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Abstract 
We consider a rating-based model for the term structure of credit risk spreads wherein the credit- 
worthiness of the issuer is represented as a finite-state continuous time Markov process. This ap-
proach entails a progressive drift in credit quality towards default. A model of the economy is 
presented featuring stochastic transition probabilities; credit instruments are valued via an ultra 
parabolic Hamilton-Jacobi system of equations discretized utilizing the method-of-lines finite dif-
ference method. Computations for a callable bond are presented demonstrating the efficiency of 
the method. 
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1. Introduction 
When pricing of credit instruments subject to default risk, market participants typically assume that default is 
unpredictable, using dynamics derived from rating information in order to take advantage of credit events (cf. 
[1]). Generally, they fall into a loose hierarchy known as reduced-form models. The most ubiquitous approach 
involving hazard rate models wherein default risk via unexpected events is modeled by a jump process. In this 
framework, credit-risky securities are priced as discounted expectation under the risk neutral probability mea- 
sure with modified discount rate (cf. [2], [3]). Although conceptually simple and easy to implement, these 
models are limited by the appropriate calibration of the hazard rate process. More generally, spread modeling 
represents spreads directly and eliminates the need to make assumptions on recovery (cf. [4], [5]). Finally, 
rating based models consider the creditworthiness of the issuer to be a key state variable used to calibrate the 
risk-neutral hazard rate (cf. [6]-[8]). A progressive drift in credit quality toward default (an absorbing state) is 
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now allowed as opposed to a single jump to bankruptcy, as in many hazard rate models. Rating based models are 
particularly useful for the pricing of securities whose payoffs depend on the rating of the issuer. 

In this paper, we consider a rating based regime switching model for the term-structure of credit risk spreads 
in continuous time (cf. [9], [10]). A unique feature of our model is the inclusion of stochastic transition pro- 
babilities. Credit instruments are then characterized as the solution to a ultraparabolic Hamilton-Jacobi system of 
equations for which we develop a methods-of-lines finite difference method. Computations are presented for a 
rating based callable bond which validates the applicability and efficiency of the method. 

2. Model of the Economy 
In this section, we introduce the dynamics of the risk-less and risky term structures of interest rates as well as the 
bankruptcy process. To this end, we assume the existence of a unique equivalent martingale measure such that 
all risk-less and risky zero-coupon bond prices are martingales after normalization by the money market account 
(cf. [11], [12]). Without loss of generality, we suppose a single risky zero-coupon bond price and continuous 
trading over a finite time interval 0,T  

 . We let ( )t  ( )0 t T< <   denote a continuous time Markov process 
on the regime (or états) space { }0,1,2, ,m m=   with associated transition probabilities  

( ) ( ) ( ){ }ijP t Pr t t j t i= + ∆ = =  , for all 0t∆ > ; it follows that 

0
0 and 1,

m

ij ij
j

P P
=

≤ =∑                                    (2.1) 

for mi∈  . Let ( ) ( )0 1, , ,i i i imt P P P=P   represent the thi -state transition distribution. 
We define the transition probabilities as follows. The 0th -state we associate with default, in which case  
( ) ( )0 1,0, ,0s =P  . For 1, 2, ,i m=  , we define the thi -state transition dynamics consistent with the non- 

negativity constraint in (2.1) such that ( )1,2, , 1j m= −  

( ) ( ) ( ) ( )d d d ,ij ij ij ij ij j i ijP s p P s W sα σ β= − + P                  (2.2a) 

( ) ( )0,1 ,ij ijP t p= ∈                                      (2.2b) 

for 0 t s T< < <  , where 

( )2 1

1

if 1

1 if 1

ij

m
j i

ij i

P j m

P P j mε
ε

β −

=

< −
=   − = −  

 
∑

P  

and 0 ijp<  is the mean transition level satisfying 1
1 1m

ip εε
−

=
≤∑ , 0 ijα≤  is the rate of reversion to the mean,  

0 ijσ≤  and d ijW  is a Wiener process. From (2.1), it follows that 0 1 11im i i imP P P P −= − − − −  and so  

( ) ( ) ( ) ( )
1 1

1 1
d d d ,

m m

im ij ij ij ij j i ij
j j

P s p P s W sα σ β
− −

= =

= − − −∑ ∑ P               (2.2c) 

( ) ( )
1

1
1 0,1 .

m

im im ij
j

P t p p
−

=

= = − ∈∑                                (2.2d) 

We relate the transition matrix ( )ijP=Π  to the regime dynamics via the infinitesimal generator Λ ,  

( )
0

lim ,
h

h
h+→

−
=

IΠ
Λ  

such that 
( ) ( )

d
,

d
s

s
s

=
P

P Λ  

for 0 t s T< < <  , and 

( ) ,t =P P  
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where ( )0 1, , , mP P P=P   is the vector of probabilities ( ) ( ){ }jP s Pr E s j= = . Without loss of generality, we 
associate ( )E s  with the vector ( ) { }0 1, , , ms ∈ e e e , ( )0 1,0, ,0=e  , ( )1 0,1, ,0=e  , ,   

( )0,0, ,1m =e  , subject to the dynamics 

( ) ( ) ( )d d d ,s s s s= + MΛ                               (2.3a) 

( ) ,t = e                                             (2.3b) 

for 0 t s T< < <  , where ( )sM  is a martingale with respect to the filtration generated by   and  
( ) ( )s s=   P    ([13], Chap 4.8; [14], Part III, App. B; [15], Chap 8). In particular, the state of the system  

is known at inception such that ( ) ( )i t t= = =  e P P  , for some mi∈  . 
We suppose that the risky interest rate R follows a state specific Cox-Ingersall-Ross dynamic given by  

( ) ( ) ( )( ) ( ) ( )d ; d dR s r R s R W sα σ= ⋅ − + ⋅                    (2.4a) 

for 0 t s T< < <  , with mean reversion level ( )r   and rate of reversion to the mean ( )α  , such that  

( ) ( ); ,R t r=e e                                        (2.4b) 

where dW  is a Wiener process. In default ( ) ( )0 0 0α σ= =e e , otherwise ( )i iα α=e  and ( )i iσ σ=e . The 
risky bond price B  associated with a maturity T  satisfies  

( ) ( ) ( )
d

; ,
d

B s
R s B s

s
= e                                  (2.5a) 

( ) .B t b=                                            (2.5b) 

We consider the risk-less interest rate   to satisfy  

( )d ; d 0,s s =   

( ) ( ); ,t ρ=    

where in default ( )0 0ρ =e  for convenience, and ( )iρ ρ=e  otherwise. 
For a given contract ψ , we define the value function associated with the joint Markov ultradiffusion process 

(2.2)-(2.5) such that 
( ) ( ) ( ) ( ) ( ) ( )( ){ }, , , , exp , , , , ,iv t b r T t T B T R T Tψ= − ⋅ − ⋅  e   Π π           (2.6) 

for 0 t T T< < <  , where ( )ijp=π . 
In particular, for a non-coupon paying bond ( )0,Tψ δ=e  and ( ), 1iTψ =e  otherwise, where δ  is the de- 

fault recovery rate, whereas for a callable bond ( )0, , 0T bψ =e  and ( ) ( ){ }, , max ,0i iT b b Eψ = −e e  other- 
wise, for some rating based exercise price ( )iE e . Generalization of (2.6) and the subsequent analysis to include 
early exercise features follows routinely and will not be considered here. 

3. Characterization 
Letting ( ) ( ), , , , , , ,i iv t b r v t b r= eπ π  and 

( ) ( ) ( ) ( )( )T
0 1, , , , , , , ,mt v t v t v t⋅ = ⋅ ⋅ ⋅v                            (3.1a) 

we recover (2.6) succinctly as 
( ) ( ), , , ,i iv t t⋅ = ⋅ ⋅e e v                                  (3.1b) 

for mi∈  . By Itô’s rule, the value function (2.6) is characterized via (3.1) as the solution to the ultraparabolic 
Hamilton-Jacobi system of equations 

0 0
v
t

∂
=

∂
 

( ) ( )0 0, ,v T x T xψ=  
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( )1 1
1 1 10 0 11 1 11 0m m

v vrb v p v p v p v
t b

∂ ∂
+ + + + − + + =

∂ ∂
  

( ) ( )1 1, ,v T x T xψ=  

  

( )0 0 1 1 1 0m m
m m m m mm m

v v
rb v p v p v p v

t b
∂ ∂

+ + + + + + − =
∂ ∂

  

( ) ( ), , ,m mv T x T xψ=  

where 

( ) ( )

( ) ( )

( ) ( )

2 2
2 2 2

2 2
1

2
2 2

2
1 1

1

1 1
2 2

1
2

.

i i i i j i ij
j m ij

ij ij ij j i ij
j m j mij im

ij ij ij
j m im

v v vv r r r
rr p

v vp p
p p
vp p v

p ε

σ α β σ

α β σ

α ρ

≤ <

≤ < ≤ <

≤ <

∂ ∂ ∂
= + − +

∂∂ ∂

∂ ∂
+ − −

∂ ∂

∂
− − −

∂

∑

∑ ∑

∑

P

P

e



 

Let ( ) ( ) ( ), 0, 0,t b T= ∈ = × ∞t   denote the temporal variable and  

( ) ( ) ( ){ } ( ){ }11 12 1, , , , 0, 0,1 1 0,1 1m m
mm j mjj jr p p p p p= ∈Ω = ∞ × ≤ × × ≤∑ ∑x    the spatial, we define  

rb
t b
∂ ∂

= +
∂ ∂

  

and ( )1 2, , , mA A A=  , such that the above can be written 

( ) ( ) ( ) ( ), , , ,+ ⋅ + − ⋅ =v t x v t x I v t x 0 Π                         (3.2a) 

for all ( ), ∈ ×Ωt x  , subject to the terminal constraint  

( ) ( ), , ,T T⋅ = ⋅v ψ                                  (3.2b) 

for ( ) ( ), 0,b ∈ ∞ ×Ωx , where ( ) ( ) ( )( )T
0 1, , , , , , .mψ ψ ψ= ⋅ ⋅ ⋅e e eψ  

4. Approximation Solvability 
Towards obtaining a constructive approximation of (3.2), we consider an exhaustive sequence of bounded open 
domains { }kΩ  such that 1k k+Ω ⊂ Ω  and kΩ = Ω  as well as a sequence of monotonically increasing real 
numbers kT →∞ , as k →∞ . Let ( ) ( )0, 0,k kT T= ×  and { } ( ) ( ) { }0, 0,k k kT T T T∂ = × × , we seek 

( ),kv t x  satisfying 

( ) ( ) ( ) ( ), , , ,k k k+ ⋅ + − ⋅ =v t x v t x I v t x 0 Π                      (4.1a) 

for all ( ), k k∈ ×Ωt x  , subject to the boundary condition  

( ) ( ), , ,k =v t x t xψ                                    (4.1b) 

for ( ), k k∈ ×∂Ωt x  , and terminal constraint 

( ) ( ), , ,k =v T x T xψ                                   (4.1c) 

where ( ), k k∈∂ ×ΩT x  . As (3.2) is an infinite horizon problem in b , we remark to the necessity of intro- 
ducing the artificial terminal condition k =v ψ  along the frontier ( ) { } ( ), 0, kT b T T∈ ×  (cf. [16]). In particular, 

( ) ( ), ,k →v t x v t x  as k →∞ , on any compact subset of Ω , for any fixed ∈t  . 
We next place (4.1) into standard form by setting T tτ = − , k kT bς = − , ( ), kτ ς=τ , in which case 
( ) ( ), , , ,k k kT T b t bτ− − ⋅ = ⋅u v . Letting 
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( ) ,k k k
k

r T ς
τ ς
∂ ∂

= + −
∂ ∂

  

Equation (4.1) becomes 

( ) ( ) ( ) ( ), , , ,k k k k− + ⋅ + − =u x u x I u x 0 Πτ τ τ                     (4.2a) 

for all ( ), k k∈ ×Ωx τ , subject to the boundary condition  

( ) ( ), , ,k =u x xτ ψ τ                                   (4.2b) 

for ( ), k k∈ ×∂Ωx τ , and initial condition  

( ) ( )0 0, , ,k =u x xτ ψ τ                                  (4.2c) 

where ( )0 0,, k k∈∂ ×Ωx τ , where { } ( ) ( ) { }0, 0 0, 0, 0k kT T∂ = × × . 
We consider the discretization of (4.2) by the backward Euler method temporally and central differencing in  

space. To this end, we introduce the temporal step sizes ( ) 2,τ ςδ δ +∈  and mesh sizes ( ) 2,τ ς ∈  , such  
that T τ τδ= ⋅  and kT ς ςδ= ⋅ . Spatially, we utilize the step sizes ( ) 2,r pδ δ +∈  and mesh sizes 

( ) 2,r p ∈  ; we denote the value of ku  on the grid by 

( )1 2 0 1 2 201 2 1
, , , , ,

11, , , , , ,m m
k k mmr p p
ν ν µ µ µ µµν ν µτ ς=u u



  

where 1
1

ν
ττ ν δ= ⋅ , 2

2
ν

ςς ν δ= ⋅ , 0
0 rrµ µ δ= ⋅ , 1

11 1 ppµ µ δ= ⋅ , and so forth. Notationally, we let  
( ) ,, kδ δ∈ ×Ων µ , where ( )1 2,ν ν=ν , ( )20 1, , ,

m
µ µ µ= µ , [ ]0,1, , 0,1, ,δ τ ς = ×      , and  

[ ] { } { }1
, 10,1, , 0,1, , 1 0,1, , 1m

m mm m
k r p j p mjj jp pµµ
δ    Ω = × ≤ × × ≤   ∑ ∑      . For  

( ) 1 2 0 1 2, , , , ,
, ,m

k k
ν ν µ µ µ

=u u


ν µ  

the difference quotients are then backward first order in time:  

1 2 0 1 2 1 2 0 1 2 1 2 0 1 2, , , , , , , , , , 1, , , , ,1m m m
k k k
ν ν µ µ µ ν ν µ µ µ ν ν µ µ µ

τ
τδ

− ∇ = −  
u u u

  

 

1 2 0 1 2 1 2 0 1 2 1 2 0 1 2, , , , , , , , , , , 1, , , ,1m m m
k k k
ν ν µ µ µ ν ν µ µ µ ν ν µ µ µ

ς
τδ

− ∇ = −  
  

µ µ µ  

and central second-order in space: 

1 2 0 1 2 1 2 0 1 2 1 2 0 1 2 1 2 0 1 2, , , , , , , 1, , , , , , , , , , 1, , ,2
0 2

1m m m m
k k k k

r

ν ν µ µ µ ν ν µ µ µ ν ν µ µ µ ν ν µ µ µ
δ

δ
+ − = − +  

   

µ µ µ µ  

1 2 0 1 2 1 2 0 1 2 1 2 0 1 2 1 2 0 1 2, , , , , , , , 1, , , , , , , , , , 1, ,2
1 2

1m m m m
k k k k

r

ν ν µ µ µ ν ν µ µ µ ν ν µ µ µ ν ν µ µ µ
δ

δ
+ − = − +  

   

µ µ µ µ  

and so forth, and 

1 2 0 1 2 1 2 0 1 2 1 2 0 1 2, , , , , , , 1, , , , , 1, , ,
0

1
2

m m m
k k k

r

ν ν µ µ µ ν ν µ µ µ ν ν µ µ µ
δ

δ
+ − = −  

  

µ µ µ  

1 2 0 1 2 1 2 0 1 2 1 2 0 1 2, , , , , , , , 1, , , , , 1, ,
1

1
2

m m m
k k k

r

ν ν µ µ µ ν ν µ µ µ ν ν µ µ µ
δ

δ
+ − = −  

  

µ µ µ  

and so forth. 
Given the above, we define the method-of-lines finite difference discretization of (4.2) such that  

( ) ( ) ( ) ( ), , , ,k k kδ δ− + ⋅ + − =u u I u 0 Πν µ ν µ ν µ                        (4.3a) 

for all ( ) ,, kδ δ∈ ×Ων µ , subject to the boundary condition  
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( ) ( ), , ,k =u xν µ ψ τ                                   (4.3b) 
for ( ) ,, kδ δ∈ ×∂Ων µ , and initial condition  

( ) ( )0 0, , ,k =u xν µ ψ τ                                  (4.3c) 

where ( ) ,, kδ δ∈∂ ×Ων µ , { } [ ] { }0 0,1, , 0,1, , 0δ ς τ ∂ = × ×      ,  

( ) ( )0 2, ,ku u u r T uµ ν
δ δ τ ςς= = ∇ + − ∇  ν µ  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0 0

2

2

2 2 2 2 2
0 0 1 1 11 1

2 2 2 2 2 2
1 1 1, 1 1

1 <

11 11 11 1 1, 1 1, 1 1, 1 1

1

1 1,
2 2

1 1
2 2

,

m m m m j j j mm
j m

m m m m m m m

j j j m
j m

u u r u r r u u

u u

p p u p p u

p p u u

µ µ
ε ε ε ε ε

ε

ε ε ε ε

σ δ α δ β σ δ

β σ δ β σ δ

α δ α δ

α δ ρ

− − − − −
≤

− − − − − − −

≤ <

= = + − +

+ + −

+ − + + −

− − −

∑

∑

P

P P

e





  ν µ

 

and ( )1 2, , , mA A Aδ =  . We solve (4.3) utilizing the pseudo-code (cf. [16], [17]): 
do 1 1, , τν =    

do 2 0, , ςη =    
solve for ( ),ku ν µ  via (4.3). 

5. Numerical Experiment 
In this section, we present a representative computation for the valuation of a callable bond relative to three 
credit ratings: 

( )
0

1

2

Default
rating
rating

e
t e A

e B

   
   = =   
   
   

  

and rating’s dependent pay-off contract 

( ) { }
{ }

0

1

2

0 if
, , max 0.70,0 if

max 0.68,0 if

T b b

b

ψ

 =


= − =
 − =

e
e

e



 



 

with expiry 0.5T = . We suppose a solvent risk-free rate of return of 0.02ρ = . For simplicity, we will con- 
sider the following transition matrix 

1.00 0.00 0.00
0.0 0.95 0.05

0.10 0.9def defP P

 
 

=  
 − 

Π  

in which only the default probability defPP =20  is stochastic. 
For 0 t s T T< < < <  , we have the economy; 

( ) ( ) ( ) ( )d 0.01 0.05 d 0.05 0.10 d ;def def def def def def defP s P s P P W s P t p= − + − =         (5.1a) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )d ; d d ; ; ,R s r R s R W s R t rα σ= ⋅ − + ⋅ =e e                    (5.1b) 

( ) ( ) ( ) ( )d d d ; ,B s s R s B s s B t b= =                                            (5.1c) 
where 

( ) ( )
0 0

1 1

2 2

0 if 0 if
0.010 if ; 0.20 if .
0.005 if 0.25 if

α σ
= = 

 = = = = 
 = = 

e e
e e
e e

 
   

 
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and 

( )
0

1

2

0 if
0.03 if
0.06 if

r
=

= =
 =

e
e
e


 


 

Letting 1.5kΓ =  and [ ] [ ]0.0,0.5 0.0,0.10kΩ = × , the ultraparabolic Hamilton-Jacobi system of Equations 
(4.1) for the value function ( ) ( )0 1 2, , , , ,deft b r p v v v=v  associated with the ultradiffusion (5.1) is then 

( )0 , , , 0defv t b r p =                                     (5.2) 

for all ( ) [ ] [ ], , , 0, 0,def k kt b r p T∈ × Γ ×Ω ,  

( ) ( )( )

( ) ( )

2 2
221 1 1 1 1

2 2

1
1 1 2

1 1 0.1 0.05
2 2

0.01 0.05 0.02 0.95 1 0.05 0

def def
def

def
def

v v v v vrb r r r p p
t b rr p

vp v v v
p

ε ε εσ α
∂ ∂ ∂ ∂ ∂

+ + + − + −
∂ ∂ ∂∂ ∂

∂
+ − − + − + =

∂

         (5.3a) 

for all ( ) ( ) ( ), , , 0, 0,def k kt b r p T∈ × Γ ×Ω , such that  

( ) { }1 , , , max 0.70,0 ,defv t b r p b= −                             (5.3b) 

for ( ) ( ) ( ), , , 0, 0,def k kt b r p T∈ × Γ ×∂Ω  and  

( ) { } ( ) ( )1 , , , max 0.70,0 , , , 0,def def k kv T b r p b b r p= − ∈ Γ ×Ω               (5.3c) 

( ) { } ( ) ( )1 , , , max 0.70,0 , , , 0,k def def kv t r p b t r p TΓ = − ∈ ×Ω               (5.3d) 

and 

( ) ( )( )

( ) ( ) ( )

2 2
222 2 2 2 2

2 2

2
1 1 2

1 1 0.1 0.05
2 2

0.01 0.05 0.02 0.10 0.9 1 0

def def
def

def def
def

v v v v vrb r r r p p
t b rr p

vp v p v v
p

ε ε εσ α
∂ ∂ ∂ ∂ ∂

+ + + − + −
∂ ∂ ∂∂ ∂

∂
+ − − + − + − =

∂

         (5.4a) 

for all ( ) ( ) ( ), , , 0, 0,def k kt b r p T∈ × Γ ×Ω , such that 
 

 
Figure 1. v1 (0, b, 0.05, pdef).                                            
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Figure 2. v2 (0, b, 0.05, pdef).                                            

 
( ) { }2 , , , max 0.68,0 ,defv t b r p b= −                           (5.4b) 

for ( ) ( ) ( ), , , 0, 0,def k kt b r p T∈ × Γ ×∂Ω  and 

( ) { } ( ) ( )2 , , , max 0.68,0 , , , 0,def def k kv T b r p b b r p= − ∈ Γ ×Ω                (5.4c) 

( ) { } ( ) ( )2 , , , max 0.68,0 , , , 0, .k def def kv t r p b t r p TΓ = − ∈ ×Ω               (5.4d) 

Figure 1 and Figure 2 show the value function components ( )1 , , , defv t b r p  and ( )2 , , , defv t b r p , respectively, 
for 0.05r = . Relative to the discretization of (5.2)-(5.4), we utilized 0.001τδ = , 0.001ςδ = , 0.005rδ = , 

0.005pδ = . In particular, we note the effect of the rating based exercise prices on 1v  and 2v  and the de- 
creasing value of 2v  with increasing defp , as expected. 
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