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Abstract 
Security insurance is a paramount cloud services issue in the most recent 
decade. Therefore, Mapreduce which is a programming framework for pre-
paring and creating huge data collections should be optimized and securely 
implemented. But, conventional operations on ciphertexts were not relevant. 
So there is a foremost need to enable particular sorts of calculations to be 
done on encrypted data and additionally optimize data processing at the Map 
stage. Thereby schemes like (DGHV) and (Gen 10) are presented to address 
data privacy issue. However private encryption key (DGHV) or key’s parame-
ters (Gen 10) are sent to untrusted cloud server which compromise the infor-
mation security insurance. Therefore, in this paper we propose an optimized 
homomorphic scheme (Op_FHE_SHCR) which speed up ciphertext ( cR ) re-
trieval and addresses metadata dynamics and authentication through our se-
cure Anonymiser agent. Additionally for the efficiency of our proposed scheme 
regarding computation cost and security investigation, we utilize a scalar ho-
momorphic approach instead of applying a blinding probabilistic and poly-
nomial-time calculation which is computationally expensive. Doing as such, 
we apply an optimized ternary search tries (TST) algorithm in our metadata 
repository which utilizes Merkle hash tree structure to manage metadata au-
thentication and dynamics. 
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1. Introduction 

The rapid development in outsourcing data processing and storage by distri-

How to cite this paper: Martin, K., Wang, 
W.Y. and Agyemang, B. (2017) Optimized 
Homomorphic Scheme on Map Reduce for 
Data Privacy Preserving. Journal of Infor-
mation Security, 8, 257-273. 
https://doi.org/10.4236/jis.2017.83017  
 
Received: June 29, 2017 
Accepted: July 22, 2017 
Published: July 25, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

   
Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2017.83017
http://www.scirp.org
https://doi.org/10.4236/jis.2017.83017
http://creativecommons.org/licenses/by/4.0/


K. Martin et al. 
 

258 

buted computing framework, and in addition to complex and huge data collec-
tion mining have extended the availability of useful data to various organizations 
of modern society in the exponential way. But, data privacy insurance is a prin-
cipal issue in huge dataset management on cloud environment, as the dataset 
proprietor has not any more physical control of his dataset as per the Cloud Se-
curity Alliance (CSA) [1]. For instance, the remote body sensed data monitoring 
system contains delicate data like patient identity and address that can lead to 
harmful consequences in case of disclosure. Therefore, Mapreduce which is a 
computing framework that process and create substantial distributed informa-
tion must be strongly secure for data privacy preserving in cloud. Security as-
surance issues identified with MapReduce and cloud have started to draw se-
rious consideration. Puttaswamy et al. [2] presented a set of tools called Silver-
line that can isolate all practically encryptable information from other cloud ap-
plication information to guarantee data protection. Likewise, Zhang et al. [3] 
proposed a privacy leakage upper-bound limitation based solution to deal with 
data privacy preserving issue by just encrypting part of available data on cloud. 
Roy et al. [4] proposed a framework named Airavat which constrains obligatory 
access control via differential privacy technic. Blass et al. [5] proposed a data 
privacy model named PRISM for the Map Reduce structure on cloud to perform 
parallel word search on encrypted data collections. Ko et al. [6] proposed the 
HybrEx Map Reduce model that processes very sensitive and private informa-
tion by a private cloud, while others data can be securely processed in the public 
cloud. Zhang et al. [7] proposed a system called Sedic which partitions Map Re-
duce computing tasks in terms of the security labels of data. Thereby, they work 
on and then assign the computation without sensitive data to a public cloud. 
However, conventional data encryptions that are considered as the essential 
technique to address security issue in cloud can’t be straightforwardly imple-
mented in Mapreduce framework. Therefore a new cryptosystem called homo-
morphic encryption which could process encrypted data is first introduced in [8] 
to find an effective solution to this challenge. This fully homomorphic encryp-
tion (FHE) can compute arbitrary function on encrypted data without using se-
cret key. However, FHE rose two major challenges regarding its implementation 
and computation cost [9] [10]. First, the number of available FHE schemes in 
the literature is very limited (few). Second, the efficiency of fully homomorphic 
encryption is the biggest challenge to address. Therefore, the efficiency of FHE 
has been the key problem since its invention, which hinders its myriad of poten-
tial applications such as private cloud computing in practical. Specially, the size 
of key in FHE scheme is big. Thereby, a FHE scheme based on Learning with 
Error (LWE) doesn’t only include public key and private key but also includes 
some evaluation keys. For an L-Leveled FHE scheme, there are L evaluation keys. 
Each evaluation key is a ( ) ( )21 log 1n q n+ × +    matrix. A public key is at least 

( )2 log 1n q n× +  matrix. Clearly, these matrixes are high dimension, which not 
only need a lot of space to store but also affect the efficiency of computation. In 
2009, an updated version done by researcher [11] is by all accounts an effective  
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alternative to address data privacy assurance issue which is considered by infor-
mation security community as a paramount topic. Thereby, schemes like DGHV 
[12] and Gen 10 [13] are introduced to securely compute data through homo-
morphic approaches on Mapreduce environment. Unfortunately those mentioned 
solutions experience some basics shortcomings as far as security concerns [12] 
[13]. The DGHV scheme [12] uses many of the tools from Gentry’s construction. 
But this model does not require ideal lattices. Moreover, they prove that the 
somewhat homomorphic component from Gentry’s ideal lattice-based scheme [13] 
can be replaced with a very simple somewhat homomorphic scheme that uses in-
tegers. Therefore their model is conceptually simpler, but the private key should be 
transferred to cloud server, which is very insecure. Gentry proposed a homomor-
phic encryption Gen 10 scheme [13], applicable in cloud environment and con-
ceptually simple. In this scheme the encryption function is homomorphic with re-
spect to addition, subtraction and multiplication. The relationship between c and 
m is that m is the residue of c with respect to modulus p, that is modm c p= . To 
retrieve the ciphertext, the Gen 10 scheme doesn’t present the private key as [12]. 
But a random private key parameter q instead ( )modindexR ci c q= −   , which 
seems quite more secure. Yet the parameter q is sent to the server, by using the 
formula modc q , the plaintext m may leaks out. So this scheme suffers from se-
curity weakness too. The goal of this paper is to construct an efficient FHE scheme 
with better key size. Thereby in this work, we introduce our solution by presenting 
an optimized scalar homomorphic scheme (Op_FHE_SHCR) that first addresses 
the above mentioned data privacy protection shortcomings through efficient oper-
ations over ciphertexts without compromising the cryptosystem like the existing 
models [12] and [13]. Furthermore, we demonstrate how fast our proposed solu-
tion retrieves ciphertexts at Reduce stage in an optimized and secure way. At that 
point of this work, we present the programming and cryptographic primitives in 
Section 2. A short discussion on related work is presented in Section 3. The Section 
4 will give details of the concrete execution and security analysis of our proposed 
solution. At long last we close this work in Section 5. 

2. Preliminaries 
2.1. Map Reduce 

Map Reduce in [14] is defined as a computation framework to process and gen-
erate large datasets. In this programming environment, users specify a Map 
function that processes a key/value pair to generate a set of intermediate key/ 
value pairs, and a Reduce function that merges all intermediate values related 
with the identical intermediate key. We have such a variety of problems solving 
that are expressible by Mapreduce, like the problem of counting the number of 
occurrences of each term in a large dataset. The Mapreduce architecture can be 
viewed as below (Figure 1). 

2.2. Homomorphic Encryption Scheme 

♦ Homomorphism 



K. Martin et al. 
 

260 

 
Figure 1. Mapreduce execution overview in [14]. 

 
A homomorphism between two algebras, A and B, over a field (or ring) K, is a 

map F: A → B such that for all k in K and x, y in A; 
• ( ) ( )F kx kF x=  
• ( ) ( ) ( ) F x y F x F y+ = +  
• ( ) ( ) ( )F xy F x F y=  

If F is bijective then F is said to be an isomorphism between A and B. 
♦ Homomorphic Encryption  

As an ever increasing number of data is outsourced into distributed storage, 
frequently unencrypted, considerable trust is required in the cloud providers. 
The CSA records information breach as the top issue to cloud security [1]. En-
crypting the data with conventional encryption addresses the issue. But in this 
case, the end user can’t work on the encrypted data and must download them 
and performs the decryption locally. Therefore, there is a need to allow com-
pletely the public cloud server to perform calculations in the interest of the end 
users and return just the encrypted result. Thereby, the development of homo-
morphic encryption is a very impressive advance, incredibly amplifying the ex-
tent of computation which can be applied to process encrypted data homomor-
phically. Thus, the enthusiasm in the research community is justified by the 
various applications in the real world (like medical applications, consumer pri-
vacy in advertising, data mining, financial privacy) of this theme.  

Homomorphic encryptions allow complex mathematical operations to be 
performed on encrypted data without compromising the encryption. This ho-
momorphic encryption is expected to play an important part in cloud compu-
ting, allowing companies to process and store encrypted data in a public cloud 
and take advantage of the cloud provider’s analytic services. It is first designed in 
1978 by Rivest et al. [8] and upgraded by the researcher’s community. Thereby, 
Craig Gentry [11] hypothetically shows the possibility of implementing this kind 
of encryption scheme [13]. In the same way, researcher Jaydip Sen represents 
homomorphic encryption clearly as a quadruple in [15]. However, Homomor-
phic ciphers typically do not, in and of themselves, do not provide verifiable 
computing and some variants are not semantically secure. Furthermore, the 
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poor performance is the big disadvantage of this scheme. Ciphertexts are much 
larger than the plaintexts, so communication requirements typically go up. The 
computations on these large ciphertexts are typically slower than if you just per-
formed the computation on the plaintext itself. Because of this, in the outsourc-
ing computation model, we typically see a requirement that encrypting inputs 
and decrypting outputs should be faster than performing the computation itself. 
Therefore there is a high need to optimize the data processing in order to reduce 
efficiently the computation and communication costs. 

3. Related Work 

Security insurance issues on Mapreduce framework have started to draw esca-
lated consideration. In this manner data confidentiality protection issues have 
been widely examined and productive progress have been accomplished by the 
security community practitioners. We quickly audit few existing models about 
security protection on Mapreduce framework. 

3.1. Xu Chen and Qiming Huang Scheme in [16] 

The authors in [16] presents a data privacy insurance scheme on Mapreduce uti-
lizing homomorphic encryption. It is a modified Mapreduce model, to guarantee 
data secrecy, and additionally processing the data in encrypted form. They pick 
two major prime numbers A, B, and make P = A * B, and afterward generate a 
random positive integer A, which is the private key, and B ought to likewise be 
confidential. 

Encryption: 

( )        modrC M A A= + ∗                       (1) 

Decryption: 

modM C A=                          (2) 

But, to apply homomorphic encryption in this scheme, authors do few mod-
ifications on ciphertexts to allow the Reduce function to find the identical keys 
and afterward group them like following: 

For a ciphertext ( )  modrC M A A P← + ∗ , authors obtain *  C C B R= ∗ ∗ , with 
R as random positive number.  

Then, the authors compare ( *C ), rather than C to retrieve similar keys. The-
reby, it’s obvious that their proposed solution needs an additional computation 
( *C ) at reduce phase which is costly in term of computation in order to get a 
probabilistic homomorphic cryptosystem. Review that this homomorphic cryp-
tosystem is exceptionally expensive, therefore their model is inefficient. 

3.2. FHE_SHCR Scheme in [17] 

As discussed in [17] the related work [16] requires additional computation at the 
reduce stage, the DGHV [12] and Gen 10 [13] schemes send respectively their 
private key and sensitive security parameters to unreliable public cloud server 
(compromising the cryptosystem). Additionally, the above mentioned models 
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don’t address the security and efficiency ciphertext retrieval issues. Therefore, 
authors in [17] present their contribution FHE_SHCR, which is based on 
schemes [13] [18] and [19] to address the privacy shortcomings of models [12] 
[13] and [16]. Subsequently, the main objective of this model is to securely re-
trieve ciphertexts at reduce stage and enhance the retrieval algorithm accuracy 
without getting any information about the content of intermediate searchable 
ciphertext to fix the security shortcomings in [12] and [13]. The FHE_SCHR 
scheme is an efficient candidate for homomorphic encryption to preserve data 
privacy in cloud by a strong hybrid encryption [17]. 

Our contribution: 
Note that, the improvement on this paper is mainly on the optimization of the 

input file decomposition (map phase) and ciphertext retrieval algorithm (reduce 
phase) by addressing the metadata dynamics and authentication path through a 
logical Merkle tree repository structure (optimized space-time cost). 

4. The Optimized FHE_SHCR (Op_FHE_SHCR) 

As clearly proved by the research community; the homomorphic encryption can 
carry some operations over encrypted data effectively, but it is very expensive 
scheme in terms of computation and communication costs [8] [11] [13]. There-
fore, we introduce a new Logical agent: Anonymiser (with its three components: 
Decomposition Table, Query Processing, and the Metadata Repository) at the 
user side under the control of the master program. Doing so, the user program 
can efficiently send to the master program the optimal decomposition (Splitting: 
Key/value) of a given input files before encrypting the data (Shuffle). Thereby, 
we use our optimized ternary search tries (TST) [20] in a logical Merkle tree 
structure to optimally address the metadata authentication and dynamics through 
the Metadata repository component. The architecture overview of the proposed 
solution can be depicted by Figure 2. 

Thus, our optimized algorithm (Op_FHE_SHCR) through successful experi-
ments (see section below) performs 3 times faster the original FHE_SHCR 
scheme [17] and effectively addresses the metadata dynamics and authentication 
issues through a secure and efficient metadata repository (Optimized ternary 
search tries to address the time space constraints). Furthermore, we speed up the 
ciphertext retrieval algorithm (accuracy and efficiency) at the reduce phase by 
using the optimal Lagrange multiplier (µ*) as the optimum number N e  (See 
section below). Note that, the implementation of this Anonymiser as our Trusted 
Front End Database Management (TFE) is to enhance the security and speed up 
the data processing of our proposed solution and represents the key point of this 
extended work.  

4.1. Optimized Metadata Authentication and Dynamics 

As mentioned in the previous section, our proposed scheme further addresses 
metadata authentication and dynamics issue for strong data privacy protection. 
Therefore, we introduce a logical agent: Anonymiser in the master control pro- 
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Figure 2. Architecture Overview of optimized FHE_SHCR. 
 

gram. The Anonymiser has three pieces namely: Decomposition table, Query 
Processing, and Metadata Repository. Their functions can be briefly described as 
following: 
♦ Decomposition table: It is responsible for defining the exact set of attributes 

(Α ) for particular input files in the optimal number. 
♦ The Query Processing: It filters the candidate map workers queries request 

generated by the master program to produce anonymous query-based request on 
data location for processing.  
♦ The Metadata Repository: It keeps data decomposition done by the de-

composition table and forwards them to the Query Processing unit to generate 
new anonymous query request. For the efficiency of the proposed scheme, we 
use Merkle hash tree structure to deal with metadata authentication and dynam-
ics [21]. Thereby the master program assigns a particular input files decomposi-
tion table (A) to map workers for processing logically as below: 

All input files are transformed into a set of symbols (A) as 1a , 2a , 3a , na  
as depicted by the above Figure 3. The data matching and authentication starts 
from root node in a top-down manner and its dynamics process can be de-
scribed as follows. 

File uploading: Suppose that a data owner wants to process a file F identified 
by ia  (leaf node) with public cloud server whose attributes satisfy an access 
policy [ ]AP ap1 apn=   defined by the private cloud server. Assume that the  
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Figure 3. Efficient Symbol-based Tree Retrieval. 

 
file F consists of a keyword set W. Then, the owner randomly chooses a symme-
tric key keS  from the key space and encrypts the file F with keS  to obtain the 
ciphertext tfC . Subsequently, data owner runs the algorithm Encrypt(AP, keS ) 
to obtain the ciphertext skeC  which is the encryption of the symmetric key keS  
with respect to the access policy AP. The owner uploads ( ), ,i tf skea C C  to the 
public cloud. Furthermore, to generate the trapdoors for keywords in W, the 
owner also sends ( ia , AP, W) to the private cloud. Upon receiving ( ia , AP, W), 
the private cloud transforms the access policy AP into a set { }APjP  of privileges. 
Then, for each Wiw ∈  and { }  APi jp P∈ , it computes ( ), f ,pi i pi it w k w= , 
where pik  is the symmetric key for each ip . Finally, the private cloud sends 

{ }( ), ,i pi ia t w  to the public cloud as well.  
To enhance the searching efficiency, a symbol-based tree is utilized to build an 

index stored in private cloud (metadata repository). More precisely, divide the 
output of one-way function f into l parts and predefine a set { }1 iA a a=   con-
sisting of all the possible values in each part (an example of such tree can be 
shown in Figure 3). Initially, the index based on symbol-based tree has only a 
root node (denoted as 𝑛𝑛𝑜𝑜𝑑𝑑𝑒𝑒 0) which consists of ∅ (an empty set). The search 
process in a symbol based tree is a depth first search. The tree can be updated 
and searched as follows. 

Update: Assume the data owner wants to outsource a file F identified by ia  
with keyword set W, the public cloud will receive ( ), ,i tf skea C C  and  

{ }( ), ,i pi ia t w  where ip  are the corresponding privileges and iw  are keywords 
in W from the data owner and private cloud respectively. Then, for each 

( ),pi it w  the public cloud will add it into the trie index as the following steps. 
i) Step 1: Public cloud parses ( ),pi it w  as a sequence of symbols 1 2i i ila a a .  

ii) Step 2: Public cloud starts with the root node of tree: it scans all the children 
of the root node and checks whether there exists some child node 1 such that 
the symbol contained in node 1 equals ila . This action is performed in a 
top-down manner. In general, assuming that the subsequence of symbols 

1 2 1  i i ija a a −  has been matched and the current node is 1jnode − , the public 
cloud will examine all the children of 1jnode −  and attempt to find out some 
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node, for example jnode  such that the symbol contained in jnode  equals 

ija . If such node exists, the current node is set as jnode  and 1ija +  is the 
next matching object, otherwise jump to step 3. 

iii) Step 3: Assume that current node jnode  has no children to match the sym-
bol 1ija + , the public cloud will build nodes 1, ,j jlnode node+   for all the rest 
of the symbols (i.e. 1 2, , ,ij ij ila a a+ +  ) respectively and link them as a node list 
appended with jnode . Finally, add another node identified by ia  as the leaf 
node appended with jlnode . 

Search: Assuming that the legitimate user wants to search outsourced files 
with keyword w and privileges { }ip , the public cloud will receive ( ),pi it w  
from the private cloud. For each ( ),pi it w  the public cloud will perform actions 
similar to the three steps described above. One exception is that if matching fails 
(i.e. the current node has no children which can match the symbol), the search 
for ( ),pi it w  is aborted. Otherwise, get the corresponding ( ),tf skeC C ) through 
the identifier ia  in the leaf node. 

So to address Merkle tree traversal problem, our scheme uses some tools from 
the efficient algorithm in [22] to overcome the space-time issue. Furthermore, to 
optimize the time space constraints in the Merkle hash tree traversal process, we 
designed an optimized ternary search tries (TST) [20] which is a sorting algo-
rithm that blends quicksort and radix sort. Thereby, it is competitive with the 
best known C sort codes. It is faster than the traditional hashing and other 
commonly used search methods as shown below (Figure 4): 

The TST is space efficient, but increases with the number of strings (N). 
Therefore the traversal problem is how to calculate efficiently the authentication 
path for all leaves one after another starting with the first leaf up to the last leaf, 
for minimum amount of space-time cost. Hence, it implies to analyze an optimal 
distribution of singleton attribute ( ia ) to enhance the efficiency of the proposed 
solution; that is to find the optimal number of strings or attributes (N) to popu-
late the tree. In this work we use the Karush-Kuhn-Tucker (KKT) condition of 
constrained optimization problem [24] to solve the above mentioned issue in the 
section below. Practically, we design our solution using some mathematical tools  

 

 
Figure 4. String symbol table implementation cost summary from [23]. 
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from the scheme in [25] to find the minimum number of singleton quasi-identifier 
that gives the optimal security level for the proposed traversal algorithm effi-
ciency. 

Let 1 2 3, , ,  , nn n n n  be the number of values along the different columns of 
the Anonymiser decomposition table to populate the distinct levels set  

1 2 3, , ,  , nL L L L  of the Merkle tree respectively. The total number of distinct val-
ues taken by the different levels set ( 1 2 3, , ,  , nn n n n ) is N. We assume that each 
column set ( iC ) of the decomposition table takes ( in ) different values with the 
probability ( ip ) respectively, where 

1 1N
ii p

=
=∑ . 

Therefore the probability for the (ith) element to be a singleton in the universal 
decomposition table by selecting one of the (n) choices (entries) is ( ) 11 n

i inp p −− . 
Let the variable ix  be the indicator representing whether (ith) element is a 

singleton, then its expectation is calculated as below: 

[ ] [ ] ( ) ( )def11 1 e in np
i i i i iE x P x np p np− −= = = − =             (3) 

Let 
1

N
iiX x

=
= ∑ , be the variable that counts the number of singleton; its ex-

pectation is given by: 

[ ] [ ] ( )1 1 e inpN N
i ii iE X E x np −

= =
= =∑ ∑                 (4) 

We aim to find the smallest number of singleton to populate efficiently the 
Merkle tree in the metadata repository. 

It implies to minimize ( )1  e inpN
ii np −

=∑ ;  
Subject to 

1
N

ii np n
=

=∑ , with 0 inp≤ , 1 i N∀ ≤ ≤ . 
Therefore we get the optimized number of singleton by rewriting the above 

distribution as a constrained optimization problem [24]. Doing so, we find the 
dual solution of the primal problem which is fast and reduces the space-time 
costs as follows:  

( ) ( )
( )

1min e

(P) 0;
1

ixN
i ii

i i

f x x

st g x x
i N

−

=
 =
 = >
 ∀ ≤ ≤

∑

                 

 (5) 

KKT condition: Primal variable: ix ; Lagrange Multiplier: ,λ µ  
Let us considering an optimization problem of forms Minimize f(x) Subject to 
( ) ( )0; 0i ih x g x= ≤ ;  
With 1, ,i m=   

( ) ( ) ( ) ( )
( ) ( )

* * * *
1 1

* *

0

0, 0, for 1, , , 1, ,

0, 0

m m
i i i j Xi j

i j

j i

f x h x g x T x

h x g x i m j r

µ

λ µ

λ

= =
∇ + ∇ + ∇ +

 = ≤ = =


≥ ≥

∑ ∑
 



      

 (6) 

Using the Lagrange multiplier and the duality theorem, the solution of the 
problem (P) is determined as following: 

( ) ( ) ( ),
i

T
x iL f f x g xµ µ= − , 

Then ( ) ( ) ( ) ( ) ( ) ( ){ }def
0 1    , ; e i

i i

xN T
x X i i ig x iq inf L x q inf x xµµ µ−
∈ > =

= = −∑  
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( )q µ  is a smooth function, then its gradient equals to zero at the optimal 
number (x*): 

( )*   0T
x i if x xµ∗ ∗∇ + ∇ =                      (7) 

( )

( )
( )
( )

( )

1

2

3

1

2

* 3

1 e
1 e

01 e

1 e N

x

x

T x
i ix

x
N

x
x

f x x x

x

µ µ

−

−

−

−

∗ ∗

 −
 

− 
 ∇ + ∇ = − =−
 
 
 − 



             (8) 

Then, ( )1 e 0ix
ix µ

∗∗ −− − = , 1 i N∀ ≤ ≤ . Therefore ( )1 e ix
ixµ

∗∗ −= −   
Case1: 0µ =  

( ) ( )yields1 e 10 0i
i i

xx x
∗∗ ∗−− → − == , then 1ix∗ = . So we have:  

( ) ( )1
1

1m n e ei ixN N
i ii if x x N e−−

= =
= ≤ =∑ ∑   

Case 2: 0µ >  

( ) ( )yields1 e 10 0i
i i

xx x
∗∗ ∗−− → − >> , then 0 1ix∗< < ; 

If 1, we get case 1,
otherwise contradiction to the KKT conditions.

ix∗ =



 

Finally the optimal number of singleton quasi-identifiers for a decomposition 
table of (n) entries with maximum total number of distinct values (N) is N e . 
Using this optimum number ( N e ) to populate the ternary search tree, we im-
prove the performance of the Merkle tree traversal algorithm by addressing the 
space-time cost issue. Thereby, the overall ciphertext retrieval time at reduce 
phase for our optimized algorithm Op_FHE_SCHR is almost three times less 
than the exiting one FHE_SCHR refer to Figure 5. 

4.2. FHE_SCHR Efficiency and Implementation Analysis 

Regardless of the advances in remote sensor network (WSN) to controls systems 
into cloud, there are still enormous challenges in term of security insurance over 

 

 
Figure 5. Overview performance comparison of cryptosystems. 
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outsourced data processing and storage [26]. Therefore, we work for experiment 
purposes over trained sensed dataset for cancer pattern monitoring project. So 
our main goal in this paper is to securely optimize the map phase (input files 
decomposition) and ciphertexts retrieval (reduce phase) process. Thereby, we 
implement an optimized scalar homomorphic based Mapreduce scheme  
Op_FHE_SHCR, which contains four algorithms: KeyGen ( ek ), Encrypt (1σ , 

ek , s.m) Decrypt(c) and Retrieval(c). Note that these four algorithms are quite 
similar like those in [21], with modified mapping and hashing algorithm like 
below (Algorithm 1). 

Pseudo code: 
This algorithm initializes the selected feature subset (splitting the input file 

into subsets) denoted by SF , with the empty set. A candidate feature subset, 
denoted by CF , will be produced by adding a feature, denoted by   df , with

[ ]  1,d D∈ , to the selected feature subset, and the hashing index 
CFIWI  will be 

computed by Algorithm 2. Then, the algorithm removes this feature and adds  
 

Algorithm 1: Splitting. 

Input: < iF  input file (key/value) > 

Output: < SF  searchable ciphertext (key/value ) > 

Initialize: SF =∅ ; 

repeat t iF F= ; 

repeat  
produce the candidate feature set [ ]  , , 1,C c S c tF f F f F c D= ∈ ∈ ;  

remove cf  from tF ; 

compute and record cF  by Algorithm 2;  

until tF ==∅   

 :S d SF f F= , where ( )
Cd Ff argNMax IWI= ; 

remove df  from OF ;  

until OF ==∅  or meeting the threshold 

 
Algorithm 2: Hashing. 

Input: < searchable ciphertext (key/value ) > 
Output: < splitting searchable ciphertext (key/value ) > 
1. #include <stdio.h> 
2. #include <string> 
3. using namespace std; 
4. class MyHash 
5. {private: string ** table; int * maxind; 
6. long width; 
7. long depth; 
8. protected: bool insert(long value,string s); 
9. void printone(long v); 
10. public:MyHash(long N, long Depth); 
11. long apply(string s); 
12. void printall (); 
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another feature to generate a new candidate. That is, the new feature in the cho-
sen candidate will be added to the selected feature subset. Thus, this algorithm 
iteratively adds one feature (or the fixed number of features if the floating strat-
egy has been used) to increase the selected feature subset until the threshold is 
met. It should be pointed out that the main difference between the proposed al-
gorithm and the existing ones in the literature is that our algorithm produces 
high correlated data subsets based on the hashing index value. Therefore the ci-
phertext retrieval process at the reduce stage will be more efficient in terms of 
speed. 

The design of our OP_FHE_SCHR cryptosystem is done using the HElib- 
master-2015.03 library in Dev C++ IDE. We utilize the WDBC Test training da-
taset for cancer management project. Our security algorithm is implemented in 
four steps using Gentry cryptosystem [13] [18] and [19].  

The efficient analysis of the candidate solution is proved by its experiments 
results that are compared with the existing blinding fully homomorphic  
FHE_DFI_LM algorithm, previous FHE_SCHR, and our new optimized  
Op_FHE_SCHR algorithm. Recall that, the improvement on this paper is mainly 
on the optimization of ciphertext retrieval time and metadata dynamics and au-
thentication path in the logical Merkle tree repository (optimized space-time 
cost). 

Table 1 and Figure 5 show the average performance of our proposed solution 
(Op_FHE_SCHR) in comparison to related works (FHE_DFI_LM & FHE_SCHR). 
Recall that, the experimental requirements are to optimize the outsourced data 
processing at the map stage and prevent intermediate data disclosure at the re-
duce phase in order to reinforce data privacy on Mapreduce framework. There-
fore our Op_FHE_SCHR processes almost the data at Map stage (setup phase 
refer to Table 1 and Figure 5) three time less (5932 ms) than FHE_DFI_LM 
(13078 ms) and two time less than our previous work FHE_SCHR (11684 ms). 
This result is obtained by an optimized map workers selection using the optimal 
number N e , for a given decomposition table of (n) entries at the splitting step. 
Thereby for a given dataset N, our algorithm calculates in advance the exact op-
timal number of subsets (feature selection) and map workers to speed up the 
splitting and data allocation process at the Map stage. Furthermore, each ele-
ment (feature) of a subset is selected by an efficient feature selection algorithm 
(refer Algorithm 1). 

 
Table 1. Average performance Comparison. 

ALGORITHM 

AVERAGE PERFORMANCE 

Setup time (ms) 
Encryption 
time (ms) 

Ciphertext Retrieval  
time (ms) 

Decryption  
time (ms) 

FHE_SCHR 11,684 37,419 37,419 7994 

FHE_DFI_LM 13,078 77,507 77,507 41,085 

Op_FHE_SCHR 5932 37,120 12,476 7990 
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Based on the result of effective experiments directed, it is unmistakably certain 
that the proposed optimized scheme Op_FHE_SCHR speedups the setup (input 
files decomposition) and ciphertext retrieval time without compromising the 
cryptosystem. Thereby, the graph 5 shows that the proposed alternative is more 
efficient regarding the ciphertext retrieval and computation cost reduction. Note 
that homomorphic cryptosystem is extremely expensive [15]. Therefore, our so-
lution contribution is a reliable alternative to minimize the overall computation 
and communication costs. 

4.3. FHE_SCHR Security Analysis 

Two security requirements are to be achieved, that is data confidentiality and 
integrity. Therefore, our security scheme is based on a hybrid encryption design. 
Since the file is encrypted with a hybrid encryption as ( ),tf skeC C , the adversary 
should first decrypt skeC . However, such a session key is protected by the ABE 
scheme. Thus, data confidentiality can be reduced to the confidentiality security 
of ABE. Moreover, the keywords which are needed to be protected against the 
public cloud are encrypted with a one way trapdoor function. The underlying 
ABE scheme for this work is known to be semantically secured. This private key 
is under the security proof of the ABE scheme and reduced to the bilinear deci-
sional Diffie-Hellman (BDDH) problem [27]. The bilinear decisional Diffie- 
Hellman (BDDH) problem is such that given g, , , Gx y zg g g ∈  for unknown 
random values x, y, z ∈ R PZ , and T ∈ R, TG , prove the distinguish ability of 
( ), xyze g g  from any random number in the target group is very hard to decide 

if ( ), xyzT e g g= . We say that the (t, ϵ)-BDDH assumption holds in G, if no t-  

time algorithm has the probability at least 1
2
+   in solving the BDDH problem 

for non-negligible ϵ. 
Recall that this paper is based on [17], and therefore we use the same crypto-

system to fix the data privacy preserving challenge. Furthermore, to enhance the 
security of our proposed solution in terms of data authentication paths and dy-
namics, we adopt the Merkle’s hash tree to store the metadata decomposition 

{ }( )1 2, , ,i na A a a a∈ =  ; which is freely secure from any number theoretic con-
jectures [21]. Indeed the Merkle’s hash trees are very useful because they allow 
efficient and secure verification of the contents of large data structures. This se-
curity lies mainly on two properties of hash functions: 

i) Pre-image resistance: that is, given a hash value (h), it is difficult to find a 
message m such that h = hash (m).  

ii) Collision resistance: that is, finding two messages m1 ≠ m2 such that hash 
(m1) = hash (m2) is difficult. 

This data structure is a complete binary tree with an n-bit hash value asso-
ciated with each node. Each internal node value is the result of a hash of the 
node values of its children. Merkle trees are designed so that a leaf value h ( ia ) 
can be verified with respect to a publicly known root (A) value given the authen-
tication path of the respective leaf as:  
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( )A h ha1|| ha2 || ha3 || || han=  ; refer to the Figure 3. So an attacker holding 
a hash value ( )hai  in order to reconstruct (A); needs some additional values 
called Auxiliary Authentication Information (AAI) which are kept secret by the 
metadata repository administrator under the supervision of the Anonymiser 
Query system. Therefore it is very hard for the public cloud server or outside at-
tacker to reconstruct the input files by the decomposition table (A).  

To summarize the security analysis, we can say by implementing a secure 
front end database management agent (Anonymiser) on top of FHE_SHCR se-
curity mechanism [17] that the data privacy insurance has been greatly rein-
forced in our proposed solution (Optimized FHE_SHCR). 

5. Conclusion 

In this paper, the requirements are to optimize the outsourced data processing at 
the map stage and prevent intermediate data disclosure at the reduce phase in 
order to reinforce data privacy on Mapreduce framework. Therefore, we imple-
ment a secure Front End Database Management agent: the Anonymiser with its 
three components (Decomposition table, Query Processing, and Metadata Repo-
sitory.) to enhance the data security mechanism of our proposed solution. The 
cryptosystem tool is a scalar homomorphic encryption that performs some sorts 
of calculations over encrypted data in more secure and optimized design. The 
optimized cryptosystem Op_FHE_SCHR is by the experiments results an effi-
cient candidate for the communication and computation costs reduction. Prac-
tically, it takes as input files an optimized decomposition table (for map work-
ers), and improves the speed and accuracy of ciphertext retrieval process (for 
reduce workers) on Mape Reduce environment. Furthermore, we address the 
metadata dynamics and time space cost constraints for the traversal of Merkle 
tree structure in our metadata repository by applying an optimized ternary 
search tries (TST) algorithm. 
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