
Journal of Information Security, 2017, 8, 257-273
http://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2017.83017 July 25, 2017

Optimized Homomorphic Scheme on Map
Reduce for Data Privacy Preserving

Konan Martin1, Wenyong Wang2, Brighter Agyemang1

1Department of Computer Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu,
China
2Department of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu,
China

Abstract
Security insurance is a paramount cloud services issue in the most recent
decade. Therefore, Mapreduce which is a programming framework for pre-
paring and creating huge data collections should be optimized and securely
implemented. But, conventional operations on ciphertexts were not relevant.
So there is a foremost need to enable particular sorts of calculations to be
done on encrypted data and additionally optimize data processing at the Map
stage. Thereby schemes like (DGHV) and (Gen 10) are presented to address
data privacy issue. However private encryption key (DGHV) or key’s parame-
ters (Gen 10) are sent to untrusted cloud server which compromise the infor-
mation security insurance. Therefore, in this paper we propose an optimized
homomorphic scheme (Op_FHE_SHCR) which speed up ciphertext (cR) re-
trieval and addresses metadata dynamics and authentication through our se-
cure Anonymiser agent. Additionally for the efficiency of our proposed scheme
regarding computation cost and security investigation, we utilize a scalar ho-
momorphic approach instead of applying a blinding probabilistic and poly-
nomial-time calculation which is computationally expensive. Doing as such,
we apply an optimized ternary search tries (TST) algorithm in our metadata
repository which utilizes Merkle hash tree structure to manage metadata au-
thentication and dynamics.

Keywords
Privacy, Mapreduce, Homomorphic Encryption, Ciphertexts Retrieval,
Optimization, Authentication

1. Introduction

The rapid development in outsourcing data processing and storage by distri-

How to cite this paper: Martin, K., Wang,
W.Y. and Agyemang, B. (2017) Optimized
Homomorphic Scheme on Map Reduce for
Data Privacy Preserving. Journal of Infor-
mation Security, 8, 257-273.
https://doi.org/10.4236/jis.2017.83017

Received: June 29, 2017
Accepted: July 22, 2017
Published: July 25, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2017.83017
http://www.scirp.org
https://doi.org/10.4236/jis.2017.83017
http://creativecommons.org/licenses/by/4.0/

K. Martin et al.

258

buted computing framework, and in addition to complex and huge data collec-
tion mining have extended the availability of useful data to various organizations
of modern society in the exponential way. But, data privacy insurance is a prin-
cipal issue in huge dataset management on cloud environment, as the dataset
proprietor has not any more physical control of his dataset as per the Cloud Se-
curity Alliance (CSA) [1]. For instance, the remote body sensed data monitoring
system contains delicate data like patient identity and address that can lead to
harmful consequences in case of disclosure. Therefore, Mapreduce which is a
computing framework that process and create substantial distributed informa-
tion must be strongly secure for data privacy preserving in cloud. Security as-
surance issues identified with MapReduce and cloud have started to draw se-
rious consideration. Puttaswamy et al. [2] presented a set of tools called Silver-
line that can isolate all practically encryptable information from other cloud ap-
plication information to guarantee data protection. Likewise, Zhang et al. [3]
proposed a privacy leakage upper-bound limitation based solution to deal with
data privacy preserving issue by just encrypting part of available data on cloud.
Roy et al. [4] proposed a framework named Airavat which constrains obligatory
access control via differential privacy technic. Blass et al. [5] proposed a data
privacy model named PRISM for the Map Reduce structure on cloud to perform
parallel word search on encrypted data collections. Ko et al. [6] proposed the
HybrEx Map Reduce model that processes very sensitive and private informa-
tion by a private cloud, while others data can be securely processed in the public
cloud. Zhang et al. [7] proposed a system called Sedic which partitions Map Re-
duce computing tasks in terms of the security labels of data. Thereby, they work
on and then assign the computation without sensitive data to a public cloud.
However, conventional data encryptions that are considered as the essential
technique to address security issue in cloud can’t be straightforwardly imple-
mented in Mapreduce framework. Therefore a new cryptosystem called homo-
morphic encryption which could process encrypted data is first introduced in [8]
to find an effective solution to this challenge. This fully homomorphic encryp-
tion (FHE) can compute arbitrary function on encrypted data without using se-
cret key. However, FHE rose two major challenges regarding its implementation
and computation cost [9] [10]. First, the number of available FHE schemes in
the literature is very limited (few). Second, the efficiency of fully homomorphic
encryption is the biggest challenge to address. Therefore, the efficiency of FHE
has been the key problem since its invention, which hinders its myriad of poten-
tial applications such as private cloud computing in practical. Specially, the size
of key in FHE scheme is big. Thereby, a FHE scheme based on Learning with
Error (LWE) doesn’t only include public key and private key but also includes
some evaluation keys. For an L-Leveled FHE scheme, there are L evaluation keys.
Each evaluation key is a () ()21 log 1n q n+ × +   matrix. A public key is at least

()2 log 1n q n× + matrix. Clearly, these matrixes are high dimension, which not
only need a lot of space to store but also affect the efficiency of computation. In
2009, an updated version done by researcher [11] is by all accounts an effective

K. Martin et al.

259

alternative to address data privacy assurance issue which is considered by infor-
mation security community as a paramount topic. Thereby, schemes like DGHV
[12] and Gen 10 [13] are introduced to securely compute data through homo-
morphic approaches on Mapreduce environment. Unfortunately those mentioned
solutions experience some basics shortcomings as far as security concerns [12]
[13]. The DGHV scheme [12] uses many of the tools from Gentry’s construction.
But this model does not require ideal lattices. Moreover, they prove that the
somewhat homomorphic component from Gentry’s ideal lattice-based scheme [13]
can be replaced with a very simple somewhat homomorphic scheme that uses in-
tegers. Therefore their model is conceptually simpler, but the private key should be
transferred to cloud server, which is very insecure. Gentry proposed a homomor-
phic encryption Gen 10 scheme [13], applicable in cloud environment and con-
ceptually simple. In this scheme the encryption function is homomorphic with re-
spect to addition, subtraction and multiplication. The relationship between c and
m is that m is the residue of c with respect to modulus p, that is modm c p= . To
retrieve the ciphertext, the Gen 10 scheme doesn’t present the private key as [12].
But a random private key parameter q instead ()modindexR ci c q= −   , which
seems quite more secure. Yet the parameter q is sent to the server, by using the
formula modc q , the plaintext m may leaks out. So this scheme suffers from se-
curity weakness too. The goal of this paper is to construct an efficient FHE scheme
with better key size. Thereby in this work, we introduce our solution by presenting
an optimized scalar homomorphic scheme (Op_FHE_SHCR) that first addresses
the above mentioned data privacy protection shortcomings through efficient oper-
ations over ciphertexts without compromising the cryptosystem like the existing
models [12] and [13]. Furthermore, we demonstrate how fast our proposed solu-
tion retrieves ciphertexts at Reduce stage in an optimized and secure way. At that
point of this work, we present the programming and cryptographic primitives in
Section 2. A short discussion on related work is presented in Section 3. The Section
4 will give details of the concrete execution and security analysis of our proposed
solution. At long last we close this work in Section 5.

2. Preliminaries
2.1. Map Reduce

Map Reduce in [14] is defined as a computation framework to process and gen-
erate large datasets. In this programming environment, users specify a Map
function that processes a key/value pair to generate a set of intermediate key/
value pairs, and a Reduce function that merges all intermediate values related
with the identical intermediate key. We have such a variety of problems solving
that are expressible by Mapreduce, like the problem of counting the number of
occurrences of each term in a large dataset. The Mapreduce architecture can be
viewed as below (Figure 1).

2.2. Homomorphic Encryption Scheme

♦ Homomorphism

K. Martin et al.

260

Figure 1. Mapreduce execution overview in [14].

A homomorphism between two algebras, A and B, over a field (or ring) K, is a

map F: A → B such that for all k in K and x, y in A;
• () ()F kx kF x=
• () () () F x y F x F y+ = +
• () () ()F xy F x F y=

If F is bijective then F is said to be an isomorphism between A and B.
♦ Homomorphic Encryption

As an ever increasing number of data is outsourced into distributed storage,
frequently unencrypted, considerable trust is required in the cloud providers.
The CSA records information breach as the top issue to cloud security [1]. En-
crypting the data with conventional encryption addresses the issue. But in this
case, the end user can’t work on the encrypted data and must download them
and performs the decryption locally. Therefore, there is a need to allow com-
pletely the public cloud server to perform calculations in the interest of the end
users and return just the encrypted result. Thereby, the development of homo-
morphic encryption is a very impressive advance, incredibly amplifying the ex-
tent of computation which can be applied to process encrypted data homomor-
phically. Thus, the enthusiasm in the research community is justified by the
various applications in the real world (like medical applications, consumer pri-
vacy in advertising, data mining, financial privacy) of this theme.

Homomorphic encryptions allow complex mathematical operations to be
performed on encrypted data without compromising the encryption. This ho-
momorphic encryption is expected to play an important part in cloud compu-
ting, allowing companies to process and store encrypted data in a public cloud
and take advantage of the cloud provider’s analytic services. It is first designed in
1978 by Rivest et al. [8] and upgraded by the researcher’s community. Thereby,
Craig Gentry [11] hypothetically shows the possibility of implementing this kind
of encryption scheme [13]. In the same way, researcher Jaydip Sen represents
homomorphic encryption clearly as a quadruple in [15]. However, Homomor-
phic ciphers typically do not, in and of themselves, do not provide verifiable
computing and some variants are not semantically secure. Furthermore, the

K. Martin et al.

261

poor performance is the big disadvantage of this scheme. Ciphertexts are much
larger than the plaintexts, so communication requirements typically go up. The
computations on these large ciphertexts are typically slower than if you just per-
formed the computation on the plaintext itself. Because of this, in the outsourc-
ing computation model, we typically see a requirement that encrypting inputs
and decrypting outputs should be faster than performing the computation itself.
Therefore there is a high need to optimize the data processing in order to reduce
efficiently the computation and communication costs.

3. Related Work

Security insurance issues on Mapreduce framework have started to draw esca-
lated consideration. In this manner data confidentiality protection issues have
been widely examined and productive progress have been accomplished by the
security community practitioners. We quickly audit few existing models about
security protection on Mapreduce framework.

3.1. Xu Chen and Qiming Huang Scheme in [16]

The authors in [16] presents a data privacy insurance scheme on Mapreduce uti-
lizing homomorphic encryption. It is a modified Mapreduce model, to guarantee
data secrecy, and additionally processing the data in encrypted form. They pick
two major prime numbers A, B, and make P = A * B, and afterward generate a
random positive integer A, which is the private key, and B ought to likewise be
confidential.

Encryption:

() modrC M A A= + ∗ (1)

Decryption:

modM C A= (2)

But, to apply homomorphic encryption in this scheme, authors do few mod-
ifications on ciphertexts to allow the Reduce function to find the identical keys
and afterward group them like following:

For a ciphertext () modrC M A A P← + ∗ , authors obtain * C C B R= ∗ ∗ , with
R as random positive number.

Then, the authors compare (*C), rather than C to retrieve similar keys. The-
reby, it’s obvious that their proposed solution needs an additional computation
(*C) at reduce phase which is costly in term of computation in order to get a
probabilistic homomorphic cryptosystem. Review that this homomorphic cryp-
tosystem is exceptionally expensive, therefore their model is inefficient.

3.2. FHE_SHCR Scheme in [17]

As discussed in [17] the related work [16] requires additional computation at the
reduce stage, the DGHV [12] and Gen 10 [13] schemes send respectively their
private key and sensitive security parameters to unreliable public cloud server
(compromising the cryptosystem). Additionally, the above mentioned models

K. Martin et al.

262

don’t address the security and efficiency ciphertext retrieval issues. Therefore,
authors in [17] present their contribution FHE_SHCR, which is based on
schemes [13] [18] and [19] to address the privacy shortcomings of models [12]
[13] and [16]. Subsequently, the main objective of this model is to securely re-
trieve ciphertexts at reduce stage and enhance the retrieval algorithm accuracy
without getting any information about the content of intermediate searchable
ciphertext to fix the security shortcomings in [12] and [13]. The FHE_SCHR
scheme is an efficient candidate for homomorphic encryption to preserve data
privacy in cloud by a strong hybrid encryption [17].

Our contribution:
Note that, the improvement on this paper is mainly on the optimization of the

input file decomposition (map phase) and ciphertext retrieval algorithm (reduce
phase) by addressing the metadata dynamics and authentication path through a
logical Merkle tree repository structure (optimized space-time cost).

4. The Optimized FHE_SHCR (Op_FHE_SHCR)

As clearly proved by the research community; the homomorphic encryption can
carry some operations over encrypted data effectively, but it is very expensive
scheme in terms of computation and communication costs [8] [11] [13]. There-
fore, we introduce a new Logical agent: Anonymiser (with its three components:
Decomposition Table, Query Processing, and the Metadata Repository) at the
user side under the control of the master program. Doing so, the user program
can efficiently send to the master program the optimal decomposition (Splitting:
Key/value) of a given input files before encrypting the data (Shuffle). Thereby,
we use our optimized ternary search tries (TST) [20] in a logical Merkle tree
structure to optimally address the metadata authentication and dynamics through
the Metadata repository component. The architecture overview of the proposed
solution can be depicted by Figure 2.

Thus, our optimized algorithm (Op_FHE_SHCR) through successful experi-
ments (see section below) performs 3 times faster the original FHE_SHCR
scheme [17] and effectively addresses the metadata dynamics and authentication
issues through a secure and efficient metadata repository (Optimized ternary
search tries to address the time space constraints). Furthermore, we speed up the
ciphertext retrieval algorithm (accuracy and efficiency) at the reduce phase by
using the optimal Lagrange multiplier (µ*) as the optimum number N e (See
section below). Note that, the implementation of this Anonymiser as our Trusted
Front End Database Management (TFE) is to enhance the security and speed up
the data processing of our proposed solution and represents the key point of this
extended work.

4.1. Optimized Metadata Authentication and Dynamics

As mentioned in the previous section, our proposed scheme further addresses
metadata authentication and dynamics issue for strong data privacy protection.
Therefore, we introduce a logical agent: Anonymiser in the master control pro-

K. Martin et al.

263

Figure 2. Architecture Overview of optimized FHE_SHCR.

gram. The Anonymiser has three pieces namely: Decomposition table, Query
Processing, and Metadata Repository. Their functions can be briefly described as
following:
♦ Decomposition table: It is responsible for defining the exact set of attributes

(Α) for particular input files in the optimal number.
♦ The Query Processing: It filters the candidate map workers queries request

generated by the master program to produce anonymous query-based request on
data location for processing.
♦ The Metadata Repository: It keeps data decomposition done by the de-

composition table and forwards them to the Query Processing unit to generate
new anonymous query request. For the efficiency of the proposed scheme, we
use Merkle hash tree structure to deal with metadata authentication and dynam-
ics [21]. Thereby the master program assigns a particular input files decomposi-
tion table (A) to map workers for processing logically as below:

All input files are transformed into a set of symbols (A) as 1a , 2a , 3a , na
as depicted by the above Figure 3. The data matching and authentication starts
from root node in a top-down manner and its dynamics process can be de-
scribed as follows.

File uploading: Suppose that a data owner wants to process a file F identified
by ia (leaf node) with public cloud server whose attributes satisfy an access
policy []AP ap1 apn=  defined by the private cloud server. Assume that the

K. Martin et al.

264

Figure 3. Efficient Symbol-based Tree Retrieval.

file F consists of a keyword set W. Then, the owner randomly chooses a symme-
tric key keS from the key space and encrypts the file F with keS to obtain the
ciphertext tfC . Subsequently, data owner runs the algorithm Encrypt(AP, keS)
to obtain the ciphertext skeC which is the encryption of the symmetric key keS
with respect to the access policy AP. The owner uploads (), ,i tf skea C C to the
public cloud. Furthermore, to generate the trapdoors for keywords in W, the
owner also sends (ia , AP, W) to the private cloud. Upon receiving (ia , AP, W),
the private cloud transforms the access policy AP into a set { }APjP of privileges.
Then, for each Wiw ∈ and { } APi jp P∈ , it computes (), f ,pi i pi it w k w= ,
where pik is the symmetric key for each ip . Finally, the private cloud sends

{ }(), ,i pi ia t w to the public cloud as well.
To enhance the searching efficiency, a symbol-based tree is utilized to build an

index stored in private cloud (metadata repository). More precisely, divide the
output of one-way function f into l parts and predefine a set { }1 iA a a=  con-
sisting of all the possible values in each part (an example of such tree can be
shown in Figure 3). Initially, the index based on symbol-based tree has only a
root node (denoted as 𝑛𝑛𝑜𝑜𝑑𝑑𝑒𝑒 0) which consists of ∅ (an empty set). The search
process in a symbol based tree is a depth first search. The tree can be updated
and searched as follows.

Update: Assume the data owner wants to outsource a file F identified by ia
with keyword set W, the public cloud will receive (), ,i tf skea C C and

{ }(), ,i pi ia t w where ip are the corresponding privileges and iw are keywords
in W from the data owner and private cloud respectively. Then, for each

(),pi it w the public cloud will add it into the trie index as the following steps.
i) Step 1: Public cloud parses (),pi it w as a sequence of symbols 1 2i i ila a a .

ii) Step 2: Public cloud starts with the root node of tree: it scans all the children
of the root node and checks whether there exists some child node 1 such that
the symbol contained in node 1 equals ila . This action is performed in a
top-down manner. In general, assuming that the subsequence of symbols

1 2 1 i i ija a a − has been matched and the current node is 1jnode − , the public
cloud will examine all the children of 1jnode − and attempt to find out some

K. Martin et al.

265

node, for example jnode such that the symbol contained in jnode equals

ija . If such node exists, the current node is set as jnode and 1ija + is the
next matching object, otherwise jump to step 3.

iii) Step 3: Assume that current node jnode has no children to match the sym-
bol 1ija + , the public cloud will build nodes 1, ,j jlnode node+  for all the rest
of the symbols (i.e. 1 2, , ,ij ij ila a a+ + ) respectively and link them as a node list
appended with jnode . Finally, add another node identified by ia as the leaf
node appended with jlnode .

Search: Assuming that the legitimate user wants to search outsourced files
with keyword w and privileges { }ip , the public cloud will receive (),pi it w
from the private cloud. For each (),pi it w the public cloud will perform actions
similar to the three steps described above. One exception is that if matching fails
(i.e. the current node has no children which can match the symbol), the search
for (),pi it w is aborted. Otherwise, get the corresponding (),tf skeC C) through
the identifier ia in the leaf node.

So to address Merkle tree traversal problem, our scheme uses some tools from
the efficient algorithm in [22] to overcome the space-time issue. Furthermore, to
optimize the time space constraints in the Merkle hash tree traversal process, we
designed an optimized ternary search tries (TST) [20] which is a sorting algo-
rithm that blends quicksort and radix sort. Thereby, it is competitive with the
best known C sort codes. It is faster than the traditional hashing and other
commonly used search methods as shown below (Figure 4):

The TST is space efficient, but increases with the number of strings (N).
Therefore the traversal problem is how to calculate efficiently the authentication
path for all leaves one after another starting with the first leaf up to the last leaf,
for minimum amount of space-time cost. Hence, it implies to analyze an optimal
distribution of singleton attribute (ia) to enhance the efficiency of the proposed
solution; that is to find the optimal number of strings or attributes (N) to popu-
late the tree. In this work we use the Karush-Kuhn-Tucker (KKT) condition of
constrained optimization problem [24] to solve the above mentioned issue in the
section below. Practically, we design our solution using some mathematical tools

Figure 4. String symbol table implementation cost summary from [23].

K. Martin et al.

266

from the scheme in [25] to find the minimum number of singleton quasi-identifier
that gives the optimal security level for the proposed traversal algorithm effi-
ciency.

Let 1 2 3, , , , nn n n n be the number of values along the different columns of
the Anonymiser decomposition table to populate the distinct levels set

1 2 3, , , , nL L L L of the Merkle tree respectively. The total number of distinct val-
ues taken by the different levels set (1 2 3, , , , nn n n n) is N. We assume that each
column set (iC) of the decomposition table takes (in) different values with the
probability (ip) respectively, where

1 1N
ii p

=
=∑ .

Therefore the probability for the (ith) element to be a singleton in the universal
decomposition table by selecting one of the (n) choices (entries) is () 11 n

i inp p −− .
Let the variable ix be the indicator representing whether (ith) element is a

singleton, then its expectation is calculated as below:

[] [] () ()def11 1 e in np
i i i i iE x P x np p np− −= = = − = (3)

Let
1

N
iiX x

=
= ∑ , be the variable that counts the number of singleton; its ex-

pectation is given by:

[] [] ()1 1 e inpN N
i ii iE X E x np −

= =
= =∑ ∑ (4)

We aim to find the smallest number of singleton to populate efficiently the
Merkle tree in the metadata repository.

It implies to minimize ()1 e inpN
ii np −

=∑ ;
Subject to

1
N

ii np n
=

=∑ , with 0 inp≤ , 1 i N∀ ≤ ≤ .
Therefore we get the optimized number of singleton by rewriting the above

distribution as a constrained optimization problem [24]. Doing so, we find the
dual solution of the primal problem which is fast and reduces the space-time
costs as follows:

() ()
()

1min e

(P) 0;
1

ixN
i ii

i i

f x x

st g x x
i N

−

=
 =
 = >
 ∀ ≤ ≤

∑

 (5)

KKT condition: Primal variable: ix ; Lagrange Multiplier: ,λ µ
Let us considering an optimization problem of forms Minimize f(x) Subject to
() ()0; 0i ih x g x= ≤ ;
With 1, ,i m= 

() () () ()
() ()

* * * *
1 1

* *

0

0, 0, for 1, , , 1, ,

0, 0

m m
i i i j Xi j

i j

j i

f x h x g x T x

h x g x i m j r

µ

λ µ

λ

= =
∇ + ∇ + ∇ +

 = ≤ = =


≥ ≥

∑ ∑
 



 (6)

Using the Lagrange multiplier and the duality theorem, the solution of the
problem (P) is determined as following:

() () (),
i

T
x iL f f x g xµ µ= − ,

Then () () () () () (){ }def
0 1 , ; e i

i i

xN T
x X i i ig x iq inf L x q inf x xµµ µ−
∈ > =

= = −∑

K. Martin et al.

267

()q µ is a smooth function, then its gradient equals to zero at the optimal
number (x*):

()* 0T
x i if x xµ∗ ∗∇ + ∇ = (7)

()

()
()
()

()

1

2

3

1

2

* 3

1 e
1 e

01 e

1 e N

x

x

T x
i ix

x
N

x
x

f x x x

x

µ µ

−

−

−

−

∗ ∗

 −
 

− 
 ∇ + ∇ = − =−
 
 
 − 



 (8)

Then, ()1 e 0ix
ix µ

∗∗ −− − = , 1 i N∀ ≤ ≤ . Therefore ()1 e ix
ixµ

∗∗ −= −
Case1: 0µ =

() ()yields1 e 10 0i
i i

xx x
∗∗ ∗−− → − == , then 1ix∗ = . So we have:

() ()1
1

1m n e ei ixN N
i ii if x x N e−−

= =
= ≤ =∑ ∑

Case 2: 0µ >

() ()yields1 e 10 0i
i i

xx x
∗∗ ∗−− → − >> , then 0 1ix∗< < ;

If 1, we get case 1,
otherwise contradiction to the KKT conditions.

ix∗ =



Finally the optimal number of singleton quasi-identifiers for a decomposition
table of (n) entries with maximum total number of distinct values (N) is N e .
Using this optimum number (N e) to populate the ternary search tree, we im-
prove the performance of the Merkle tree traversal algorithm by addressing the
space-time cost issue. Thereby, the overall ciphertext retrieval time at reduce
phase for our optimized algorithm Op_FHE_SCHR is almost three times less
than the exiting one FHE_SCHR refer to Figure 5.

4.2. FHE_SCHR Efficiency and Implementation Analysis

Regardless of the advances in remote sensor network (WSN) to controls systems
into cloud, there are still enormous challenges in term of security insurance over

Figure 5. Overview performance comparison of cryptosystems.

K. Martin et al.

268

outsourced data processing and storage [26]. Therefore, we work for experiment
purposes over trained sensed dataset for cancer pattern monitoring project. So
our main goal in this paper is to securely optimize the map phase (input files
decomposition) and ciphertexts retrieval (reduce phase) process. Thereby, we
implement an optimized scalar homomorphic based Mapreduce scheme
Op_FHE_SHCR, which contains four algorithms: KeyGen (ek), Encrypt (1σ ,

ek , s.m) Decrypt(c) and Retrieval(c). Note that these four algorithms are quite
similar like those in [21], with modified mapping and hashing algorithm like
below (Algorithm 1).

Pseudo code:
This algorithm initializes the selected feature subset (splitting the input file

into subsets) denoted by SF , with the empty set. A candidate feature subset,
denoted by CF , will be produced by adding a feature, denoted by df , with

[] 1,d D∈ , to the selected feature subset, and the hashing index
CFIWI will be

computed by Algorithm 2. Then, the algorithm removes this feature and adds

Algorithm 1: Splitting.

Input: < iF input file (key/value) >

Output: < SF searchable ciphertext (key/value) >

Initialize: SF =∅ ;

repeat t iF F= ;

repeat
produce the candidate feature set [] , , 1,C c S c tF f F f F c D= ∈ ∈ ;

remove cf from tF ;

compute and record cF by Algorithm 2;

until tF ==∅

 :S d SF f F= , where ()
Cd Ff argNMax IWI= ;

remove df from OF ;

until OF ==∅ or meeting the threshold

Algorithm 2: Hashing.

Input: < searchable ciphertext (key/value) >
Output: < splitting searchable ciphertext (key/value) >
1. #include <stdio.h>
2. #include <string>
3. using namespace std;
4. class MyHash
5. {private: string ** table; int * maxind;
6. long width;
7. long depth;
8. protected: bool insert(long value,string s);
9. void printone(long v);
10. public:MyHash(long N, long Depth);
11. long apply(string s);
12. void printall ();

K. Martin et al.

269

another feature to generate a new candidate. That is, the new feature in the cho-
sen candidate will be added to the selected feature subset. Thus, this algorithm
iteratively adds one feature (or the fixed number of features if the floating strat-
egy has been used) to increase the selected feature subset until the threshold is
met. It should be pointed out that the main difference between the proposed al-
gorithm and the existing ones in the literature is that our algorithm produces
high correlated data subsets based on the hashing index value. Therefore the ci-
phertext retrieval process at the reduce stage will be more efficient in terms of
speed.

The design of our OP_FHE_SCHR cryptosystem is done using the HElib-
master-2015.03 library in Dev C++ IDE. We utilize the WDBC Test training da-
taset for cancer management project. Our security algorithm is implemented in
four steps using Gentry cryptosystem [13] [18] and [19].

The efficient analysis of the candidate solution is proved by its experiments
results that are compared with the existing blinding fully homomorphic
FHE_DFI_LM algorithm, previous FHE_SCHR, and our new optimized
Op_FHE_SCHR algorithm. Recall that, the improvement on this paper is mainly
on the optimization of ciphertext retrieval time and metadata dynamics and au-
thentication path in the logical Merkle tree repository (optimized space-time
cost).

Table 1 and Figure 5 show the average performance of our proposed solution
(Op_FHE_SCHR) in comparison to related works (FHE_DFI_LM & FHE_SCHR).
Recall that, the experimental requirements are to optimize the outsourced data
processing at the map stage and prevent intermediate data disclosure at the re-
duce phase in order to reinforce data privacy on Mapreduce framework. There-
fore our Op_FHE_SCHR processes almost the data at Map stage (setup phase
refer to Table 1 and Figure 5) three time less (5932 ms) than FHE_DFI_LM
(13078 ms) and two time less than our previous work FHE_SCHR (11684 ms).
This result is obtained by an optimized map workers selection using the optimal
number N e , for a given decomposition table of (n) entries at the splitting step.
Thereby for a given dataset N, our algorithm calculates in advance the exact op-
timal number of subsets (feature selection) and map workers to speed up the
splitting and data allocation process at the Map stage. Furthermore, each ele-
ment (feature) of a subset is selected by an efficient feature selection algorithm
(refer Algorithm 1).

Table 1. Average performance Comparison.

ALGORITHM

AVERAGE PERFORMANCE

Setup time (ms)
Encryption
time (ms)

Ciphertext Retrieval
time (ms)

Decryption
time (ms)

FHE_SCHR 11,684 37,419 37,419 7994

FHE_DFI_LM 13,078 77,507 77,507 41,085

Op_FHE_SCHR 5932 37,120 12,476 7990

K. Martin et al.

270

Based on the result of effective experiments directed, it is unmistakably certain
that the proposed optimized scheme Op_FHE_SCHR speedups the setup (input
files decomposition) and ciphertext retrieval time without compromising the
cryptosystem. Thereby, the graph 5 shows that the proposed alternative is more
efficient regarding the ciphertext retrieval and computation cost reduction. Note
that homomorphic cryptosystem is extremely expensive [15]. Therefore, our so-
lution contribution is a reliable alternative to minimize the overall computation
and communication costs.

4.3. FHE_SCHR Security Analysis

Two security requirements are to be achieved, that is data confidentiality and
integrity. Therefore, our security scheme is based on a hybrid encryption design.
Since the file is encrypted with a hybrid encryption as (),tf skeC C , the adversary
should first decrypt skeC . However, such a session key is protected by the ABE
scheme. Thus, data confidentiality can be reduced to the confidentiality security
of ABE. Moreover, the keywords which are needed to be protected against the
public cloud are encrypted with a one way trapdoor function. The underlying
ABE scheme for this work is known to be semantically secured. This private key
is under the security proof of the ABE scheme and reduced to the bilinear deci-
sional Diffie-Hellman (BDDH) problem [27]. The bilinear decisional Diffie-
Hellman (BDDH) problem is such that given g, , , Gx y zg g g ∈ for unknown
random values x, y, z ∈ R PZ , and T ∈ R, TG , prove the distinguish ability of
(), xyze g g from any random number in the target group is very hard to decide

if (), xyzT e g g= . We say that the (t, ϵ)-BDDH assumption holds in G, if no t-

time algorithm has the probability at least 1
2
+  in solving the BDDH problem

for non-negligible ϵ.
Recall that this paper is based on [17], and therefore we use the same crypto-

system to fix the data privacy preserving challenge. Furthermore, to enhance the
security of our proposed solution in terms of data authentication paths and dy-
namics, we adopt the Merkle’s hash tree to store the metadata decomposition

{ }()1 2, , ,i na A a a a∈ =  ; which is freely secure from any number theoretic con-
jectures [21]. Indeed the Merkle’s hash trees are very useful because they allow
efficient and secure verification of the contents of large data structures. This se-
curity lies mainly on two properties of hash functions:

i) Pre-image resistance: that is, given a hash value (h), it is difficult to find a
message m such that h = hash (m).

ii) Collision resistance: that is, finding two messages m1 ≠ m2 such that hash
(m1) = hash (m2) is difficult.

This data structure is a complete binary tree with an n-bit hash value asso-
ciated with each node. Each internal node value is the result of a hash of the
node values of its children. Merkle trees are designed so that a leaf value h (ia)
can be verified with respect to a publicly known root (A) value given the authen-
tication path of the respective leaf as:

K. Martin et al.

271

()A h ha1|| ha2 || ha3 || || han=  ; refer to the Figure 3. So an attacker holding
a hash value ()hai in order to reconstruct (A); needs some additional values
called Auxiliary Authentication Information (AAI) which are kept secret by the
metadata repository administrator under the supervision of the Anonymiser
Query system. Therefore it is very hard for the public cloud server or outside at-
tacker to reconstruct the input files by the decomposition table (A).

To summarize the security analysis, we can say by implementing a secure
front end database management agent (Anonymiser) on top of FHE_SHCR se-
curity mechanism [17] that the data privacy insurance has been greatly rein-
forced in our proposed solution (Optimized FHE_SHCR).

5. Conclusion

In this paper, the requirements are to optimize the outsourced data processing at
the map stage and prevent intermediate data disclosure at the reduce phase in
order to reinforce data privacy on Mapreduce framework. Therefore, we imple-
ment a secure Front End Database Management agent: the Anonymiser with its
three components (Decomposition table, Query Processing, and Metadata Repo-
sitory.) to enhance the data security mechanism of our proposed solution. The
cryptosystem tool is a scalar homomorphic encryption that performs some sorts
of calculations over encrypted data in more secure and optimized design. The
optimized cryptosystem Op_FHE_SCHR is by the experiments results an effi-
cient candidate for the communication and computation costs reduction. Prac-
tically, it takes as input files an optimized decomposition table (for map work-
ers), and improves the speed and accuracy of ciphertext retrieval process (for
reduce workers) on Mape Reduce environment. Furthermore, we address the
metadata dynamics and time space cost constraints for the traversal of Merkle
tree structure in our metadata repository by applying an optimized ternary
search tries (TST) algorithm.

Acknowledgements

This work has been supported by MoE-CMCC (Ministry of Education of China-
China Mobile Communications Corporation) Joint Science Fund under grant
MCM20130661.

References
[1] Cloud Security Alliance (2010) Top Threats to Cloud Computing Version 1.0.

http://www.cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf

[2] Puttaswamy, K.P.N., Kruegel, C. and Zhao, B.Y. (2011) Silverline: Toward Data
Confidentiality in Storage-Intensive Cloud Applications. Proceedings SoCC’11 the
2nd ACM Symposium on Cloud Computing.
https://doi.org/10.1145/2038916.2038926

[3] Zhang, X., Liu, C., Surya, N., Suraj, P. and Chen, J. (2013) A Privacy Leakage Up-
per-Bound Constraint based Approach for Cost-effective Privacy Preserving of In-
termediate Datasets in Cloud. IEEE Transactions on Parallel and Distributed Sys-
tems, 24, 1192-1202. https://doi.org/10.1109/TPDS.2012.238

http://www.cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
https://doi.org/10.1145/2038916.2038926
https://doi.org/10.1109/TPDS.2012.238

K. Martin et al.

272

[4] Roy, I., Setty, S.T.V., Kilzer, A., Shmatikov, V. and Witchel, E. (2010) Airavat: Secu-
rity and Privacy for MapReduce. Proceedings NSDI’10 7th USENIX Conference on
Networked Systems Design and Implementation, 297-312.

[5] Blass, E.-O., Pietro, R.D., Molva, R. and Önen, M. (2012) Prism-Privacy Preserving
Search in MapReduce. Proceedings PETS’12 the 12th International Conference on
Privacy Enhancing Technologies, 180-200.
https://doi.org/10.1007/978-3-642-31680-7_10

[6] Ko, S.Y., Jeon, K. and Morales, R. (2011) The Hybrex Model for Confidentiality and
Privacy in Cloud Computing. Proceedings HotCloud’11 the 3rd USENIX Confe-
rence on Hot Topics in Cloud Computing Article 8.

[7] Zhang, K., Zhou, X., Chen, Y., Wang, X. and Ruan, Y. (2011) Sedic: Privacy Aware
Data Intensive Computing on Hybrid Clouds. Proceedings CCS’11 18th ACM Con-
ference on Computer and Communications Security, 515-526.
https://doi.org/10.1145/2046707.2046767

[8] Rivest, R.L., Adleman, L. and Deaouzos, M.L. (1978) On Data Banks and Privacy
Homomorphism. In: DeMillo, R.A., Ed., Foundations of Secure Computation, Aca-
demic Press, New York, 169-179.

[9] Craig, G., Shai, H. and Nigel, S. (2012) Fully Homomorphic Encryption with Poly-
log Overhead. In: Pointcheval, D. and Johansson, T., Eds., Advances in Cryptology,
Springer, Heidelberg, 465-482.

[10] Zvika, B., Craig, G. and Shai, H. (2013) Packed Ciphertexts in Lwe-Based Homo-
morphic Encryption. In: Kurosawa, K. and Hanaoka, G., Eds., Public-Key Crypto-
graphy-Pkc 2013, Springer, Heidelberg, 1-13.

[11] Gentry, C. (2009) Fully Homomorphic Encryption Using Ideal Lattices. In: 41st
Annual ACM Symposium on Theory of Computing, ACM Press, New York, 169-
178. https://doi.org/10.1145/1536414.1536440

[12] Dijk, M.V., Gentry, C., Halevi S. and Vaikuntanathan, V. (2010) Fully Homomor-
phic Encryption over the Integers. In: Proceedings Advances in Cryptogra-
phy-Eurocrypt, Springer-Verlag, Berlin, 24-43.

[13] Gentry, C. (2010) Computing Arbitrary Functions of Encrypted Data. Communica-
tions of the ACM, 53, 97-105. https://doi.org/10.1145/1666420.1666444

[14] Dean, J. and Ghemawat, S. (2008) MapReduce: Simplified Data Processing on Large
Clusters. Communication of ACM, 51, 107-113.
https://doi.org/10.1145/1327452.1327492

[15] Jaydip, S. (2013) Homomorphic Encryption—Theory and Application. In: Jaydip,
S., Ed., Theory and Practice of Cryptography and Network Security Protocols and
Technologies, Tech. https://doi.org/10.5772/56687

[16] Chen, X. and Huang, Q. (2013) The Data Protection of MapReduce Using Homo-
morphic Encryption. Proceedings ICSESS the 4th IEEE International Conference on
Software Engineering and Service Science, Beijing, 23-25 May 2013, 419-421.

[17] Martin, K., Wenyong, W. and Brighter, A. (2016) Efran (O) Efficient Scalar Ho-
momorphic Scheme on MapReduce for Data Privacy Preserving. Proceedings
CSCloud the 3rd IEEE International Conference on Cyber Security and Cloud
Computing, Beijing, 25-27 June 2016, 66-74.

[18] Gentry, C. and Halevi, S. (2011) Implementing Gentry’s Fully-Homomorphic En-
cryption Scheme. In: Proceedings Advances in Cryptography-EUROCRYPT,
Springer-Verlag, Berlin, Vol. 6632, 129-148.

[19] Gentry, C. (2010) Toward Basing Fully Homomorphic Encryption on Worst-Case
Hardness. In: Proceedings Advances in Cryptology-CRYPTO, Springer-Verlag, Ber-

https://doi.org/10.1007/978-3-642-31680-7_10
https://doi.org/10.1145/2046707.2046767
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.5772/56687

K. Martin et al.

273

lin, Vol. 6223, 116-137. https://doi.org/10.1007/978-3-642-14623-7_7

[20] Jon, L.B. and Robert, S. (1997) Fast Algorithms for Sorting and Searching Strings.
Proceedings ACM-SIAM the Eight Annual Symposium on Discrete Algorithms,
New Orleans, 5-7 January 1997, 360-369.

[21] Merkle, R.C. (1989) A Certified Digital Signature. Proceedings CRYPTO Advances
in Cryptography, Vol. 435 of LNCS, 218-238.

[22] Markus, K., Willi, M. and Carlo, U.N. (2014) A Space- and Time-Efficient Imple-
mentation of the Merkle Tree Traversal Algorithm.

[23] Robert, S. and Kevin, W. (2002) Algorithms. 4th Edition.
http://algs4.cs.princeton.edu/home/

[24] Bertsekas, D.P., Nedic, A. and Ozdaglar, E.A. (2003) Convex Analysis and Optimi-
zation. Athena Scientific, Cambridge, 560 p.

[25] Yu, Y. (2010) Privacy Protection in Secure Database Service. Proceedings the
Second International Conference on Networks Security, Wireless Communications
and Trusted Computing, Wuhan, 218-222.

[26] Huang, X. and Du, X. (2013) Efficiently Secure Data Privacy on Hybrid Cloud. Pro-
ceedings ICC IEEE International Conference on Communication, 9-13 June 2013,
Budapest, 1936-1940. https://doi.org/10.1109/ICC.2013.6654806

[27] Sahai, A. and Waters, B. (2005) Fuzzy Identity-Based Encryption. In: Cramer, R.,
Ed., Eurocrypt, Springer, Heidelberg, LNCS, Vol. 3494, 457-473.
https://doi.org/10.1007/11426639_27

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jis@scirp.org

https://doi.org/10.1007/978-3-642-14623-7_7
http://algs4.cs.princeton.edu/home/
https://doi.org/10.1109/ICC.2013.6654806
https://doi.org/10.1007/11426639_27
http://papersubmission.scirp.org/
mailto:jis@scirp.org

	Optimized Homomorphic Scheme on Map Reduce for Data Privacy Preserving
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	2.1. Map Reduce
	2.2. Homomorphic Encryption Scheme

	3. Related Work
	3.1. Xu Chen and Qiming Huang Scheme in [16]
	3.2. FHE_SHCR Scheme in [17]

	4. The Optimized FHE_SHCR (Op_FHE_SHCR)
	4.1. Optimized Metadata Authentication and Dynamics
	4.2. FHE_SCHR Efficiency and Implementation Analysis
	4.3. FHE_SCHR Security Analysis

	5. Conclusion
	Acknowledgements
	References

