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Abstract 
 
This paper proposed the optimal portfolio model maximizing returns and minimizing the risk expressed as 
CvaR under the assumption that the portfolio yield subject to heavy tail. We use fuzzy mathematics method 
to solve the multi-objectives model, and compare the model results to the case under the normal distribution 
yield assumption based on the portfolio VaR through empirical research. It is showed that our return is 
approximate to M-V model but risk is higher than M-V model. So it is illustrated that CVaR predicts the 
potential risk of the portfolio, which will help investors to cautious investment. 
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1. Introduction 
 
Portfolio optimization has come a long way from Marko- 
witz (1952) [1] seminal work which introduces return/va- 
riance risk management framework, which is called M-V 
model. There is a lot of literature has improved the M-V 
model. One line of work has focused on the assumption 
that portfolio return with normal distribution, but there is 
substantial empirical evidence that financial returns exhibit 
fat-tails and excess kurtosis after accounting for the clus- 
tering of volatility and autocorrelation. Using different ap- 
proaches to the problem and different sets of data, these 
studies consistently find high kurtosis and heavy tails dif- 
ferent models have been suggested to explain these em- 
pirical facts. Mandelbrot [2] and Fama [3] proposed the 
stable Paretian distribution which was later incorporated 
as a building block in GARCH-type processes, see for 
example Mittnik et al. [4] and Mittnik and Paolella [5]. 
Another line of work has focused on developing more 
realistic models of changes in risk factors. As a supple-
ment (or alternative) to VaR, another percentile risk meas-
ure which is called Conditional Value-at-Risk. (CVaR), 
which is defined as the conditional expected loss under 
the condition that it exceeds VaR, see Rockafellar and 
Uryasev [6]. It has been shown (Pflug, [7]) that CVaR is a 
coherent risk measure that has many attractive properties 
including convexity, e.g., see Ogryczak and Ruszczynski  
[8] for an overview of CVaR. In addition, minimizing 
CVaR typically leads to a portfolio with a small VaR. 

This paper contributes to both lines of investigation by 

developing methods for calculating portfolio maximizing 
returns and minimizing the risk expressed as CVaR under 
the assumption that the portfolio yield subject to heavy 
tail distribution under discrete case. This paper is organ- 
ized as follows: In Section 2, the notions of CVaR is 
introduced. In Section 3, the optimal portfolio model is 
proposed. In Section 4, empirical study is performed and 
compared the result to the case of Mean-variance model. 
 
2. Conditional Value-at-Risk 
 
The approach developed in (Rockafellar and Uryasev, [6]) 
provides the foundation for the analysis conducted in this 
paper. For each investment share w, the loss  ,f w y  is a 
random variable having a distribution induced by that of 
y. For a portfolio w, the loss is usually defined 
 , Tf w y w y  , given a believe degree  0 1   ，

   w,CVaRaR w   are defined as [7]: 
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where p(y) is the p.d.f of random y, in our paper, p(y) is a 
heavy tail distribution, for example multi t distribution, 
not a normal distribution. In this case, the density func- 
tion usually complex, so that it is more complex to cal- 
culate    VaR  CVaRw , w  using formula (1) (2). In 
order to overcome the difficulties, [9] defined a new sim- 
pler function under discrete case: 
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where the sampling generates a collection of vectors 

1 2 m ,the model of   is equal to 
deal with the linear programming : 
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3. Solution to a General Fuzzy  

Multi-Objective Model  
 
3.1. The Multi-Objective Model 
 

Let   
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a multi-objective fuzzy programming is described as: 
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Because the objective functions of multi-objective 
programming are more than one, it is difficult to reach a 
certain point for all of the objective functions, to whose 
maximum, that is the optimal solution is usually does not 
exist. Therefore, it needs to make a compromise plan 
making each target function as large as possible in a spe- 
cific problem. And fuzzy mathematical programming 
method can deal with the problem, which will turn the 
multi-target model to a single one. 
 
3.2. Solution of Multi-Objective Linear 

Programming Model with Fuzzy Mathematics 
 
Step 1: to solve every single maximum objective 
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jective linear programming solved 
ith LINGO easily. 

. The Optimal Portfolio Model 

ropose the optimal portfolio 
under Mean-CVaR model: 

   
This is a single ob

w
 
4
 
For investors, the aim is to seek the maximize returns while 
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Model  4P  is a multi-objective optimization problem,it 

 mathematics method. is can be solved by fuzzy
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. Empirical Study 

5.1. Model under Heavy 
Distribution 

1.8.26, with 922 closed days，calculate 
each day yield: 

5
 

 Mean-CVaR 

 
We choose two stocks (MS and Google), date begins 
2008.1.1 to 201

, ,
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where ,i jp is previous day’s closing price and , 1i jp   is 
the day also can get the average yield of 
MS is 1 0.000178

after. And we 
9  70.288; the average 

yield of Google is 2 0.0000044
, kurtosis is 

  , kurtosis is 9.693, 
compare to normal return’s kurtosis 3, the two stocks 

s heavy tails. returns’s is larger. That is, the re
To solve model  4P , let 922m  , 
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 optimal portfolio is  1,0w  , in this case, 
 m x E w 849 . 

5.2.

e optimal 
portfolio is 

a  0.0001789 ,  min CVaR  0.020w

odel under Normal 
Distribution 

 solve Markow t th

 
 Mean-VaR M

 
We can also itz model, and ge

 0.99,001w  n which case, , i

 max  0.0001789E w  ,  min VaR 0.003w  

It is showed that our max return is equal to and risk is 
higher than M-V model. So the CVaR predicts the po- 
tential risk of the portfolio, which help investors cautious 
in

stocks, 
ut it is easy to be extended to several stocks case. 
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