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Abstract 
We study the default risk in incomplete information. That means we model the value of a firm by a 
Lévy process which is the sum of a Brownian motion with drift and a compound Poisson process. 
This Lévy process cannot be completely observed, and another process represents the available 
information on the firm. We obtain a stochastic Volterra equation satisfied by the conditional den-
sity of the default time given the available information. The uniqueness of solution of this equation 
is proved. Numerical examples of (conditional) density are also given. 
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1. Introduction 
Here we consider a jump-diffusion process X which models the value of a firm. This is a Lévy process. Details 
on this class of processes can be found in [1] and [2]. Their use in financial modeling is well developed in [3]. 
We study the first passage time of process X at level 0x >  modeling the default time. We investigate the 
behavior of the default time under incomplete observation of assets. In the literature, there exists some papers in 
relation to this topic. Duffie and Lando [4] suppose that bond investors cannot observe the issuer’s assets 
directly; instead, they only receive periodic and imperfect reports. For a setting in which the assets of the firm 
are geometric Brownian motion until informed equity holders optimally liquidate, they derive the conditional 
distribution of the assets, and give the available information. In a similar model, but with complete information, 
Kou and Wang [5] study the first passage time of a jump-diffusion process whose jump sizes follow a double 
exponential distribution. They obtain explicit solutions of the Laplace transform of the distribution of the first 
passage time. Laplace transform of the joint distribution of jump-diffusion and its running maximum, 
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supt s t sS X≤= , is too obtained. To finish, they give numerical examples. Bernyk et al. [6], for their part, 
consider stable Lévy process X of index ] [1,2α ∈  with non negative jumps and its running maximum. They 
characterize the density function of tS  as the unique solution of a weakly singular Volterra integral equation of 
the first kind. This leads to an explicit representation of the density of the first passage time. To unify the noisy 
information in Duffie and Lando [4], X. Guo, R. A. Jarrow and Y. Zang [7] define a filtration which models 
incomplete information. By simple examples, they give the importance of this notion. Similarly to Kou and 
Wang, without specifying the jumps size law, Dorobantu [8] provides the intensity function of the default time. 
That is very important for investors, but the information brought by this intensity is low. Furthermore, Roynette 
et al. [9] prove that the Laplace transform of the random triplet (first passage time, overshoot, undershoot) 
satisfies an integral equation. After normalization of the first passage time, they show under some convenient 
assumptions that the random triplet converges in distribution as level x goes to ∞ . Gapeev and Jeanblanc [10] 
study a model of a financial market in which the dividend rates of two risky asset’s initial values change when 
certain unobservable external events occur. The asset price dynamics are described by a geometric Brownian 
motion, with random drift rates switching at independent exponential random times. These random times are 
independent of the constantly correlated driving Brownian motion. They obtain closed expressions for rational 
values of European contingent claims given the available information. Moreover, estimates of the switching 
times and their conditional probability density are provided. Coutin and Dorobantu [11] prove that the default 
time law has a density (defective when ( )1 0X < ) with respect to the Lebesgue measure in case of a stationary 
independent increment process built on a pair (compound Poisson process, Brownian motion). 

We extend this approach studying the conditional law of the first passage time of Lévy process at level x 
given a partial information. We solve this problem using filtering theory inspired by Zakai [12], Pardoux [13], 
Coutin [14], Bain and Crisan [15], based on the so called “reference probability measure” method. The paper is 
organized as follows: Section 2 sets the model; Section 3 gives the results on the existence of the conditional 
density given the observed filtration and on the integro-differential equation satisfied by this conditional density; 
Section 4 gives the proofs of the results. To finish, we conclude and give some auxiliary results in Appendix. 

2. Model and Motivations 
This section defines the basic space in which we work and announces what we will do. Subsection 2.1 gives the 
model of the firm value and defines the default time. Subsection 2.2 recalls some important results in the 
complete information case. Subsection 2.3 defines the signal and observation process and the model for 
available information. Basically, it introduces the notion of filtering theory. Subsection 2.4 gives our motivation. 

2.1. Construction of the Model 
Let ( )( )0, , , 0 ,t tΩ ≥    be a filtered probability space satisfying the usual conditions on which we define a  
standard Brownian motion W, a sequence of independent and identically distributed random variables ( ) *i i

Y
∈   

with distribution function YF , a Poisson process N with intensity 0λ >  and a stochastic process Q. We assume 
that all these elements are independent, ( ),W Q  is a Brownian motion and ( ),Y N  is a compound  
Poisson process with intensity ν under 0 defined for any Borel set A by ( ) ( )d , d dYA

t A F y tν λ= ∫ . On this  

probability space, we define a process X as follows:  

.
tN

t t i
i

X mt W Y= + +∑                                      (1) 

X models a firm value and the default is modeled by the first passage time of X at a level 0x > . Hence the 
default time is defined as  

{ }inf 0 :x tt X xτ = ≥ ≥ .                                   (2) 

We suppose that X is not perfectly observable and that observation is modeled by process Q. 

2.2. Some Results When X Is Perfectly Observed 

Let ( ), 0tX t ≥  be a Brownian motion with drift m∈R ( t tX mt W= + ). For 0z > , we let { }inf 0, .z tt X zτ = ≥ ≥   
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By (5.12) page 197 of [16], zτ  has the following law on + :  

( ) ( ) ( )0, d dzf u z u uτ δ∞+ = ∞

                                (3) 

where  

( ) ( ) ] [ ( ) ( )2 0
0,3

1, exp and 1 e .
22π

mz mz
z

z
f u z z mu u

uu
τ −

+∞
 = − − = ∞ = −  



1  

The function ( ).,f z  is ∞  on [ [0,+∞ , and all its derivatives admit 0 as right limit at 0 and therefore belongs  
to [ [( )0,∞ +∞ . For 0σ > , Roynette et al. [9] consider as a firm value the process 1

tN
t t iiX mt W Yσ

=
= + +∑  and  

as a default time the random variable { }inf 0 : .x tt X xτ = ≥ ≥  They let :
xxK X xτ= −  namely overshoot and  

:
x

xL x X
τ −

= −  namely undershoot. They prove that the Laplace transform of ( ), ,x x xK Lτ  satisfies an integral 
equation. After a suitable renormalization of xτ  that we can note here xτ , they show that ( ), ,x x xK Lτ  
converges in distribution as x goes to ∞ . Overall they have obtained an asymptotic behavior of the defaut time, 
the overshoot and the undershoot. 

For a general Lévy process, Doney and Kiprianou [17] give the law of the quintuplet  

( ), , , ,
x xx x x

xG G X x x X x Xτ ττ τ τ
τ − − −− − − −  where supt s t sX X≤=  and { }sup :t s sG s t X X= < = . 

Coutin and Dorobantu [11] consider (1) and (2) and show that xτ  admits a density with respect to the 
Lebesgue measure. They give the following closed expression of this density  

( )
( )( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1 1 , if 0
,

2 if 0,
2 4

x x N t Nt tt Y t T N T

Y Y Y Y

F x X f t T x X t
f t x

F x F x F x F x t

τ τλ

λ λ

> >

− −

 − − + − − >
= 
 − − + − =


 
           (4) 

where ( )*,iT i∈  is the sequence of the jump times of the process N. 

2.3. The Incomplete Information 
Our work is inspired and is in the same spirit as D. Dorobantu [8]. In her thesis, Dorobantu assumes that 
investors wishing to detain a part of the firm do not have complete information. They don’t observe perfectly the 
process value X of the firm but a noisy value. She defined a process Q independent of , , W N Y  and satisfying 
the following evolution equation  

( )
0

d ,
t

t s tQ h X s B t += + ∈∫   

with h a Borel and bounded function and B a standard Brownian motion.  
Definition 1. The process X is called the signal. The process Q is called the observation and is perfectly 

observed by investors.  
This leads us to a filtering model and we introduce the filtering framework inspired of Zakai [12], Coutin [14] 

or Pardoux [13].  

Since the function h is bounded, the Novikov condition, 
( )2

0
1 d0 20, e ,

T
sh X s

T ∫ 
∀ > < ∞  

 
  is satisfied and we  

define the following exponential martingale for the filtration ( ) 0t t≥
  by  

( ) ( )2
0 0

1exp d d , .
2

t t
t s s sL h X Q h X s t +

 = − ∈ 
 ∫ ∫   

For a fixed maturity 0T > , the process ( ),t TL t∧ +∈  is a uniformly integrable ( )( )0
0

, t t≥
  -martingale.  

Definition 2. For fixed 0t > , let us define a probability measure   on t  by  
0

| |:
t ttL=    

We also note that the law of X, so the one of xτ , under 0  is the same as under  . Note that investors have 
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additional information on the firm which is modeled at time t by  

( )1 , .
xt u u tτσ ≤= ≤  

Then all the available information is represented by the filtration  

( ): ,  0Q
t t t t= = ∨ ≥     

where the σ-algebra Q
t  is generated by the observation of the process Q up to time t.  

2.4. Motivations 
D. Dorobantu [8] obtains the  -intensity of the default, namely the  -predictable process ( ) 0t t

λ
≥

, such that  

0
d ,  0

x

t
t t sM s tτ λ>= − ≥∫1  

is a  -martingale. With this result, using their available information, the investors can predict the default time. 
More precisely, given that default did not occur at time t, the probability that it occurs at time dt t+  is  
approximated by dt tλ . But the information brought by the knowledge of ( ) 0t t

λ
≥

 is low. This motivates us to  

show that the conditional law of default time xτ  given   admits a density with respect to Lebesgue measure 
and to give its dynamic evolution. 

This section presents our basic model of a firm with incomplete information about its assets. More generally, 
we treat a continuous time setting, staying with the work of D. Dorobantu [8] in her thesis second part. Next 
section gives our main results.  

3. The Results 
3.1. Existence of the Conditional Density 
We recall that { }inf 0 :x tt X xτ = ≥ ≥  is the default time of a firm and t  is the available information of 
investors at time t. In this subsection, we prove that conditionally on the σ-algebra t , xτ  admits a density 
with respect to the Lebesgue measure.  

Proposition 1. For all 0t > , on the set { }x tτ > , the t  conditional law of xτ  has the following form  
( ) ( ) ( ) ( ) ( )( ), , d | d and | , | ,

xx t x t t t tf r t x r r G x Xττ δ τ∞ >+ = ∞ = ∞ = ∞ −1                (5) 

where  
( ) ( ), , : , | .t tf r t x f r t x X = − −    

And  

( ) ( ) ( ) ( )0, : , d .x x t
G t x t t f u x uτ τ

∞
= > = > = ∫   

Remark 1 Referring to [9], for all 0x > , the passage time xτ  is finite almost surely if and only if 
( )1 0m Y+ ≥ .  

3.2. Mixed Filtering-Integro-Differential Equation for Conditional Density 
In this subsection, we give our main results. Indeed, we first show that the conditional law of the hitting time xτ   
given the filtration ( ) 0t t≥

  satisfies a stochastic integro-differential equation. Afterwards, we give a uniqueness  

result. This type of equation is the same as the one studied in [18] with the only difference that here, we have 
more general Voltera random coefficients. 

Theorem 1. Let 0t >  be a real number. For any r t> , on the set { }x tτ > , the conditional density of xτ  
given t  satisfies the stochastic integro-differential equation:  

( ) ( )
( ) ( )( ) ( )

( )( ) ( )( )

( )
( )( ) ( )( ) ( )( ) ( )( )

1
0 0

2 1
0 0

, , ,
, , , , d , d

, |

, ,
, d , , , d .

, |

x

x

t t
u u

x u u u

t t

u u u

f r x f r u x
f r t x h r t u Q h t u Q

t G t u x X

f r u x
h t u u h r t u h t u u

G t u x X

τ

τ

τ
>

>

= + Π − Π
> − −

+ Π − Π Π  − −

∫ ∫

∫ ∫

1

1

 







        (6) 
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where  

( )( )
( ) ( )( )

( )( )
1

, |
, , ,

, |
x

x

u u u u

u u u

X f r u x X
r t u

G t u x X
τ

τ

>

>

Φ − −
Π Φ =

− −









1

1
 

( )( )
( ) ( )( )

( )( )
, |

,
, |

x

x

u u u u

u u u

X G t u x X
t u

G t u x X
τ

τ

>

>

Φ − −
Π Φ =

− −









1

1
 

and G is defined in Proposition 1.  
Proposition 2. If Equation (6) admits a solution, this one is unique.  

3.3. Some Technical Results 
Here, we give some technical and auxiliary results which are useful to prove Theorem 1 and Proposition 2.  

Proposition 3. For any bounded function ϕ  such that ( )xϕ τ  is X
TF -measurable, t T∀ ≤   

( )( ) ( ) ( ) ( )0 0 0 0
0

| | | d .
x t x t x

tQ Q
x T t x u u t x u u uL L h X Qτ τ τϕ τ ϕ τ ϕ τ

> > >
    = +    ∫     1 1 1        (7) 

By this proposition, we establish two corollaries which give a representation more accessible of the processes  

( )|
x

Q
b a b tt L τ< <  1  and ( )0 |

x

Q
T T tt Lτ >  1 : we apply Proposition 3 respectively to the functions 

] [( ){ },: a b yyφ → 1  and ] )( ){ },: ,T yyφ ∞→ 1  the second expressions being consequence of the fact that on the event  

{ } { },x xt uτ τ> ⊂ >  τx = u + 
ux X uτ θ−   (θ is the shift operator) and  

0 0| | .
x x x x Xut a b u u a u b u uτ τ τ τ −> < < > − < < −

   =   1 1 1 1     

Corollary 1. For all ,t a b< <  we have 0 .a s−   

1) ( ) ( ) ( )( )0 0 0 0
0

| | | d ,
x x x

tQ Q
b a b t x u u t a b u u uL a b L h X Qτ τ ττ< < > < < = < < +  ∫1 1 1              (8) 

and equivalently  

2) ( ) ( ) ( ) ( ) ( )( )0 0 0
0

| , , | d .
x x

tQ Q
b a b t x u u u u u u uL a b L h X G a u x X G b u x X Qτ ττ< < >  = < < + − − − − − ∫   1 1   (9) 

Corollary 2. For ,t T≤   

1) ( ) ( ) ( )( )0 0 0 0
0

| | | d ,
x x x

tQ Q
b T t x u u t T u u uL T L h X Qτ τ ττ> > > = > +  ∫1 1 1                (10) 

and equivalently  

2) ( ) ( ) ( ) ( )( )0 0 0
0

| , | d .
x x u

tQ Q
T T t x u u u u uL T L h X G T u x X Qτ ττ

>> = > + − −∫   1 1          (11) 

Proposition 4. For any 0 ,t a b< < <  we have on the set { },x tτ >   

( )
( )

( )
( )

( ) ( ) ( )( )
( )

( ) ( ) ( )( )
( )

( ) ( )

00 0

00 00

0 0

20 0

0 0

0

, , ||
d

| |

| , |
d

|

|

xx

x x

x x

x

x x

QQ
t u u u u u ub a b t x

uQ Q
xt t t t u u

Q Q
t u a b u u u u u u

u
Q

t u u

Q
u a b u u u ut

L h X G a u x X G b u x XL a b
Q

tL L

L L h X G t u x X
Q

L

L L h X G t

ττ

τ τ

τ τ

τ

τ τ

τ
τ

>< <

> >

< < >

>

< < >

 − − − − −< <  = +
>

− −
−

 
 

+

∫

∫

∫

11

1 1

1 1

1

1 1

 
 

 



 



 

 



 ( )( )
( )

( ) ( ) ( )( ) ( ) ( )( )
( )

2

30

0
0

20 0

, |
d

|

, |
, , | d .

|

x

x

x

x

Q
u u

Q
t u u

Q
t u u u u uQ

u u u u u u
Q

t u u

u x X
u

L

L h X G t u x X
L h X G a u x X G b u x X u

L

τ

τ
τ

τ

>

>
>

>

 − − 
 
 

− −
 − − − − − − × 

 
 

∫

1

1
1

1

















  (12) 
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Remark 2. Equation (12) of Proposition 4 can be rewriten as:  

( )
( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

0
1

0 0 0

2 1
0 0

, d , d

, d , , d .

t tx
t u u u

x

t t
u

a b
h t u Q h t u Q

t

h t u u h t u h t u u

τ
σ σ

τ

σ σ σ

< <
Γ = + − Γ

>

+ Γ −  

∫ ∫

∫ ∫


  

Where  

( )
( )

0

0

|
,

|
x

x

Q
b a b t

t Q
t t t

L

L
τ

τ

< <

>

Γ =








1

1
 

( )( ) { }
( ) ( ) ( )( )

( )
0

1
0

, , |
, ,

|
x

x

x

Q
u u u u u u

t Q
t u u

L h X G a u x X G b u x X
h t u

L
τ

τ
τ

σ
>

>
>

 − − − − − =








1
1

1
 

( )( ) { }
( ) ( )( )
( )

0

0

, |
, .

|
x

x

x

Q
u u u u u

t Q
t u u

L h X G t u x X
h t u

L
τ

τ
τ

σ >

>
>

− −
=









1
1

1
 

This equation is similar to the non normalized conditional distribution Equation (3.43) in A. Bain and D. 
Crisan [15], called Zakai equation.  

In the same way, Equation (6) which is derived from (12) is similar to the normalized conditional distribution 
Equation (3.57) in A. Bain and D. Crisan [15], called Kushner-Stratonovich equation.  

3.4. Numerical Examples 
We simulate the density of the first passage time respectively in complete information and in incomplete 
information. We suppose that the jump size follows a double exponential distribution, i.e, the common density of Y  
is given by ( ) 1 2

0 01 e 2 ey y
Y y yf y p qη ηη η−

≥ <= ⋅ ⋅ + ⋅ ⋅1 1  where , 0p q ≥  are constants, 1p q+ =  and 1, 2 0η η > .  

Here, 1 1 11 , 2 , 
0.02 0.03 2

pη η= = =  and 0.1x = . The difference between the figures is on one hand due to the  

information and on another hand to the values taken by the parameters m and λ .  
These four first figures (Figue 1 and Figure 2) represent the densities of the first passage time for a jump  

 

 
Figure 1. Densities for 3λ = .                                        
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Figure 2. Densities for 0.1λ = .                                   

 
diffusion process (case of complete information). The variable [ ]0,1t∈  and Monte Carlo results are based on 
5000 simulation runs. 

Figure 3, Figure 4 and Figure 6 are those of the conditional density ( ), ,f r t x  (case of incomplete 
information), for fixed 0.1t =  and the variable r is such that ] ]0.1,0.6r∈ . Part II of A. Bain and D. Crisan 
[15], namely Numerical Algorithms, where the authors give some tools to solve the filtering problem is really 
useful. The class of the numerical method used is the particle method for continuous time framework.Here, the 
Monte Carlo results are based on 120 simulation runs.  

We observe that the maximum reached is greater if the drift m is positive, meaning the positive level x is more 
probably reached in a shorter time.  

In incomplete information, the distance between the curve and axis is greater than in complete information 
case, this would mean that in case of incomplete information, the level x is more difficult to be reached in a short 
time.  

The choice of the small value of λ  serves to compare the results with the limiting Brownian motion case 
( 0λ = ). In complete information case, the formulae for the first passage times of Brownian motion can be 
found in [16].  

A large value of λ  implies a lot of jumps, a large computing time and less regular curve.  
In these last four figures (Figure 5 and Figure 6), the maximum reached is greater if the drift m is negative, 

meaning the positive level x is more probably reached in a shorter time. This is due to the very small value of 
λ .  

4. Proofs 
Proposition 1  

Proof. First note that, since X is a ( ), -Markov process and t t⊂  , we have  

( ) ( )( ) ( )
( )( ) ( ) ( )

| | | 1 |

, | , where . . | .

x x x x Xt

x

t
t t t t t

t
t t t tG x X

τ τ τ τ

τ

−=∞ =∞ > =∞

>

 = =   
= ∞ − =

    

  

   

 

1 1 1

1
 

The fact that xτ  is a ( ), -stopping time justifies the last equality. 
Secondly, for any b a t≥ >  the ( ),   Markov property of the process X and the fact that on the set 

{ }x tτ > , 
tx x X ttτ τ θ−= +   ensure  

( ) ( )( ) ( )( )< < > <| | | | .
x x x x Xt

t
a b t a b t t t a t b t tτ τ τ τ −≤ ≤ − ≤ −= =       1 1 1 1  
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Figure 3. Conditional densities for 2λ = .                                   

 

 
Figure 4. Conditional densities for 0.1λ = .                                   

 
The t -conditional law of 

tx Xτ −  has the density (possibly defective) ( ). , tf t x X− − , thus  

( ) ( )| , d | .
x x

b
a b t t t ta

f r t x X rτ τ≤ < >
 = − −  ∫  1 1  

By hypothesis, we have 0.r t a t− ≥ − >  It follows from Lemma 3 of Appendix that 

( ), d .
x

b
t ta

f r t x X rτ >
 − − < ∞  ∫ 1  

Then, we have for any ,b a t≥ >   
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Figure 5. Densities for 0.01λ = .                                   

 

 
Figure 6. Conditional densities for 0.01λ = .                                   

 

( ) ( ), d | , | d   . .
x x

b b
t t t t t ta a

f r t x X r f r t x X r a sτ τ> >
   − − = − −   ∫ ∫  1 1  

Now, we show the equality almost surely for all .b a t≥ >  Let 1M  and 2M  be the processes defined by  

( ) ( )1 2: , d | and : , | d .
x x

b b
t t t t t ta a

M b f r t x X r M b f r t x X rτ τ> >
   − − − −   ∫ ∫   1 1  

These processes are increasing, then they are sub-martingales with respect to the filtration   .b t b t= ∀ ≥   
Note that ( )( )1b M b   and ( )( )2b M b   are too continuous. Using Revuz-Yor Theorem 2.9 p. 61 [19], 



W. Ngom 
 

 
514 

they have same càd-làg modification for all b, meaning that  

( ) ( ), d | , | d     . . .
x x

b b
t t t t t ta a

f r t x X r f r t x X r a s bτ τ> >
   − − = − − ∀   ∫ ∫  1 1  

We conclude that, almost surely, for all ,b a t≥ >   

( ) ( )1 | , | d .
x x x x

b
t a b t t t t ta

f r t x X rτ τ τ τ> < ≤ > > = − − ∫  1 1 1  

Taking 1a t
n

= + , letting n going to infinity and using monotone Lebesgue Theorem yield that, .    ,a s b t− ∀ ≥   

( ) ( )| , | d .
x x

b
t b t t t tt

f r t x X rτ τ< ≤ > = − − ∫  1 1  

□ 
Proposition 2  
Proof. Let f  and g  be two solutions of Equation (6) and f gδ = − . It follows that  

( ) ( ) ( ) ( ) ( ) ( )( )
0 0

, , , , , , d , , , , , d
t t

ur t x r u x K t u x Q r u x K t u x h t u uδ δ δ= − + Π∫ ∫          (13) 

where  
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,
, , .
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x u u u

h t u
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− − 1
                          (14) 

We recall the expression  
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and remark that ( )( ),h t u h
∞

Π ≤ . Then  
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K t u x

G t u x Xτ
τ

∞
>

>

≤
− − 

1
1

 

Markov property implies  
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u
t u
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K t u x τ

τ

∞
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1
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We use Lemma 4 with 
x tt uY τ >= = 1  and b t=  and it follows that  

( )
( )
( )

0

0

|
, ,

|
x

x

x

Q
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and Lemma 7 (22) with the pair ( ),t u  gets  
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u Q
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. 

All computations are done on the set { }x tτ > . We observe too 
( )0

1
|

x

Q
t t u

u
Lτ >

→
 1

 is a positive  

submartingale. Then for all T t u≥ ≥ , we obtain by Lemma 7 (22) with the pair ( ),t T , Doob’s inequality and 
{ } { },x xT tτ τ> ⊂ >   

( ) ( ) ( )

2 2 2

0 0 0
0 0 0

1 1 1sup 4 4
| | |

x x x

Q Q Qu T t t u t t T T T TL L Lτ τ τ≤ > > >

                    ≤ ≤                         
1 1 1

  
    

. 
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Thanks to Jensen inequality and Lemma 8 with 2α =  and t T= , it follows that  

( )
0

0

1sup .
|

x

Qu T t u uLτ≤ >

 
  < ∞
 
 


 1

 

Concerning the numerator, ( ) ( )0 01 | | .
x

Q Q
u u u u uL Lτ > ≤    Since Novikov condition 

( )2
0

1 d0 2e  
T

sh X s∫ 
< ∞  

 
   

is satisfied then ( )0 | Q
u uL   is a locally square integrable ( )0 , Q  -martingale. Once again Doob’s 

inequality gets  

( )0 0sup | .
x

Q
u u u

u T
Lτ >

≤

  < ∞ 
 

  1  

So finally  
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L
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1
 and 
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|
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L
n

L
τ

τ

ω >

>
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1

1
. On the set nΩ , 

( ), , ,K t u x n h
∞

≤  ( )nT tω ≥ . Moreover (15) proves that nT →∞  so nn
Ω = Ω



. 

It follows using (13) that  

( ) ( ) ( ) ( ) ( ) ( )( )
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Ω
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∫ ∫

∫ ∫
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1 1

1

1 1

 

Taking ( ) ( ), , , ,
nn r t x r t xδ Ω∆ = 1 , we obtain  

( ) ( ) ( ) ( ) ( ) ( )( )
0 0

, , , , , , d , , , , , d .
t t

n n u nr t x r u x K t u x Q r u x K t u x h t u u∆ = − ∆ + ∆ Π∫ ∫           (16) 

Then  
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22 2
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, , 2 , , , , d

2 , , , , , d

2 1 , , d

t
n n u

t
n

t
n
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r u x K t u x h t u u
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  ∆ ≤ ∆     
 + ∆ Π  

 ≤ + ∆  

∫

∫

∫

 





. 

By Gronwall’s lemma, we deduce that ( ), , 0n r t x∆ =  is the unique solution of (16) on the set nΩ , so n∀   
( ), , 0.

n
r t xδ Ω =1  Uniqueness of solution of (6) is a consequence of nn

Ω = Ω


.                      □ 

Proposition 3 
Proof. Let be a process S ∈  where the set of processes   is defined in Lemma 5 and a time t. Lemma 7 

applied to ( ) 
xx tY τϕ τ >= 1  which belongs to ( )0, , X

TL F∞ Ω   implies  

( )( ) ( ) ( ) ( )( )0 0 0
0

  d .
x t x t x

t
x T t x x t u u u uL S L S h X uτ τ τϕ τ ϕ τ ϕ τ ρ

> > > = +  ∫  1 1 1  

Conditioning by Q
u  under the time integral, it follows that  
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( )( ) ( ) ( ) ( )( )( )0 0 0 0
0

 | d .
x t x t x

t Q
x T t x u u u u t x uL S S L h X uτ τ τϕ τ ϕ τ ρ ϕ τ

> > > = +  ∫    1 1 1  

Conversely compute the expectation of the product of 
0

1 d
t

t u u uS S Qρ= + ∫  by right hand of (7):  
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Since   is dense in ( )2 0, , ,QL Ω    

( )( ) ( ) ( ) ( )0 0 0
0

|  | d .
x t x t x t

tQ Q
x T t x u u x u uL L h X Qτ τ τϕ τ ϕ τ ϕ τ

> > >
   = +   ∫   1 1 1  

Finally we could replace ( )
x t xτ ϕ τ
>

1  by its u  conditional expectation since .Q
u u⊂                □ 

Proposition 4  
Proof. Applying Lemma 4, it follows that  
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Q
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                          (17) 

But, since the condition ( )( )0 2
0

, d
t

uf t u x X u− − < ∞∫   is not necessarily satisfied, we are not able to prove  

that ( )0 |
x

Q
t t tLτ > 1  is a semi martingale (e.g. see Protter’s Theorem 65 Chapter 4 [20]). This leads us to  

consider for 1,t T t< ≤ +  the expression ( )0 |
x

Q
T T tLτ > 1  instead of ( )0 |

x

Q
t t tLτ > 1  at denominator of  

(17). But Lemma 7 of Appendix ensures that  
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We apply Ito formula to the ratio of processes 
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1
. For this end, we let two processes  

satisfying the stochastic equations respectively (9) and (11):  
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We achieve the proof letting T t→  using the monotonous Lebesgue theorem since 
x Tτ >1  increases to 

x tτ >1  
when T t→ .                                                                             □ 

Theorem 1  
Proof. Let us now find a mixed filtering-integro-differential equation satisfied by the conditional probability 

density process defined from the representation  

( ) ( )| , , d for some .
x

b
a b t a

f r t x r a tτ< < = >∫ 1                         (18) 

We fix a and t such that a t> . Let be u t≤ , recalling the ( )0 ,  -Markov property of X at point u and the 
fact that Q ⊂   justify  
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By definition of G, we have  
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By Tonelli Theorem,  
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Similarly  
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x x
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In Equation (12) of Proposition 4,  
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are respectively replaced by  
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By hypothesis, we have 0r u a u− ≥ − > . 
For T t= , Lemma 8 of Appendix ensures that  
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Q
u u u u
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  < ∞   − −  
∫

 1
 

The numerators being bounded by uh L
∞

, we can apply stochastic Fubini’s theorem to Equation (12) Pro-  
position 4, which can be written again as  
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To express this result with   conditional expectation instead of 0  conditional expectation, each fraction  
under the integral is multiplied and divided by the same term ( )0 | .

x

Q
u u uLτ > 1  To manage the indicator func-  

tion, we use the filtration ( ), 0t t ≥  since xτ  is a  -stopping time. 
Therefore, using (20) in Lemma 4, on the set { },x tτ >  we obtain  
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1

 

which finishes the proof.                                                                    □ 

5. Conclusion 
This paper extends the study of the first passage time for a Lévy process in [5] from complete to incomplete 
information and D. Dorobantu’s work in [8] from intensity to conditional density. Here, we are proving the 
existence of the density of xτ  law given an information set, giving a stochastic differential integral equation 
satisfied by it and some numerical examples. All this gives us a behavior of the default time. In future works, we 
will be interested by the same studies in discrete time, in another kind of information set or under another 
process modeling the firm value. 
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Appendix 
Lemma 1. Let be µ  and σ  real numbers and G a Gaussian random variable with mean zero and variance 
one, then  
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By change of variable 22x y σ= + , it follows that  
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  = =
  + + 

∫  

□ 
Lemma 2. If ( )*,iT i∈  is the sequence of jump time of the process N, then  

1 1 2 .
tN

t
t T t

λ
 
  < +
 − 

  

Proof. We have  

1 1
0 1

1 1 e 1
n n n n

t

t

T t T T t T S
n nN n nt T t T t t T

λ

+

−

< < < < +
≥ ≥

     
  = = +       − − −    

∑ ∑  1 1  

where 1S  is an exponential random variable with parameter λ  and independent of nT  which follows a 
Gamma law with parameters n and λ . Therefore  

( )
( )

( )
( )

1

0
1

1

0
1

1 e 1 e e d d
1 !

1 d 1e 2 .
1 !

t

nt t u v
t u

nN

n
tt

n

u
v u

nt T t t u

t u t
nt t u t

λ
λ λ

λ

λ
λ λ

λ
λ λ

−−
+∞− −

−
≥

−
−

≥

 
  = +
  −− − 

≤ + = +
− −

∑∫ ∫

∑ ∫



 

□ 
Lemma 3. There exists some constants C  and C such that 0, 0,t x∀ > ≥   

( ), 2 .
mCf t x C m t

t t
λ≤ + + + +                               (19) 

Proof. The function f defined in (4) satisfies  
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( ) ( )( ), , , 0.
x N t Nt tT N Tf t x f t T x X tτλ >≤ + − − ∀ > 1  

Using the fact that if 
tx NTτ >  then 

NtTx X> , we have  

( )( ) { } ( )0
, , .

x N t N t Nt t tTNt
T N T N Tx X

f t T x X f t T x Xτ > − >

 
− − ≤ − − 

 
  1 1  

Replacing f  by its expression, we obtain  

( )
( )

( )( )
( )

( )
( )( )

( )

( )
( ) ( )

2

0 3

2

3

2

3

, 1 exp
22π

exp
22π

( ( ))
exp

22π

N tN tt

TNt
t

t

N N tt t

t
t

N t N tt t

t
t

T NT

x X
N

N

T T N

N
N

T N T N

N
N

x X m t Tx X
f t x

t Tt T

x X x X m t T

t Tt T

x X m t T x X m t T

t Tt T

λ

λ

λ

− >

+

  − − −−  ≤ + −  −  −   
   − − − −   ≤ + −  −  −   

 − − − − − −
≤ + −
 −− 






( )
1 .

2π
tN

m
t T

   
    +     −    



 

Let 
2

4
0 sup e

y

yC y
−

∈=  . We apply this bound to 
( )N tt

t

T N

N

x X m t T
y

t T

− − −
=

−
:  

( )
( ) ( )

( )( )
( )

2

401, e .
2π2π

T NN tt

Nt

tt

x X m t T

t T

NN

Cf t x m
t Tt T

λ

− − −
−

−

 
   
   ≤ + +   − −   

 

   

Remark that conditionally to process N and the iY , the law of the random variable 
( )N tt

t

T N

N

x X m t T

t T

− − −

−
 is a  

Gaussian law with mean 1
t

t

N
ii

N

x mt Y
t T

µ =
− −

=
−
∑  and variance 2 t

t

N

N

T
t T

σ =
−

 

Applying Lemma 1 we get the conditional expectation  

( )( )
( )

( )
22

22 2
4

2

2ee / , , 1, , .
2

T NN tt

Nt

x X m t T

t T
t i tN Y i N

µ

σ

σ

−− − −
+−

−

 
 
 = =
  +
 
 

  

Using the fact that 2 2 2
2 ,t t

t t

N N

N N

T t T
t T t T

σ σ
−

= ⇒ + =
− −

 we obtain since 22
tN

t
t T

σ+ ≥
−

  

( )
( )

0 1, .
π

tN

Cf t x m
t t T

λ
 

   ≤ + +      − 

  

The proof is completed with Lemma 2.                                                       □ 
The next lemma is inspired of Jeanblanc and Rutkovski [21] and Dorobantu [8].  
Lemma 4. For all ,t +∈  for all a and b such that ,t a b< <  for all ( )1 ,bY L F∈    
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( ) ( ) ( )
( )

0

0

|
| 0,  | 1 .

|
x

x x x

x

Q
b t tQ

t t t t t Q
t t t

L Y
Y

L
τ

τ τ τ
τ

<
> < >

>

> =


 



 



1
1 1

1
                   (20) 

For instance with ,
xa bY τ< <= 1  we get  

( ) ( )
( )

0

0

|
| .

|
x

x x

x

Q
b a b t

a b t t Q
t t t

L

L
τ

τ τ
τ

< <
< < >

>

=










1
1 1

1
 

Proof. Assume that there exists 0t  such that ( )0 0.x tτ > =  Then for all ( )0 0, 1.xt t tτ≥ ≤ =  It follows 
that the density function of xτ  f, defined in (4), is the zero function on [ [0 ,t +∞ . This means that [ [0 ,t t∀ ∈ ∞ ,  

( ) ( )( )( ) ( )( ) , 1 , 0 . .
x x N t Nt tt Y t T N Tf t x F x X f t T x X a sτ τλ > >= − − + − − = −  1 1  

Then, ( ) 1x tτ ≤ =  implies that ( )( )( ) 0.
x t Y tF x Xτ > − − = 1 1   

Thus ( )( ), 0.
x N t Nt tT N Tf t T x Xτ > − − = 1  But we have 0 .

tNt T a s− > −  and on the set  

{ } , 0.
t Ntx N TT x Xτ > − >  Therefore, ( ), 0

t NtN Tf t T x X− − >  for all t ≥ t0 Hence, we obtain 00,
x NtT t tτ > = ∀ ≥1   

what is not possible. Indeed,  

0
0 0

x N x n ttT T N n
n

τ τ> > =
≥

= ⇔ =∑1 1 1  

That means for all ( )1, , 0.n n x nn T t T Tτ+∈ < < > =   In particular, for 0n = ,  

( ) ( ) ( )1 1, 0 0 e 0.t
x xT t T t λτ τ> > = > > = ≠     

Thus for any t, t, ( ) 0x tτ > >  and ( )| 0.
x

Q
t tτ > > 1   

On the set { }x tτ > , any t -measurable random variable coincides with some Q
t -measurable random 

variable (cf. Jeanblanc and Rutkovski [21] p. 18). Then for all ( )1 ,bY L F∈  , there exists a Q
t -measurable 

random variable Z such that  

( )| .
x xt t tY Zτ τ> >= 1 1  

Taking the conditional expectation with respect to Q
t , we get  

( ) ( )| | .
x

Q Q
t t x tY Z tτ τ> = >  1  

This implies that  

( ) ( )
( )

|
| .

|
x

x x

x

Q
t t

t t t Q
t t

Y
Y τ

τ τ
τ

>
> >

>

=










1
1 1

1
 

Using Kallianpur-Striebel formula (see Pardoux [13]) and ( )0 | Q
b t tL L=   we obtain  

( ) ( )
( )

0

0

|
| .

|
x

x x

x

Q
b t t

t t t Q
t t t

L Y
Y

L
τ

τ τ
τ

>
> >

>

=










1
1 1

1
 

□ 
The following is in [14].  
Lemma 5. The family of Q  adapted processes  

[ ]( ). 2 2
. 0 0

1exp d d , 0, ,
2

t
s s sS Q s L Tρ ρ ρ  = = − ∈  

  
∫ ∫   
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is total in the set of processes taking their values in ( )2 0, , .Q
tL Ω    

Let us denote by W  (resp. N  and X ) the completed, right continuous filtration generated by W, (resp. 
N or X)  

Lemma 6. Let { }, 0tU t ≥  be an W N⊗  -progressively measurable process such that for all 0t ≥ , we 
have  

0 2
0

d .
t

sU s  < +∞  ∫  

Then  
0

0
d | 0.

t W N
s s t tU Q ⊗ =  ∫                                (21) 

Proof. As in Lemma 5, the family of processes  

( )( ) ( ) [ ]( ) [ ]( ){ }. . 2
. 0 0

d e 1 d d , 0, , , 0, ,s x
s s A

r W N s x L T L T Aβγ γ β− ∞ = = + − ∈ ∈ ×  ∫ ∫ ∫      

is total in the set of processes taking their values in ( )2 0, , ,W NL Ω ⊗    where N  is the compensated 
Poisson random measure on ×   and A⊂   is a Borel set.  

Therefore, since ( )( ) ( )
0 0

1 d e 1 d d ,st t x
t s s s sA

r r W r N s xβγ −
−

= + + −∫ ∫ ∫   by Itô’s formula, we have  

( )
( )( )

0 0 0
0 0

0 0
0 0

d | d

d , e 1 d , 0.s

t tW N
t s s t t t s s

t t x
s s s s ss A s

r U Q r U Q

r U W Q U r N Qβγ− −

   ⊗ =      

   = + − =      

∫ ∫

∫ ∫ ∫ 

  

 

 
 

The equality is obtained from the fact that under 0 , , , 0Q W Q N= =  by independence.          □ 

Lemma 7. Let be a process S ∈  such that for any t 2
0 0

1exp d d ,
2

t t
t s s sS Q sρ ρ = − 

 ∫ ∫  [ ]( )2 0, ,L tρ ∈  . Let 

( ), , X
TY L∞∈ Ω    and T t≥ , then  

( ) ( ) ( ) ( )( )0 0 0 0
0

d
t

T t u u u u uYL S Y Y S L h X uρ= + ∫      

and  

( ) ( ) ( ) ( )0 0 0 0| |  ; | | .Q Q
T t t t T t t tYL YL YL YL= =                         (22) 

For instance  

( ) ( )0 0| | .
x xT T t T t tL Lτ τ> >=  1 1  

Proof. Let be 
.

. 0
d ,u u uS S Qρ= ∈∫   t T≤  and let us define the process K  

.
. 0

1 d .u u uK S Qρ= + ∫  

The integration by parts Itô formula applied to the product . .LK  between 0 and T yields  

( ) ( )
0 0 0

1 d d
T T T

T T u u u u u t u u u u u t u u u uL K L S dQ K L h X Q S L h X uρ ρ≤ ≤= + + +∫ ∫ ∫1 1  

and remark that .T T T tL K L S=  
Since X and Q are independent under 0 , we use Lemma 6 and it follows  

( ) ( ) ( ) ( )( )
( ) ( )( )

0 0 0 0
0

0 0
0

d

d .

t T
T t u u u u u

t
u u u u

YL S Y Y S L h X u

Y YS L h X u

ρ

ρ

∧
= +

= +

∫

∫

   

 


                   (23) 
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Similarly, using first [ ] ( )0 0 0 ,t t t t tYL S Y L S =       Itô’s formula on product of processes ( )0
. . .Y LS    

and the independence between X and Q under 0  yields  

( ) ( ) ( )( )0 0 0
0

d
t

t t u u u uYL S Y YS L h X uρ= + ∫   .                             (24) 

Equations (23) and (24) imply that  

( ) ( )0 0| | .Q Q
T t t tYL YL=    

Now let be ( ) ( )0, , X
t tf X L∞∈ Ω    and apply the above equality to ( )tYf X :  

( )( ) ( )( )0 0| |Q Q
t T t t t tYf X L Yf X L=    

so  

( )( ) ( )( )0 0
t T t t t tYf X L S Yf X L S=   

which concludes the proof.                                                                  □ 
Lemma 8. For all T t≥ , 0α∀ > , { }( )0 | 0

x

Q
T tT Lτ > > 1  almost surely and 

{ }( )
( )

( ) 21
|0 0 2

0

1 e .
|

x

t h

x
Q

T tT

T
L

α α
α

α

τ

τ ∞
+

−

>

 
 

≤ > 
  
  

 
 1

 

Proof. The process { }( )( )0 | , 
x

Q
T tT L t Tτ > ≤ 1  is a positive Q  (upper ) martingale, which converges to 

the non null random variable { }( )0 |
x

Q
T TT Lτ > 1  (see Lemma 4) then it never vanishes. 

From Corollary 2 (i), the process { }( )( )0 | , 
x

Q
T tTM L t Tτ >= ≤ 1  is a ( )0 , Q   martingale with decom-  

position  

{ }( ) ( ) { } ( )( )0 0 0
0

| | d .
x x

tQ Q
T t x u u u uT TL T L h X Qτ ττ> >= > + ∫   1 1  

Let { }( )0 1inf 0, | ,
x

Q
n T tTR t L

nτ >
 = > < 
 

 1  using Itô’s formula for x x α−
  between 0 and nt R∧  and  

taking the expectation we derive  
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∫
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1
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Using Gronwall’s Lemma  

{ }( )
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0
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x
Q

T u RT

T
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α α
α

α
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+
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  ≤ > 
 
 

 
 1

 

The proof of Lemma 8 is achieved by letting n going to infinity.                                   □ 
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