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ABSTRACT 

In this paper we study a classical option-based portfolio strategy which minimizes the Value-at-Risk of the hedged po-
sition in a continuous time, regime-switching jump-diffusion market, by using Fourier Transform methods. However, 
the analysis of this hedging strategy, as well as the computational technique for its implementation, is fairly general, i.e. 
it can be applied to any dynamical model for which Fourier transform methods are viable. 
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1. Introduction 

In this paper we study a classical hedging policy based 
on options followed by an institutional manager whose 
aim is to minimize the Value-at-Risk of a position in a 
regime-switching jump-diffusion market. Although sharply 
criticized for the lack of sub-additivity and its inability to 
quantify the severity of an exposure to rare events, VaR 
has been adopted as a benchmark in the financial in- 
dustry and for regulatory purposes. It plays a central role 
in banking regulation and internal risk management, 
mainly due to its simplicity. The analysis of this hedging 
strategy has been initiated by [1] a decade ago for a 
portfolio made by a risky asset following a lognormal 
random dynamic, and hence analytically solved in a 
Black-Scholes setting. More recently, it has been con- 
sidered for a bond portfolio in [2,3]. By taking the VaR 
as the risk measure for potential losses L of a portfolio, 
we hedge the risky position by buying a fraction h of a 
put option with maturity T and strike price K: but what K 
and h? By fixing a hedging constraint, the correspond- 
ing (constrained) optimality condition involves quantiles 
computations and derivative pricing. Both steps can be 
efficiently faced with the Fourier transform technique, 
under historical and risk-neutral probability respec- 
tively. 

The dynamic model we consider for the risky position 
is , where    

0e
X tS t S  X t  is specified on a filtered 

probability space as a jump-diffusion whose parameters 
change over time, driven by a continuous time and 
stationary Markov Chain on a finite state space  , 
representing the unobserved state of the world. In fact, 
empirical studies on the behavior of financial markets 

show the ability of regime-switching models to capture 
some peculiarities in the observed data, as firstly high- 
lighted in the seminal paper by Hamilton [4]. Since then, 
there has been a growing effort in applying switching 
models to a wide class of financial and/or economic 
problems. On the other hand, the necessity of including 
jumps in the underlying models to provide better re- 
presentation of their dynamical properties is widely re- 
cognized (see e.g. [5]). Empirical stylized facts about 
observed data, such as volatility clustering and heavy 
tails, are then well captured by regime-switching jump- 
diffusions which turns out to be an appealing and flexible 
class of dynamic models. The computation of quantiles 
in regime-switching models has been considered by se- 
veral authors mainly in discrete-time setting (see e.g. [6,7] 
and ref. therein). Here we consider this problem in the 
continuous time framework in which the required com- 
putations can be very efficiently implemented with the 
help of Fourier Transform methods (see e.g. [8]). The use 
of this kind of technique for the analytical calculation of 
VaR has been considered in Duffie and Pan [9] in terms 
of the Fourier inversion of the characteristic function. 
The use of Generalized Fourier Transform and the FFT 
algorithm is more recent: see Le Courtois and Walter 
[10], Kim et al. [11] and Scherer et al. [12]. 

The paper is organized as follows: we firstly derive the 
optimality conditions for the VaR minimizing strategy 
(Section 2) and then (Section 3) we introduce the regime- 
switching dynamic model, its generalized characteristic 
function and the change-of-measure result for switching 
from the historical to the risk-neutral probability. Finally, 
in Section 4 we specify the Fourier Transform technique 
for calculating quantiles and put/call option prices and 
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report some numerical experiments to show the impact of 
jumps and regime-switching on the optimal hedging 
strategy. 

Some final comments can be briefly outlined. Firstly, 
the analysis of the hedging strategy is fairly general, that 
is it can be applied to any dynamical model for which 
Fourier transform methods are viable, for example it can 
be extended to Variance-Gamma or Bates models. Fur- 
thermore, besides the choice of different dynamic models, 
it would be interesting to consider alternative risk meas- 
ures, such as the Conditional Value at Risk (CVaR). This 
is certainly less commonly used in finance industry, but 
it is widely used in insurance industry being a coherent, 
convex and stable risk measure (see [13]). 

2. VaR and Optimal Risk Management 

Given a confidence level  0,1 
Y

, the set of -quan- 
tiles of the random variable  is the interval  



   ,q Y q Y 
     where  

    inf |q Y q P Y q     

   
 and  

inf |q Y q P Y q     

 Y

. For a random vari- 
able having continuous and strictly increasing distribu- 
tions function F y

     
, 

 1q Y q Y q Y F   Y      , i.e. it solves the equ-  

ation   Y q Y   . 

Here we take the portfolio loss  to describe a 
financial position in a fixed time interval and, in order to 
simplify notations, we assume in this section that  has 
a continuous and strictly increasing distributions function. 
The Value-at-Risk at level 

L

L

  is defined as 

   VaR inf | .L q P L q      

Let  be the value of the risky asset, tS  0,t T

rT
TS

 and 
 be the risk-free rate, that without loss of generality we 

consider fixed in the period: we define the loss at time 
 of such a position as   implying 

. Let us now consider a 
classical hedging problem in which an institution has an 
exposure to a risky asset tS  and decide to hedge such 
an exposure in the interval 

r

0 0 euL S 
TS



  0 1eu rTL S q


 

 

VaR

0,T  by buying a fraction 
 0,1h  of an European put option on the asset with 

maturity T and strike price K. Analogously to the situ- 
ation considered in [1], we take as the hedged position 
the portfolio composed by the risky asset and the put op- 
tion: the loss of the hedged portfolio at time  is there-  0

fore    ,
0 0 , eh K P rT

T TL S h K T S h K S      
P

,  

where  ,t K T  is the price of the put option at time 
. By defining the strictly increasing function t

    0 ,P g u u h u K h K T


     , where 

0 e rTK S  

 ,h K uL g L ; therefore 

       

  
0

1

VaR VaR ,VaR (

e .

) u Pu

rT
T

gL L

h K q S

L  










  



,h K h K T
 

Let us firstly notice that if  1 TK q S , then 

   ,VaR > VaRh K uL L   since . Hence, P 0 ,K T 0

given the budget constraint C, the optimal hedging 
strategy is specified by the following problem:  

       
 
   

0 1
,

0

1

VaR , emin

, ,

0,1 , > .

u P rT
T

K h

P

T

L h K T h K q S

h K T C

h K q S

 








    

  
 

 

(1) 

Since  0 ,Ph C K T  , the optimality first order 
condition for K  is given by the following non-linear 
equation: 

     0 1 0, ,P P
T .K T K q S K T

K


   


   (2) 

Assuming that (2) has a solution  1 TK q S


  and 
the twice differentiability of the price functional we can 
prove that this is actually a minimum since  

 

  
 

 

2 ,

2

2
1

2 2

VaR

e
, 0

,

h K

rT P
T

P

L

K

C K q S
K T

KK T




 

 






  

  


 

by the convexity of the price functional w.r.t. the strike. 
Correspondingly, the optimal amount of the hedging put 
option is 

 0

.
,P

C
h

K T






               (3) 

We now assume the following: 
Assumption 2.1. The price of the put option can be 

represented as the discounted expected value of the 
payoff at time  under a risk-neutral measure : T 

   , eP rT
t TK T K S

     
 .  

Furthermore, let   S T F s S s   be the cumula- 
tive distribution function (cdf) of the random variable 

 under such a measure: hence TS

     

   
0

0

, e d

e d

P rT
t S

KrT
T S

K T K s F s

K S K s F s

 



  

  




 

K , it is immediately seen that and 
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  , e P rT
t T .K T S K

K


  


  

We can finally prove the following property: 

Proposition 2.1. If  1 TK q S




 aR uL L 

, then 

.  ,
0VaR Vh K 



Proof. Since K   and  are characterized through 
(2) and (3), we get 

h

 
 

       

 

      

,
0

1

1

VaR

VaR

, e
,

VaR

, e
,

h K

u

P rT
t TP

t

u

P
T tP

t

L

L

C
K T K q S

K T

L

C
K q S K T

KK T











 

  


  .rT




   




      




 

From Assumption 2.1, we have  

    , e e 1P rT rT
t TK T S K

K
 

    


 0 .  

Therefore  

   

      

 

,
0

1

VaR VaR

e
,

VaR .

h K u

rT
T TP

t

u

L L

C
K q S S K

K T

L

 





 

 




  




  1   

Remark 2.1. Notice that the optimality condition (2) 
under Assumption 2.1 simplifies to 

     1

1
d

K Q
S T

T

s F x q S
S K 


     (4) 

and depends on both the objective and the risk neutral 
distributions and  . Furthermore, it easily seen that 
the l.h.s. is equal to the conditional expectation  

  

 |Q
T TS S K  which is an increasing function of K  

bounded by  TS . Therefore, (4) has a unique solu-  

tion if and only if    1 T Tq S S   . 

3. Regime-Switching Jump Diffusions and 
Measure Change 

Let us consider on a filtered probability space 

 , , ,t  
X

  a stochastic process of the form  

0e
tS S


t , 0 , modeling the value, of a risky asset 

for 
0S 

0,t T . We consider a jump-diffusion setting in 
which the jump process is described as a marked point 
process (MPP), that is a random measure  ,p dy dt  
characterized by the intensity process 

 t dy , the parameters of which are driven by a finite 

state and continuous time Markov chain. So, let  t  
be a continuous time, homogeneous and statio  
Markov Chain on the state space  1, 2, ,

nary
M   with 

generator M MH  : the elemen atrix ts ijh  of the m

H  are po ers such that 
, 1 ij iih hsitive numb

M

j i j 
  , for 

1, , Mi   . Furthermore, :   , :    and 
: E     are given f   the 

ark space. Without loss erality, we 
can assume in the following E   . In a given interval 
0 t T


measurable m

unctions, ,E   bein
of gen

g

  , we consider the dynamic 

          

 , 0 0,

dt t d  
 

 

 W t
 

(5) 

  
t

y t p

 

  

 

 
2

, ,
E

dX t t

dy dt X

where 

21  

 W t  is a standard brownian motion and 
 dt  is,p dy  a MPP characterized by the intensity 
     ,m dy   . Here  t dy     represents the 

ity of the son process tN , 
while 
(regime-switching) intens  Pois

 ,m dy  are a set of probability measures on , 
one for te (regime) i . The function 

E
 each sta  ,y 

y  in
 

represents the jump amplitude relative to the mark  

regime 

 

 . The couple     , ,m dy    is called the  

 , t  -  . local characteristic of 

Further

 ,p ds dy

  more    sds y ds

ass of processes 

 

0 E

r 



, ,
t

y s p d d   y  is a  

a suitable clmartingale fo  (see 
[14]), 

       m t dy d 

 that the processes

, ,p dy dt

 compensated 

, t  

 

q dy dt t  

being the process. 
eThroughout the paper we assum     

and  W   are independent,  W   and  ,p dy dt  
cond lly independent giv 

 are
itiona en t  and that 

 finite       , ,e e ,Y y m dy        is  for each
E  regime 

 . An a gener
co

pplication of the alized Ito’s Formula gives the 
rresponding jump-diffusion SDE for the asset price 

 
 

  
   

  
    

,e 1y t

t dt

t dW t

 



 



 

 

 

 

dS t

  
 

    
,

E

y t

E

S t

t dW

p dy dt

t t



 

  

   

 






with 

 

 
     

,

e 1

t

t dt

q dy dt

  

 , ,

  (6) 

  0S S0   and 

re cha

     ,e 1Y     . 

nti usMe nges. nuoasu An absolutely co
fo

 trans- 
rmation of measures in a jump-diffusion setting allows 
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   ,i j dz  being the Dirac measure. Consequently, let  to change the intensities of the MPP and the Markov 
chain in addition to the translation of the Wiener process 
(see [14]). It results convenient to represent the underly- 
ing Markov chain itself as the MPP  ,dt dz  with 
finite mark space   S, S , 

 S , : 1,2z i j i  

 t   be a square integrable predictable processes,  

 , , M 

 ,th y  a non-negative function such that  

     , , 1, 0,tE
m dy t T      and let     and  h y

, ,j i j  and   SS 2 : 

    (7) 

  z
S

 be strictly positive functions defined on  and 
, respectively. We can define a new measure  on 

the measurable space by setting 


the compensator is 

 t          ,=
, ij i jt i

i j

dz h dz 


   

 

  
               
     

, , , , ,

, , .

Q
t t t

Q
t

Q

dW dW t dt

q dt dy p dt dy t t h t y m t dy dt

dz z dz



 

 

     

   

  
  
  

            (8) 

 
Besides the translation of the Wiener process , we 

pe
tW

ingrform a change in the intensity of the MPP giv  the 
compensated process  , ,Qq dt dy  with  , t  -local 
characteristic 
(    t      ,t  , ,t t  h t y m  dy ) and a 

change of the intensity of the Markov chain which under 
  has generator  Q Q

ijH h  where 

   Q Q  
1,

, , , , 1, ,ij ij ii ik
k k i

h i j h h i k h i
 

     .M

By taking the Radon-Nikodym derivative 

M

 

            

                   

2

0 0 0

0 0 S 0 S

1
exp d d 1 d

2

log , , 1 , d log ,

t t tQ
t s s s

t t t

tE

L s s s W s s s

s h s y p ds dy z t dz s z ds dz

       

     

    


    

  

      
   (9) 

 
nd supposing that   1tL   for  0,t T

 
a , we have a 
probability measure  equivalent to   with    on 

Td L d  , under which 

 

 
                   

          , ,e 1 , ,

Q
t

y tQ Q

E

dS t
t t t t t t

S t

t dW t q dy dt  

           

 





    

  

dt
           (10) 

 
here  (see [14]). 

odel (6) we 
ne

   ,e 1YQ       


der to price derivatives In or under the m
 X t  we have  w

ed to specify a risk-neutral or martingale measure, that 
is a measure under which the discounted price process 
e rt

tS  is a martingale. This is done by taking  

        
 

Qr         
 

 
    (11) 

from which we finally get the risk-neutral dynamic for 
the underlying  

 
      

     

        
          

, ,

, ,

e 1 ,

e 1 ,

Q

y t Q

E

Q

y tQ Q

E
.

rdt t dW t
S t

q dy dt

r t t t dt

t dW t p dy dt

  

  

 

     

 







 

 

   

  





(12) 

Correspondingly, for the process 

 

       

    

           

dS t     Qt dW t 

    

2

,

2

,

1

2

, ,

1

2

, , .

Q

Q

E

Q

Q

E

dX t

r t dt t dW t

y t q dy dt

r t t t t dt

y t p dy dt





   

 

       

 





     



     







(13) 

The measure transformation defined by (8) through (9) 
preserves the probability structure of the stochastic pro- 
cess 



 X t
n sp

 under both  and . It worth noting that 
we ca ecify infinitely any valent measures . 
In practice, the usual way to select one of the equivalent 


 m


 equi  
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measures is to calibrate the model to a set of observed 
data. 

GFT for regime-switching jump-diffusions. In order 
to apply Fourier methods, we need to calculate the 
Fourier transform of our process. Since we have 
to consider the pro

 X z  
cess TX  under two different mea

we derive function for the following 
general dynamic 

     (14) 

w

sure, 
its characteristic 

         

    , , ,
E

dX t t dt t dW t

y t p dy dt

   

  

 


ith     , ,m dy    local characteristic, and Mar- 

kov chain generator Q . In [8] it was proved the 
follow

Proposition 3.1. Let     i ,e z Y j j
j z       be e 

generalized Fourier transform of the jump magnitude 
under the given measure. Then, by letting  

ing 
th

          2 2i i 1
2j jz z j z j j z         (15) 

and     i jz z z    , we have  

           



1 1ag , , ,0i

i d

e e 01

1

Mz z Tz TM
T

Q

z
  



    
 

 

  
 (16) 

1

,

where ,  

 and is the trans-  

be 
arameter set of ou

M

      1 1

i di

iag , ,
e 0M

Q

z z T  




  

  11, ,1 M   1

       1
0 1 00 , , M

M 


      Q  

pose of Q.■ 
Different models can recovered with simple linear 

constraints on the full p r model 
(RSJDM) (6), (12), , , ,i i i ijh   , , 1, ,i j M  . This 
follows by noticing that if    ,i i     ,  
 i   and     impliciti

me so recove
z z   we are ly assuming 

 regi ring the well-known
racteristic function of the (single-regime) jump-diffusion  

mic 

a unique  cha- 

dyna     2 21
i iz  exp 1

2T z z z     
 

  

which includes the standard geometrical Brownia
tion (GBM) , the Merton jump-diffusion m
(JDM); fu  



n mo- 
odels  0 

rthermore, if 0i   we get the regime- 
ng ve  GBM M). 

valuation of the ch teristic function requires 
to compute matrix exponential w

hniques are available; conversely, the case 

switchi (RSG
The e arac

rsion of B

s for hich efficient 
numerical tec

2M   can be considered explicitly (see [8] and the 
references therein). 

4. Computing Results 

In order to implement the o

 Fourier methods. In this section we tly 
ch a technique and then we apply it to dy 

Fo

techniq
form with respect to the trigger para- 

ptimal hedging strategy, we 
need to evaluate the VaR of the risky asset and the value 
of a put option. Both steps can be efficiently faced by 

means of firs
outline su  stu
numerically a model with two regimes and gaussian 
jumps. 

4.1. Fourier Methods 

urier transform methods are efficient techniques 
emerged in recent years as one of the main methodology 
for the evaluation of derivatives. Here we consider the 

ue introduced in [15] which consider the gene- 
ralized Fourier trans
meter characterizing the payoff. 

More formally, let  K  ,S be the payoff at matu- 
rity of the derivative: for example,    ,S K K S

    
is the payoff of the put option. The no-arbitrage price is 
therefore given by 

 0 e , .rT
TS K    

  

Due to the exponential structure of the underlying 
dynamic   , it is convenient to represent 
the payo

0 expt tS S X
ff with respect to the new variables  

   0log logS X S x    log K k , and  in such a 
way 

         0, exp log ,exp ,S K X S k x k      .  

Therefore, let us denote with  ,x k  an arbitrary pay- 
off function and with  ˆ

x z  its generalized Fourier 
transform (GFT) w.r.t. k , that is 

  iˆ e zk k   d , ;x z x k z   

under proper regularity conditions a  
the Fourier transform of the underlying dynamic vari- 
ables (see e.g. [16])

,

bout the payoff and

, it can be proved that 

     
00 logi2π X T S   

in some s s consider the payoff functions  

   , e ek xx k

i i1 ˆe e drT zk z z
         

trip of  Let u .

1


   , and  2 ,  x k

 

x k   , in such a 

way    0 1 logTT X 0 k, eP r  ,T S     
  and  

    2 ,TS v X k X k          , with T T

 0logk v S . Their GFT w.r.t. the trigger parameter k  
are 

 
 

 
1 i

i
1 22

e iˆ ˆ, , 1 and , e ,
i

x z
xzx z x z

zz z
 



0    


 

respectively. Hence we get the formulas 

 

     
 

0

1
0

0

e
, e

k
P rT S

k T
 

 

i log

2 20

π

i 1
e d , 1

i 1 2
u k S X u

u
u u

 


  
    

       


 (17) 


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and 

       
0i log0

0
e

π i

0

u v S X
T

v S u
S v u

u






   







(18) 

e
ristic function, of the random 

i
  
 

  
d ,

 , ,z   
   

form, or characte
variable T

ie TzX
X    being the (generalized) Fouri r 

trans
X  under th

regular functions in a 
e appropriate measure. If this is a 
properly defined strip of  th

transform method can be applied in both cases (see [16]). 
ptimality con- 

dition is 

 , e 

Since under the Assumption (2.1) the o

    

 

 
 

0 0
1

0

, ,

e,

P P

T rT
P T

K T K T
K q S

S KK T
K

 

 
  

 




ptimal hedging strategy is then implemented by 
a root search algorithm to find the values 

1)  such that 

.  

the o
running twice 

q

     0i log0

0

i
e

π i

0;

u q S X
q S u

u
u


 

d ,







  
    






 (19) 

2) K   such that  

 
     

 
     

0i log

0 2 20

i 1
e d

i 1 2

u K S X

K q

u
S u

u u

 
  









  
     






0i log

0

,
i 1

e d
i

1, 0.

u K S X u
u

u

 


 







 
  

   
 


  

- 
luation. Alternatively the FFT algorithm can be used to 
efficiently approximate integrals (see [16]) and then a 
standard root-finding routine will find the required solu- 
tions. 

4.2. Some N ults 

We report some numerical results about the valuation of 
the optimal hedging strategy in the regime-switching 
jump-diffusion framework. An extended set of results 
can be found in [17]. All numerical procedures were im- 
plemented in the MatLab© framework. A standard ro - 
search algorithm was used to solve Equations (19) and 
(20), with 

(20) 

Numerical quadrature must be used for integral eva

umerical Res

ot

2   and 1  , together with the Gauss- 
Lobatto quadrature for approximating the corresponding 
integrals. Few milliseconds were needed to get the re- 
quired quantities on an Intel© Core i5. 

We consider a two-state regime switching versio
th

n of 
e jump-diffusion model with gaussian jumps 
   ,i iY i a b , 1, 2i  , characterized by the para- 

meters , 0i i    and , 1, 2i i  . The two state Mar-  

kov chain  t  has generator 1 1q q
Q

 
   . 

2 2q q 
The first issue we consider is 

obtained by implementing the op
the reduction of risk 

timal hedging strategy 
in the RSJD framework. The risk reduction percentage  

 
 

,
0VaR

1
VaR

h K

u

L
R

L





 

   evaluated for different set of pa-  

rameters range from 4.39% up to 58%, meaning that the 
strategy is effective in reducing the portfolio VaR, even 
in presence of jumps and regime-switching. On the other 
hand, by changing the value of some relevant parameters 
inside each model (GBM, JD, RSGBM, RSJD) the 
profile of the hedging portfolio VaR can change sig- 
nificantly. Hence we face the following issue: what is the 
effect of a wrong model specification which discards 
regime s and jumps, when they are indeed pre- 
sent in t , and co e simpler GBM model? 

switching
he market nsider th

 expl nsitivity of the timal 
ategy d the following exercise. 

W

In order to ore the model se op
hedging str , we implemente

e firstly fixed a RSJD model by choosing a complete 
set of parameters. Then we generated a set of call/put 
prices on which we calibrate the GBM model, finding the 
volatility ˆGBM  with a constrained non-linear least- 
squares al : hence we
strategy

gorithm
 obtaining

 run the optimal hedging 
,h   and correspondingly the  GBM GBMK

 . Weminimal VaR, VaRGBM  finally calculated the pro- 
bability 

 , VaRK h
RSJD GBML

     

under the RSJD model. This step requires to evaluate the 
integral in (18): as before, we use a Gauss-Lobatto qua- 
drature algorithm. Results are shown in Tables 1 and 2. 
 
Table 1. Optimal hedging strategy 

 

, ,K h VaR    under 

the simulated true model (first column), the fitted GBM 
model (second column—estimated volatility) and the 
corresponding value of RSJDβ . Here 1 .3σ   , 2 .05σ   , 

1 2 , 2 .   , a1 0.0 , a2 0.0 , b1 0.08 , b2 0.15 , 

q1 1 , q2 0.2 ; furthermore r 0.5% , 0.01α   and 

the budget constraint is 0.1C  . 

 
Optimal strategy 

RSJ

Optimal strategy 
GBM  ˆD   RSJD  

T = 0.5 
64.7 7, 65.6191, 0.8433, 

35.3880 (0.2905) 
0.0132 

442, 0.719
37.0189 

T = 1 
55.5928, 0.6165, 

47.1767 
57.1579, 0.7644, 
44.4718 (0.2689)

0.0148 

T = 3 
41.6851, 0.5294, 

62.3356 
43.5664, 0.7382,
58.6379 (0.2254) 

0.0157 
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Table 2. Optimal hedging strategy  , ,K h VaR    under 

the simulated true model (first column), the fitted GBM 
model (second column—estimated volatility) and the 
corresponding value of . HerRSJDβ e 1 .3σ   , 2σ .05  , 

1 2 , 2 .   , a1 0.05 , a2 0.08 , 

b2 0.15 , q1 1 , q2 0.2 ; furthermore r 0.5%

0.3  , b1 

 , 

α 0.01  and the budget constraint is C 0.01 . 

tim y 
RSJD 

al st
GBM  

Op al strateg Optim rategy 

 ̂  RSJD  

T = 0.5 
61.1841, 0.05

45.2341 
3.307
1.374

81, 6 6, 0.0816, 
4 6 (0.3137) 

0.0166 

T = 1 
5 0.3047) 

0.025
45.8347, 0.0833, 

60.5069 
52.7089, 0.0744, 
2.6106 (

5 

T = 3 
18.8056, 0.4015, 

83.7630 
32.7103, 0.0797, 
72.5986 (0.2930) 

0.0640 

 
Ta  Op strble 3. timal hedging ategy  , ,K h VaR    under 

 and the 
the simulated t el (first column), the fitted GBM 
model (second column—estimated 
corresponding value of RSJDβ . Here 1 .27σ   , 2 .13σ

rue mod
volatility)

  , 

1 .   , 2 .   , a1 0.13  , a2 0.34  , b 0.08 , 

b , q , q ; furth
1

ermore r2 0.15 1 6.5 2 0.002 0.5% , 

and the aint is C 0.01 . 

Optimal strategy Optimal strategy 
GBM  

α 0.01   budge

 
RSJD 

t constr

̂  RSJD  

T = 0.5 
3

66.
6
44.8 3479)

0.1165 
8.3721, 0.2497, 

0564 
0.0168, 0.0785, 

655 (0.  

T = 1 
2

7
4
5

T
1

8
4
6

6.6034, 0.4103, 
6.3270 

9.4859, 0.0737, 
5.8926 (0.3320) 

0.1304 

 = 1.5 
9.6884, 0.6506, 

1.8069 
1.9632, 0.0741, 
3.4963 (0.3291) 

0.1430 

 
otice that even he op  are similar, 
e probability that the portfolio loss exceeds the (op- 

 level

N
th

 when t timal strategies

timal) VaR is greater than the fixed 01 0.  . Of 
course this behavior depends on the choice of the para- 
meters, but the underestimation produced by a wrong 
model choice can be q severe: see le e 
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