellner [11]. 

2. Basic Properties of the CPPI and the OBPI Strategy 
2.1. The Financial Market 
We consider two basic assets that are traded in continuous time during the investment period [ ]0,T . The 
“risk-free” asset (a money market account for example) is denoted by B. Denote by r the constant continuous 
interest rate 0r > . We get: 

0 e ,rT
tB B= ⋅                                        (1) 

with initial value 0 0B > . The risky asset (for example a financial market index) is denoted by S. It is assumed 
to be a geometric Brownian motion given by: 

( )d d d ,t t tS S t Wµ σ= +                                   (2) 

with non negative initial value 0 0S >  and where ( )( )0t t T
W W

≤ ≤
=  is a standard Brownian motion. There exists  

a constant drift term parameterized by rµ >  and a volatility denoted by σ . 
To price options, we use the Black and Scholes formula while taking account of the spread between the em-

 

 

1See Levy ([4] [5]) for details about stochastic dominance and expected utility, with applications to investment strategies. 
2For details about various comparisons of CPPI and OBPI strategies, see Prigent [9]. 
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pirical and the implied volatility3. 

2.2. Constant Proportion Portfolio Insurance (CPPI) 
The standard CPPI method consists in a simplified strategy to allocate assets dynamically over time so that its 
value CPPI

tV  never falls below the floor tF . This latter one is equal to the lowest acceptable value of the portfo-
lio and is defined as a percentage p (1 0p≥ ≥ ) of the initial investment 0

CPPIV , i.e.: 

0e .rt CPPI
tF p V=                                     (3) 

The excess of the portfolio value over the floor is called the cushion tC . It is equal to: 

{ }max ,0 .CPPI
t t tC V F= −                                 (4) 

Then, the amount allocated on the risky asset (called the exposure tE ) is equal to the cushion multiplied by a 
constant multiple m. Therefore, the exposure ( )( )0t t T

E
≤ ≤  satisfies: 

{ }max ,0 .CPPI
t t t tE m C m V F= ⋅ = ⋅ −                             (5) 

The interesting case is when 1m > , that is when the payoff function of the portfolio value at maturity CPPI
TV  

is a convex function with respect to the risky asset TS . 
Then the cushion value tC  must satisfy: 

( ) ( ) d dd d d .t t
t t t t t t t

t t

B SC V F V E E F
B S

= − = − + −  

By applying Itô’s lemma, we obtain: 

( )( ) [ ]2 2
0

1exp exp .
2t tC C r m r t m t m Wµ σ σ = ⋅ + − − ⋅  

                     (6) 

By using the relation:  

2
0

1exp ,
2

m m
t tS S m W m tσ µ σ  = ⋅ + −    

 

we deduce:  

[ ] 2 2

0

1exp exp .
2

m
t

t m

S
m W m t m t

S
σ µ σ  = − −    

 

Substituting this expression for [ ]exp tm Wσ  into the expression for tC  leads to: 

( ) ( ) 2 2 2
0

0

1 1, exp 1 ,
2 2

m
mt

t t t t
SC m S C rt m m t m t S
S

σ σ α
   = ⋅ − + − =     

              (7) 

with 

( ) 2 2 2
0

0

1 1 1exp 1 .
2 2

m

t C rt m m t m t
S

α σ σ
   = ⋅ − + −     

 

We deduce that the value of the CPPI portfolio CPPI
tV  at any time t is given by: 

( ), e .CPPI rt m
t t t t tV m S F Sα= +                                 (8) 

Note that, for the CPPI method, the two key management parameters are the initial floor value 0 0e
rTF pV −=  

 

 

3We consider that the two strategies operate in different market environments. While the CPPI strategy operates on the financial market with 
its empirical market volatility (the so-called “local volatility”), the OBPI uses options that have to be priced using the implied volatility. In 
the financial market, we observe a spread between the empirical volatility and the implied volatility corresponding to the usual “smile” ef-
fect. 
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and the multiple m. 
Remark 2.1. (Capped CPPI) The manager may want to increase his profits, from usual performances of asset S 

while potentially discarding very high values of S. In that case, the exposure is determined by: 

{ }inf , ,CPPI
t t tE mC Vλ=                                   (9) 

where λ  denotes the gearing coefficient. Its usual value is equal to 0.9. 

2.3. Option-Based Portfolio Insurance (OBPI) 
In what follows, we describe the option-based portfolio insurance strategy. It provides a guarantee equal to

0
OBPIp V⋅  whatever the market fluctuations. Indeed, for a given share q, we have: 

( ) ,OBPI
T TV q K S K + = + −                                 (10) 

which implies that 0
OBPI OBPI

TV p V≥ ⋅  if 0
OBPIqK p V= ⋅ . 

This relation shows that the insured amount at maturity is the exercise price multiplied by the number of shares, 
i.e. qK . The value OBPI

TV  of this portfolio at any time t in the period [ ]0,T  is equal to: 
( )( ) ( )e , ,r T tOBPI

tV q K C t K− − = + 
 

where ( ),C t K  denotes the Black-Scholes value of the European call option with strike K, calculated under the 
risk neutral probability Q. 

The portfolio value OBPI
tV , for all dates t before T, is always above the deterministic level ( )e r T tqK − − . In order 

to guarantee the minimum terminal portfolio value 0
OBPIp V⋅ , the strike K of the European Call option must sa-

tisfy the following relation: 

0 ,p V qK⋅ =  

which implies that: 

( )0, 1 e .
rTC K p

K p

−−
=                                  (11) 

Therefore, the strike K is an increasing function ( )K p  of the percentage p, since in Equation (Equation 
(11)) both functions are decreasing respectively with respect to K and p. Then, the number of shares q is given 
by: 

( ) ( )
0 .

e 0,rT

Vq
K C K−

=
+

                                 (12) 

Thus, for any investment value 0V , the number of shares q is a decreasing function of the percentage p.  
In what follows, we price the option using the implicit volatility iσ . 
We denote its price by ( )0 , , , iCall S K r σ . 

Remark 2.2. (Capped OBPI) If the manager wants to increase his profit while potentially discarding very high 
value of S, the options are capped at a level L, as follows. Consider a parameter L higher than the strike K.  

The terminal value of the capped OBPI with strike K and parameter L is defined by: 

( )

( ) ( )

, , ,

.

OBPI
cap T T

T T

V qMin K S K L

q K S K S L

+

+ +

 = + − 
 = + − − − 

                         (13) 

3. Stochastic Dominance of Portfolio Insurance Strategies 
3.1. Stochastic Dominance: Theoretical Results 
In what follows, we provide several sufficient conditions to get stochastic dominance results as in Zagst and 
Kraus [10] but without assuming as them that q is equal to 1 (see previous Relation 12). 
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3.1.1. The Second Order Stochastic Dominance 
Mosler [12] has stated a theorem for determining the second order stochastic dominance (denoted by 2 ) be-
tween random variables based on the condition of intersection between the cumulative distribution functions. 

Theorem 3.1. (Mosler [12]). Let V ∗  and V be two random variables with finite expectations. Denote for all 
[ ],x a b∈ , ( ) ( ) ( )VV

H x F x F x∗= −  the difference of their respective cumulative distributions functions. Then, 
we get:  

[ ]1 2, ,H E V E V V V∗ ∗ ∈ ≤ ⇒  S  

where kS  denotes the set of all real functions H, with k changes of sign: 

{
( ) ( ) ( ) }

1 0 1

1

: : , , , : , :

with 1 0, , ,  0, , ,  0 .

k k k

j
j j

H s s s s

H s s s s j k H

+

+

= → ∃ ∈ = −∞ = +∞

− ⋅ ≥ ∀ ∈ = ≠





S R R R
 

We deduce that, if ( ) kH x ∈S , then the two functions ( )V
F x∗  and ( )VF x  intersect k times. 

For example, we have: 

( )
( )
( )

1
1 1

1

0, ,
: :  with ,  0 .

0, ,

s s
H s H s H

s s

 ≥ ∈ −∞  = → ∃ ∈ ≠  
≤ ∈ +∞  

S R R R  

And 

( )
( )
( )
( )

1

2 1 2 1 2

2

0, ,
: :  , with 0, , ,  0 .

0, ,

s s
H s s H s s s s H

s s

 ≥ ∈ −∞
 = → ∃ ∈ ≤ ∈ ≠  
  ≥ ∈ +∞ 

S R R R  

The second order stochastic dominance depends on the values taken by the multiple m, the historical volatility 
σ  and the implied volatility iσ  used to price the Call for the OBPI strategy. The determination of the second 
order stochastic dominance requires understanding the behavior of the function ( ) ( ) ( )OBPI CBPI

T TV V
H x F x F x= −  

based on the values taken by the multiple m. If 1m = , then the function H is strictly decreasing and presents a 
single point of intersection with the horizontal axis, thus 1H ∈S . Therefore, for 1m = , iσ σ≤ , we can conclude,  
using theorem of Mosler [12], that, if ( ) 1H x ∈S  and OBPI CPPI

T TE V E V   ≤    , then the CPPI strategy stochasti- 
cally dominates at the second order the OBPI strategy. 

Theorem 3.2. Let 1m =  and ( ) ( )0 0, , , , , ,iCall S K r Call S Kσ µ σ≥ . Additionally, assume that 
( )0 0 , , , iV Call S K r σ> . Then, we deduce: 

2 .CPPI OBPI
T TV V  

Proof. See Appendix A1.  
Remark 3.1. Condition ( )0 0 , , , iV Call S K r σ>  insures that Tq α>  which allows proving the previous 

theorem. When 1q =  (as in Zagst and Kraus [10]), this condition is necessary satisfied. 

3.1.2. The Third Order Stochastic Dominance 
As mentioned by Zagst and Kraus [10], the third order stochastic dominance (denoted by 3 ) can be deduced 
under some specific assumptions. 

Theorem 3.3. (Karlin-Novikov; Mosler [12]) 
Let V , V ∗  be non-negative random variables with finite second moments.  
Denote ( ) ( ) ( )V V

H x F x F x∗= −  for all .x∈ R  Then: 

[ ] 2 2
2 3, , .H E V E V E V E V V V∗ ∗ ∗     ∈ ≤ ≤ ⇒      S  

The validation of the third order stochastic dominance requires the analysis of the condition 2 2E V E V∗   ≤     
of previous Karlin and Novikov theorem. We get: 

Theorem 3.4. Assuming that ( )2 2
0e

rT OBPI
TV E V ≤   , there exists a value maxm  of the multiple such that:  
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( ) ( )2 2

max .CPPI OBPI
T TE V E V m m   ≤ ⇔ ≤      

 

Proof. See Appendix A.2. 
Using previous theorems, we deduce: 
Theorem 3.5. Let 1

minm  defined by: 

( )
( )
( )

01
min

0

, ,11 ln
, , i

Call S
m

r T Call S r
µ σ

µ σ
 

= +   −  
 

and { }1
min minmax 1,m m= . 

Then, we get: 
[ ]min max 3, .CPPI OBPI

T Tm m m V V∈ ⇒   

Proof. Condition 1
minm m≥  implies that CPPI OBPI

T TE V E V   ≥     (see Appendix A.1) while condition m ≤  
mmax implies that 2 2CPPI OBPI

T TE V E V   ≤    . Therefore, using Karlin and Novikov theorem, we deduce the result. 

To illustrate these theoretical results, we consider the following numerical example: 7%µ = , 15%σ = , 
18%iσ = , 3%r = , 5 yearsT = , 0 0 100V S= = , and 100%p = . Applying Relation (11), we deduce that 
116K   and 0.86q  . Table 1 illustrates the results of the third degree stochastic dominance for different val-

ues of the multiple 1, ,5m =  . 
Results of Table 1 show third order stochastic dominance of the CPPI strategy for [ ]3 2.99,3.12m = ∈ .  
Recall that, if the multiplier min 2.99m m≥ = , we have CPPI OBPI

T TE V E V   ≥    . However, for m ≥ mmax = 3.12,  

we have 2 2CPPI OBPI
T TE V E V   ≥     and the sufficient condition of Karlin and Novikov theorem is no longer satis-

fied. The range of the multiple values, for which a stochastic dominance at the third order is verified, depends 
notably on the values of the implied volatility, the empirical volatility and the drift. Figures 1-3 illustrate this de-
pendence. 

 
Table 1. The third order stochastic dominance for multipliers equal to 1, ∙∙∙, 5.                                                   

 m = 1 m = 2 m = 3 m = 4 m = 5 

minm    2.99   

minm m  - - * * * 

Condition 2S  - * * * * 

maxm    3.12   

maxm m  - * * - - 

Third order SD if 
[ ]min max,m m m∈  - - * - - 

 

 
Figure 1. The value of mmin depending on the drift and the implied volatility.                                                 
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Figure 2. The value of mmax depending on the drift and the implied volatility.                                                 

 

 
Figure 3. Difference of the upper and lower bounds on the multiplier.                                                 

 
The value of the lower bound minm  is a decreasing function with respect to the value of the drift µ . Indeed, 

when the drift increases, the expectation of the CPPI portfolio value increases more than that of the OBPI port-
folio since the CPPI strategy is more allocated on the risky asset. The value of the lower bound minm  is not al-
ways an increasing function of the implied volatility. 

The value of the upper bound maxm  is a decreasing function with respect to the value of the drift µ . Indeed, 
when the drift increases, the expectation of the square of the CPPI portfolio value increases more than that of the 
OBPI portfolio since the CPPI strategy is more allocated on the risky asset. Therefore, the condition  

2 2CPPI OBPI
T TE V E V   ≤     is more stringent when the multiple m increases. The value of the lower bound minm   

is almost always an increasing function of the implied volatility. 
Previous stochastic dominance results have been established for the standard cases, i.e. the strategies are not 

capped. To deal with capped strategies as defined in Remarks (Capped CPPI) and (Capped OBPI), we have to 
conduct a numerical analysis. In a first step, we simulate the portfolios values using standard Monte Carlo me-
thods; in a second step, we test the stochastic dominance properties. 

4. Stochastic Dominance of Portfolio Insurance Strategies 
4.1. Stochastic Dominance: Numerical and Empirical Tests 
In the empirical framework, the stochastic dominance has been pioneered for example by Kroll and Levy [13]. 
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To avoid sampling errors due to i.i.d. assumptions, general stochastic dominance tests have been developed (e.g. 
Davidson and Duclos [14]; Barrett and Donald [1]; Post [15]; Linton et al. [16]; Scaillet and Topaloglou [17]). 
The tests introduced by Barrett and Donald [1] and Linton et al. [16] are based on a comparison of the cumula-
tive density functions of studied perspectives. They are based on the Kolmogorov-Smirnov type tests. Barrett 
and Donald [1] examine the application of tests for any predetermined orders of stochastic dominance, jSD , 
using several simulation and bootstrap methods to estimate an asymptotic p-value. 

4.1.1. Stochastic Dominance and Hypothesis Formulation 
Due to the characterizations of stochastic dominance, it is convenient to represent the various orders of stochas-
tic dominance using the integral operators, ( ).;j GF , corresponding to successive integrations of the cumulative 
distribution function G to order 1j − , namely: 

( ) ( )1 ; ,z G G z=F  

( ) ( ) ( )2 1
0 0

; d ; d ,
z z

z G G t t t G t= =∫ ∫F F  

( ) ( ) ( )3 2
0 0 0

; d ; d ,
z s z

z G G t t s G s= =∫ ∫ ∫F F  

and so on. 
The general hypotheses for testing stochastic dominance of G with respect to F at order j can be written com-

pactly as: 
( ) ( ) ( )0 : ; ; for all , ,j

j jH z G z F z z z≤ ∈F F  

( ) ( ) ( )1 : ; ; for at least one , .j
j jH z G z F z z z∈F F  

4.1.2. Test Statistics and Asymptotic Properties 
In this paper, we test for stochastic dominance using the empirical distribution functions estimated from simula-
tion of the two insurance portfolio strategies. The test of Linton et al. [16] allows for dependence in the data, and 
can be conducted with a limited number of assumptions. Suppose two prospects X and Y. Let N be the number of 
the realizations for the two prospects { }; 1, ,iX i N=   and { }; 1, ,iY i N=  . The null hypothesis is that a par-
ticular prospect X dominates the other one. 

The empirical distributions used to construct the tests are respectively given by: 

( ) ( ) ( ) ( )
1 1

1 11 , 1 ,
N N

N i N i
i i

F z X z G z Y z
N N= =

= ≤ = ≤∑ ∑


 

where j denotes the order of dominance and ( )1 .  denotes the indicator function. 
The statistical test NjT  for the full sample is defined by: 

( ) ( )( )sup ; ; .Nj j N j N
z

T N z G z F= −
 

F F  

The linear operator jF  is written as: 

( ) ( ) ( ) ( ) ( ) 1

1 1

1 1 1; ;1 1 .
1 !i

N N j
j N j X i i

i i
z F z X z z X

N N j
−

= =

= = ≤ −
−∑ ∑



F F  

The second term of the linear operator is derived from Davidson and Duclos [14]. 
We have also to define a method in order to obtain the critical value of the test. The standard bootstrap does 

not work because we need to impose the null hypothesis in that case, which is difficult because it is defined by a 
complicated system of inequalities. According to Linton et al. [16], we apply the sub sampling method which is 
very simple to define and yet provide consistent critical values. Following the circular block method of Kläver 
[18], we have to compute again the test statistic for the sub sample of size b for each of the 1N b− +  different  
subsamples ( ){ }1, ,i i bW W + − , where { }; 1, 2i kiW X k= =  and 1, , 1i N b= − + , and for the subsamples  
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( ){ }1 1, , , , ,i N i b NW W W W + − −   where 2, ,i N b N= − +  . Let ( ), ,N b it  be equal to the statistic bt  evaluated at  

the subsample ( ){ }1, ,i i bW W + −  of size b. We have: 

( ) ( )( ), , 1, ,  for 1, , 1,b iN b i i bt t W W i N b+ −= = − +   

with 

( )
( ) ( )( ), , sup .; ; .bbj jN b j

z
t b z G z F= −F F  

The underlying rationale is that one can approximate the sampling distribution of NT  using the distribution 
of the values of ( ), ,N b jt  computed over 1N b− +  different subsamples of size b, when 0b N →  and 
b →∞  as N →∞ . 

We consider that each of these sub samples is also a sample of the true sampling distribution of the original 
data. 

Following Kläver [6], we consider a sub sample size ( ) 10 .b N N=  
Let jp  denote the empirical p-value: 

( )( ), ,
1

1 1 .
N

j NjN b j
i

p t T
N =

= >∑  

For 1, 2,3j = , we reject the null hypothesis at α  significance according to the following rule: 
• If ( ) ( ) ,j

Np k α≤  we reject the null hypothesis of j-order stochastic dominance of variable X with respect to 
the variable Y. 

• If ( ) ( ) ,j
Np k α

  the variable X stochastically dominates the variable Y at the j-order. 

4.1.3. Numerical Illustrations 
In this subsection, we apply the tests of stochastic dominance in particular to check if the interval [ ]min max,m m  
provided for the third order stochastic dominance between the CPPI strategies and OBPI strategies in previous 
theoretical subsection can be enlarged. We consider the case of a guarantee equal to 100% of the initially in-
vested amount. Our numerical base case corresponds to a drift equal to 4.5%, an investment horizon equal to 8 
years, an historical volatility equal to 15%. Our goal is to determine an order of stochastic dominance between 
the two insured portfolios by varying the multiplier of the CPPI strategy into the interval [ ]2,9 . We begin by 
varying the implicit volatility in [ ]20%;32%  as illustrated in Table 2. 

We note that, for all cases in which the implied volatility far exceeds the historical volatility, the CPPI strate-
gy, with a multiplier equal to 2, dominates the OBPI one. 

We can also study the effect of the drift on the third order stochastic dominance (values of drift 
[ ]4.5%,7%µ ∈ ). We still fix the investment maturity to 8 years and consider a historical volatility equal to15%, 

a multiplier range in [ ]2,9 , an implied volatility in [ ]27%,32%  and a guarantee level equal to 100%. 
As shown in Table 3, the TSD is never verified, even if 2m =  and [ ]27%,32%iσ ∈  when 5%µ ≥ . We 

note that the CPPI strategy loses its attractiveness. Since 2m = , we conclude that the CPPI strategy takes less 
advantage from the trend increase. 

For lower trend levels and implicit volatility iσ  higher than the historical one σ , we get results given in 
Table 4. 

 
Table 2. Third order stochastic dominance according to implicit volatility.                                                 

 m  µ  iσ  σ  -valuep  SD  

iσ σ≤  2 to 9 4.5%  15%  NTSD 

iσ σ>  2 4.5% 27% 15% 0.0187 TSD 

 [3,9] 4.5% 27% 15%  NTSD 

 2 4.5% 30% 15% 0.2990 TSD 

 [3,9] 4.5% 30% 15%  NTSD 
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Table 3. No third order stochastic dominance cases.                                                                                                 

 m  µ  iσ  σ  -valuep  SD  

iσ σ<  [ ]2,9  [ ]4.5%,7%  [ ]11%,15%  15%  0 NTSD 

iσ σ>  [ ]2,9  [ ]4.5%,7%  [ ]17%,21%  15%   NTSD 

iσ σ>  [ ]2,9  [ ]4.5%,7%  [ ]21%,26%  15%   NTSD 

iσ σ>  [ ]2,9  [ ]5%,7%  [ ]27%,32%  15%   NTSD 

 
Table 4. Third order stochastic dominance (low trend).                                                                      

m  µ  iσ  σ  -valuep  SD  

4 1% 17% 15% 0.0305 TSD 

[ ]2, ,5→  1% 17% 15% 0 NTSD 

[ ]2, ,5→  1% [ ]18% 20%→  15% 0 NTSD 

3 2% 18% 15% 0.3408 TSD 

3 2% 19% 15% 0.0190 TSD 

[ ]2, ,5→  2% [ ]17% 20%→  15% 0 NTSD 

[2, ,5]→  2% [ ]18%,19%  15% 0 NTSD 

2 3% 18% 15% 0.0533 TSD 

2 3% 19% 15% 0.3913 TSD 

[2, ,5]→  [ ]3%, ,4%→  [ ]17% 20%→  15% 0 NTSD 

 
Remark 3.2. To summarize the numerical results: 
-We have found that the CPPI method third order stochastically dominates the OBPI one for high implied vo-

latility relatively to the empirical volatility; 
-When the interval [ ]min max,m m  degenerates, we can find multiples for which the CPPI is stochastically 

dominated at the third order by OBPI; 
-The implied volatility interval where the dominance relation is insured is larger for high values of implied 

volatility, for low values of the drift and for high values of the multiple. 
-The TSD property of the CPPI strategy is rejected for the low values of iσ  with respect to σ . 
-Through this numerical study, we can detect cases of third order stochastic dominance beyond the theoretical 

cases. 
-Finally, when strategies are capped, the TSD property is generally not satisfied4. 

5. Conclusion 
In the present paper, we have compared the CPPI and OBPI strategies, mainly with respect to the third stochas-
tic dominance (TSD). We find that the CPPI method third order stochastically dominates the OBPI one for high 
implied volatility relatively to the empirical volatility. We have checked the TSD of the CPPI method compared 
to the OBPI method for low values of the drift weighted by high values of the multiplier. We have shown that 
the relation of SDT is rejected for the low values of the implicit volatility with respect to the statistical one. Fur-
ther extensions could be based on the use of almost stochastic dominance as defined by Leshno and Levy [19], 
in order to extend the range of the multiple for which the CPPI dominates the OBPI. 
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Appendix 
Appendix A.1. (Proof of Theorem 3.2) 
The proof is similar to the proofs of Theorems 2, 3 and 4 of Zagst and Kraus [10] except that we take account of 
Relation (12)5. 

-The first step consists in proving the following equivalence: 

( ) ( )( 1)( )
0 0, , e , , ,OBPI CPPI m r T

T T iE V E V Call S r Call Sµσ µ σ− −   ≤ ⇔ ≥     

which is also equivalent to: 

( )
( )
( )

01
min

0

, ,11 ln .
, , i

Call S
m m

r T Call S r
µ σ

µ σ
 

≥ = +   −  
 

The proof is straightforward, using usual computations of both OBPI
TE V    and CPPI

TE V   . Note this condi-
tion does not depend on q. 

-The second step is to demonstrate that, for 1m > , the function ( ) ( ) ( )OBPI CBPI
T TV V

H x F x F x= −  satisfies the 
following property: 

( )
( )

( )1

2 11
12

0
21

1 e , ,1 .
1 ee

m
m

m

rT
i

m T rT

p m Call S r
H

m Kqσ

σ
−

−

−

− ⋅ −

 − ⋅
  ⇒ ∈
 − ⋅ 

 S  

For this purpose, we can note that both the cumulative functions ( )CPPI
TV

F x  and ( )OBPI
TV

F x  can be written as 
follows:  

( ) ( )0 ,OBPI
T

TV
F x P pV q S K x+ = + − ≤   

( ) 0 .CPPI
T

m
T TV

F x P pV S xα = + ≤   

Therefore, we deduce in particular that the sign of H does change on ( ]0, pV−∞  since ( ) 0H x = .  
For ] [0 ,pV +∞ , we have to prove that the sign of H changes exactly twice. Therefore, we search the solutions 

of the equation ( ) 0H x = . Denote: 

( ) ( ) ( ) and .OBPI CPPI
T T

m
TV V

f s q s K f s sα+= − =  

Then we get: 

( ) ( ){ }
( ) ( ){ }

0

0and .

OBPI OBPI
T T

CPPI CPPI
T T

V V

V V

F x P f x x pV

F x P f x x pV

= ≤ −

= ≤ −
 

Therefore, OBPI
TV

F  and CPPI
TV

F  intersect if and only OBPI
TV

f  and CPPI
TV

f  does, which is equivalent to 

( ) .m
Tq s K sα+− =  

Now, we introduce the function ( ) m
Th s s qs qKα= − + . 

1) For 1m > , it reaches a minimum at a given value ( )( )
1

1m
Ts q mα −∗ = .  

Therefore, if ( ) 0h s∗ <  the function h has exactly two zeros 1s  and 2s , which means that OBPI
TV

f  and 
CPPI

TV
f  intersect twice. 

Standard calculus leads to the following condition: 

( )
( )

( )1

2 11
12

0

1 .

1 e , ,1 .
1 ee

m
m

m

rT
i

m T rT

p m Call S r
m Kqσ

σ
−

−

−

− −

 − ⋅
  <
 − ⋅ 

 

 

 

5More details are available on request. 
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In that case, we have: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

1 2,

2

0 , ,

0 ,

0 , ,

OBPI CPPI
T T

OBPI CPPI
T T

OBPI CPPI
T T

V V

V V

V V

H x F x F x x s

H x F x F x s x s

H x F x F x x s

≥ ⇔ ≥ ∀ ≤

≤ ⇔ ≤ ∀ < <

≥ ⇔ ≥ ∀ ≥

 

which implies that 2H ∈S . 
2) For 1m = , there exists only one intersection point equal to ( )( )TqK q α−  provided that Tq α> .  
This latter condition is equivalent to ( )0 0 , , iV Call S r σ> . It is necessary satisfied for the special case 1q =  

of Zagst and Kraus [10]. It implies that 1H ∈S . 

Appendix A.2. (Proof of Theorem 3.4) 
The proof is similar to the proof of Theorem 6 of Zagst and Kraus [10] but it takes account of Relation (12). 

We have to examine the condition 2 2CPPI OBPI
T TE V E V   ≤    . 

-For the CPPI strategy, we get: 

( ) ( )( )

( ) ( )( ) ( )2 2

0 0

2 22
0

1 e e ,

1 e e e 1 .

r m r TCPPI rT
T

r m r TCPPI rT m T
T

E V pV V p

Var V V p

µ

µ σ

+ −−

+ −−

  = + − ⋅ 

  = − ⋅ − 
 

-For the OBPI strategy, we get: 

{ } ( )0 0 0max ;0 e , , , ,OBPI T
T TE V pV qE S K pV q Call S Kµ µ σ  = + − = +     

and 
 2[ ]OBPI

TVar V q= ×  

[ ] [ ] ( )2 22 2 2 2 2
0 1 0 1 2 0e 2 e e , , , .OBPI T T T T

TVar V q S N d T KS N d K N d Call S Kµ σ µ µσ µ σ+    = × + − + −     

with ( ) ( )20 2

1

S
KLn T

T
d

µ σ

σ

+ +
=  and 2 1d d Tσ= − . 

Then, we get: 
22 ,CPPI CPPI CPPI

T T TE V Var V E V     = +       

from which we deduce: 
 2[ ]CPPI

TE V =  

( ) ( )( ) ( ) ( ) ( )( )2 22 22 22 2 2
0 0 01 e e e 2 1 e er m r T r m r TCPPI rT m T rT

TE V V p pV pV pµ µσ+ − + −− −  = − ⋅ + + − ⋅   

We have also: 
22 ,OBPI OBPI OBPI

T T TE V Var V E V     = +       

which obviously does not depend on the multiple m. 
Introduce now the function g defined by: 

( ) ( ) ( )( ) ( )

( ) ( )( )

2 22 222 2 2
0 0

22 2
0

1 e e e

2 1 e e .

r m r TCPPI OBPI rT m T
T T

r m r TrT OBPI
T

g m E V E V V p pV

pV p E V

µ σ

µ

+ −−

+ −−

   = − = − ⋅ +   

 + − ⋅ −  

 

The function ( ).g  is continuous and strictly increasing. It converges to infinity when m goes to infinity. 
Therefore, assuming that ( )0 0g ≤ , there exists one and only one value maxm  such that ( )max 0.g m =  
Finally, we deduce that: 
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2 2
max .CPPI OBPI

T TE V E V m m   ≤ ⇔ ≤     

Note that condition ( )0 0g ≤  is equivalent to ( )2 2
0e

rT OBPI
TV E V ≤    since, for 0m = , the CPPI strategy  

corresponds to a whole investment on the risk free asset B. 
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