
Journal of Information Security, 2010, 1, 74-87
doi:10.4236/jis.2010.12009 Published Online October 2010 (http://www.SciRP.org/journal/jis)

Copyright © 2010 SciRes. JIS

iPhone Security Analysis

Vaibhav Ranchhoddas Pandya, Mark Stamp
Department of Computer Science, San Jose State University, San Jose, USA

E-mail: stamp@cs.sjsu.edu
Received August 10, 2010; revised September 21, 2010; accepted October 15, 2010

Abstract

The release of Apple’s iPhone was one of the most intensively publicized product releases in the history of
mobile devices. While the iPhone wowed users with its exciting design and features, it also angered many for
not allowing installation of third party applications and for working exclusively with AT & T wireless ser-
vices (in the US). Besides the US, iPhone was only sold only in a few other selected countries. Software at-
tacks were developed to overcome both limitations. The development of those attacks and further evaluation
revealed several vulnerabilities in iPhone security. In this paper, we examine some of the attacks developed
for the iPhone as a way of investigating the iPhone’s security structure. We also analyze the security holes
that have been discovered and make suggestions for improving iPhone security.

Keywords: iPhone, Wireless, Mobile, Smartphone, Jailbreaking, Reverse Engineering

1. Introduction

The release of Apple’s iPhone on June 29, 2007 was one
of the most heavily publicized events in the history of
mobile electronics devices. Thousands of people lined up
outside Apple stores prior to its release. Approximately
three and half million iPhones were sold within the first
six months of its release in the U.S. alone [1]. By any
measure, the iPhone has been a commercial successin
spite of being a first-timer in the smart phone industry,
Apple immediately outpaced traditional cell phone giants
like Nokia, Motorola, and LG. The iPhone is an all-in-
one package including a cell phone, a digital music and
video player, a camera, a digital photo, music, and video
library, and more [2]. It has helpful widgets for maps,
weather, in addition to email and other Internet capabili-
ties [2].

1.1. Features

The iPhone confirms that Apple understands consumers’
desires, not only in terms of functionality, but also in
terms of appearance and style. While other smart phone
companies have offered products that include features
offered by the iPhone, none have approached the iPhone
in terms of popularity and sales. Phone features include a
soft keypad with the ability to easily merge calls and
visually obtain voicemail information. Apple took ad-
vantage of iPod’s popularity by including complete iPod

functionality in the iPhone. A full-functional web
browser with zoom in/out functionality made internet
surfing experience on a mobile phone better than ever.
The Multi-Touch touch screen display allows for gliding
and scrolling besides zooming. The accelerometer de-
tects the orientation of the phone. These features put
iPhone above and beyond other smartphones such as
Blackberry and Motorola Q.

1.2. Hardware

The iPhone uses the ARM 1176JZF-S processor, which
offers good power management for superior battery life
and powerful processing for 3D graphics. Further details
regarding this processor are available on the ARM prod-
uct website [3]. Figure 1 shows how different functions
within the iPhone interface with one another [4]. Figure
2 shows an image of the board inside an iPhone.

2. Motivation

iPhones are supposed to only be used with AT & T wire-
less service (in the US). AT & T agreed to give a portion
of its revenue to Apple per each new contract it signed
with iPhone users. This agreement spawned outrage
among users of other GSM-based wireless services such
as T-Mobile since they could not offer services to iPhone
customers. Many people viewed this as an “unfair” move
by the two companies. People felt that they should be

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

75

Figure 1. iPhone architecture from a high level [4].

Figure 2. Board showing different parts in iPhone.

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

76

able to choose whatever wireless service they prefer and
should not be forced to use a particular one.

There was another reason that some iPhone users be-
came irritated. Apple designed iPhone as a closed system
that does not allow installation of third-party applications.
Users can only access a very small subset of the file sys-
tem, a “sandbox” where they can add and remove music
and other files via iTunes. Users who wanted to install
third-party applications such as widgets and games were
unable to do so.

These two limitations placed on iPhone users promp-
ted a series of hack and attack efforts by iPhone enthuse-
asts and hackers. “Jailbreak” is an iPhone hack that per-
mits the addition of third-party applications or gadgets
on the iPhone by permitting read/write access to the root
file system. Without “jailbreaking” an iPhone, a cus-
tomer is limited to the factory-installed tools included
with it. “Unlock” is an attack on iPhone that allows it to
be used with any wireless service offering the GSM stan-
dard, not just AT & T. Without “unlocking” an iPhone,
one can only use AT&T’s wireless services. Perhaps
surprisingly, jailbreaking is the more important of the
two because it is the first step to unlocking. We look at a
jailbreak attack in detail and also discuss different
unlocking solutions.

Due to the commercial success of the iPhone, it makes
a good candidate for security analysis. Having close to a
million iPhones jailbroken and unlocked within first six
months of its release, iPhone security obviously has had
significant financial implications. In addition, with more
millions of users worldwide, any security holes in iPhone
can jeopardize the privacy of millions of people. We
believe that these issues make the security analysis of
iPhone a worthwhile and important topic.

3. Jailbreaking

The process of gaining root access to the iPhone so that
third party tools can be installed is called Jailbreaking [5].
Without gaining read-write access to the root system, one
cannot install third party applications. Note that this
limitation prevents users from doing what they want to
do with their iPhones—products that they own. This is
somewhat analogous to buying a computer and not being
allowed to install new programs on it. There are several
websites (see, for example, [6]) that provide interesting
gadgets and games for iPhone. Some of the most popular
games are iSolitaire, iZoo, Tetris, iPhysics, and NOIZ2SA.
Beyond providing access to such applications, jailbreak-
ing is essential for another reason: it is the first step in
unlocking.

Without jailbreaking, one cannot install the necessary
application to use a wireless service other than AT & T.

Close to a million new iPhones were not activated with
AT & T in the first six months after its release [1]. With-
out jailbreaking, these iPhone owners would not be able
to use the phone part of the iPhone unless they signed a
contract with AT & T after switching from their existing
GSM wireless service provider. Even for AT & T cus-
tomers, jailbreaking is still necessary to enable the addi-
tion of third party applications to the iPhone.

3.1. Looking for Ideas

Immediately after its release, iPhone enthusiasts and
hackers all around the world were looking for a way to
gain root access. A feasible solution has to be reasonably
easy to use and should not take several hours to complete.
Hackers investigated various techniques for meeting
these requirements. They evaluated existing hacks for
other phones and devices and searched for similar vul-
nerabilities in the iPhone [7,8].

A previous hacker success was using buffer overflow
techniques on the Sony PSP. By exploiting vulnerability
in the Tag Image File Format (TIFF) library, libtiff, used
for viewing TIFFs, hackers were able to hack PSP to run
homebrew games, which was otherwise prohibited [9].

Hackers inspected Apple’s MobileSafari web browser
to see if it could be targeted for the same vulnerability. It
turned out that for firmware version 1.1.1 of the iPhone,
MobileSafari uses a vulnerable version of libtiff [10,11].
The exploitable vulnerability in libtiff is documented as
entry CVE-2006-3459 in Commom Vulnerabilities and
Exposures, a database tracking information security vul-
nerabilities and exposures [10]. This vulnerability is also
documented and tracked in the U.S. National Vulnerabil-
ity Database [12]. A malicious TIFF file can be created
to include the desired rogue code. When attempting to
view the malicious tiff file in a vulnerable version of
MobileSafari, the vulnerabilities in libtiff are exploited to
create a stack buffer overflow, and the malicious code is
injected and executed.

3.2. Stack Buffer Overflow and Return-To-Libc

Attacks

The attack we review, which exploits the libtiff vulner-
ability, uses a stack buffer overflow to inject code and
the “return-to-libc” technique to execute it. To illustrate
how a stack buffer overflow can be created and how a
return-to-libc attack works, we first consider a generic
example.

Consider the piece of code below [13]:
void func (char *passedStr) {
 char localStr[4]; // Note that only 4 bytes allo-

cated

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

77

 strcpy(localStr, passedStr); // length of pass-
edStr is not checked

}
int main (int argc, char **argv) {
 func(argv[1]);
}
Suppose that we have a program is called myprog.

Now, let us look at a simplified representation of the
stack when myprog is executed with “hi” as the input
parametersee Table 1 below.

Now, consider the stack when myprog is executed
with the string “goodsecurity.”

As it is clear from the tables above(Table 1, 2), our
program is only capable of handling a string with three
characters plus NULL. When a string of more than three
characters is passed, the extra characters cause stack
buffer overflow and overwrite other sections of the stack
[14]. Of course, the function func() should have per-
formed a string length check on passedStr to ensure that
it has three characters or fewer before the NULL. Any
piece of code that makes a mistake similar to this is po-
tentially vulnerable to a stack buffer overflow [14,15].

Instead of entering “good security,” a carefully crafted
string could be used. In the example above, suppose we
replace “good security” with, say, “good secu\x12\x34\
x56\x78.” In little-endian, the last 4 bytes are 0x78563412,
which might be the address of a function, say, system().
Then when the stack unwinds, instead of execution re-
turning to the calling function, the pre-existing function
indicated by the overwrite bytes will be executedin
this case, system(). Moreover, the stack could be over-
written so that desired parameter values are passed to a
pre-existing function [16]. Such an attack is generally
known as the return-to-libc attack. By discovering the
address of such a desirable function, an attacker can po-
tentially exploit a buffer overflow to execute the function
and thereby achieve the desired behavior. Furthermore,

Table 1. Simplified stack representation with proper input.

Parent function’s stack

Return address (4 bytes)

char* passedStr

hi\0 (4 bytes allocated for localStr. so String up to 3 characters is
a good input)

Table 2. Simplified stack representation with corrupting
input.

Parent function’s stack

“rity” (return address overwritten)

“secu” (char* passedStr overwritten)

“good” (expected 3 characters + \0, got 12)

by passing a carefully crafted malicious input that ex-
ploits a stack overflow, an attacker can even inject mali-
cious code that results in a chain of calls to such pre-
existing functions.

3.3. Libtiff Vulnerability

A vulnerability similar to that in the example above is
found in libtiff version 3.8.1 and earlieran area of
memory is accessed without performing an out-of-
bounds check. The vulnerability is in function TIFFFetch-
ShortPair in the tif_dirread.c file [10]. That function
fetches a pair of bytes or shorts, as the name implies. It
should throw an error if the request is to fetch more than
two bytes or shorts. Instead, it fetches any arbitrary
number of bytes requested. This vulnerability was fixed
in libtiff version 3.8.2. The source code for both versions
of libtiff can be downloaded from the Maptools.org web-
site [17]. Below we give excerpts of this function as it
appears in libtiff versions 3.8.1 and 3.8.2. First, we look
at the snippet from version 3.8.1:

static int
TIFFFetchShortPair(TIFF* tif, TIFFDirEntry* dir)
{
 switch (dir->tdir_type) {
 case TIFF_BYTE:
 case TIFF_SBYTE:
 {
 uint8 v[4];
 return TIFFFetchByteArray(tif, dir,

v)
 && TIFFSetField(tif,

dir->tdir_tag, v[0], v[1]);
 }
 case TIFF_SHORT:
 case TIFF_SSHORT:
 {
 uint16 v[2];
 return TIFFFetchShortArray(tif, dir,

v)
 && TIFFSetField(tif,

dir->tdir_tag, v[0], v[1]);
 }
 default:
 return 0;
 }
}
Now, let us look at the snippet from version 3.8.2,

which has the fix for the vulnerability. The fix is obvious
from the developer’s comments.

static int
TIFFFetchShortPair(TIFF* tif, TIFFDirEntry* dir)
{

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

78

 /*
 * Prevent overflowing the v stack arrays be-

low by performing a sanity
 * check on tdir_count, this should never be

greater than two.
 */
 if (dir->tdir_count > 2) {
 TIFFWarningExt(tif->tif_clientdata,

tif->tif_name,
 "unexpected count for field \"%s\", %lu,

expected 2; ignored",
 _TIFFFieldWithTag(tif,

dir->tdir_tag)->field_name,
 dir->tdir_count);
 return 0;
 }

 switch (dir->tdir_type) {
 case TIFF_BYTE:
 case TIFF_SBYTE:
 {
 uint8 v[4];
 return TIFFFetchByteArray(tif, dir,

v)
 && TIFFSetField(tif,

dir->tdir_tag, v[0], v[1]);
 }
 case TIFF_SHORT:
 case TIFF_SSHORT:
 {
 uint16 v[2];
 return TIFFFetchShortArray(tif, dir,

v)
 && TIFFSetField(tif,

dir->tdir_tag, v[0], v[1]);
 }
 default:
 return 0;
 }
}
To take advantage of the vulnerability in the TIFF li-

brary, a malicious TIFF file must be constructed. To ac-
complish that requires a reasonable working knowledge
of the TIFF file format. There are two important objec-
tives to keep in mind while constructing a malicious
TIFF file: causing buffer overflow and injecting code.
The iPhone is constructed around an ARM processor,
thus some knowledge of it is required for successful code
injection. Next, we discuss the TIFF format and give a
brief overview of the ARM processor.

3.4. TIFF

The TIFF standard is owned and maintained by Adobe. It
is tag-based format used primarily for scanned images
[18]. A TIFF file has a header section and descriptive
sections at the top of the file with offsets pointing to the
actual pixel image data [19]. This means that a poorly
constructed file may have tags pointing to incorrect off-
sets or offsets beyond the end of the file. Such aberra-
tions can be used to exploit a buffer overflow in poorly
written programs that read and manipulate tiff images
[19]. Some examples of tags include image height, image
width, planar configuration, and dot range. Different tags
give necessary information about the image including
color, compression, dimensions, and location of data.
Below is an example of a tiff file (“value” column) with
corresponding descriptions [18].

Offset Description Value
(hex) (numeric values are expressed in hexadecimal notation)
Header:
0000 Byte Order 4D4D
0002 42 002A
0004 1st IFD offset 00000014
IFD:
0014 Number of Directory Entries 000C
0016 NewSubfileType 00FE 0004 00000001 00000000
0022 ImageWidth 0100 0004 00000001 000007D0
002E ImageLength 0101 0004 00000001 00000BB8
003A Compression 0103 0003 00000001 8005 0000
0046 PhotometricInterpretation 0106 0003 00000001 0001 0000
0052 StripOffsets 0111 0004 000000BC 000000B6
005E RowsPerStrip 0116 0004 00000001 00000010
006A StripByteCounts 0117 0003 000000BC 000003A6
0076 XResolution 011A 0005 00000001 00000696
0082 YResolution 011B 0005 00000001 0000069E
008E Software 0131 0002 0000000E 000006A6

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

79

009A DateTime 0132 0002 00000014 000006B6
00A6 Next IFD offset 00000000
Values longer than 4 bytes:
00B6 StripOffsets Offset0, Offset1, ... Offset187
03A6 StripByteCounts Count0, Count1, ... Count187
0696 XResolution 0000012C 00000001
069E YResolution 0000012C 00000001
06A6 Software “PageMaker 4.0”
06B6 DateTime “1988:02:18 13:59:59”
Image Data:
00000700 Compressed data for strip 10
xxxxxxxx Compressed data for strip 179
xxxxxxxx Compressed data for strip 53
xxxxxxxx Compressed data for strip 160 …

The first two bytes in an Image File Directory (IFD)

represent the number of directory entries (14 in the ex-
ample above). The IFD then consists of a sequence of
tags, 12 bytes each, where the first two bytes identify the
field, and the next two identify the field type: short int,
long int, byte, or ASCII. The next four bytes specify the
number of values, and the final four specify the value
itself or an offset to the value [18]. Since TIFF files are
not intended to be human-readable, their contents are

best viewed in a hex editor.

3.5. Arm Processor

Since the ARM1176JZF-S processor is used in the
iPhone, some working knowledge regarding its architec-
ture and instruction set is required for this study. ARM is
a RISC-based processor. Figure 3 gives a high-level
diagram of ARM1176JZF-S.

Figure 3. ARM 1176JFZ-S processor [3].

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

80

The ARM processor can be configured in either little-
or big-endian modes to access its data [20]. The iPhone
runs the ARM processor in little-endian mode. For ex-
ample, if a value in a register is 0x12345678, in lit-
tle-endian mode it appears in memory “byte-reversed”,
that is, as 0x78 0x56 0x34 0x12. This is illustrated in the
Figures 4 and 5 below.

The ARM processor can be configured in either little-
or big-endian modes to access its data [20]. The iPhone
runs the ARM processor in little-endian mode. For ex-
ample, if a value in a register is 0x12345678, in lit-
tle-endian mode it appears in memory “byte-reversed”,
that is, as 0x78 0x56 0x34 0x12. This is illustrated in the
Figures 4 and 5 below.

3.6. Dre And Niacin’S Tiff Exploit Jailbreak

We now have accumulated the background required to
understand and reverse-engineer the libtiff exploit for
jailbreaking developed by two teenagers known as Dre
and Niacin. The source code for the attack is available on
Dre and Niacin’s website [23]. However, little explana-
tion is provided, so we found it necessary to reverse en-
gineer various aspects of the attack.

First, we verify and demonstrate the overflow problem.
Though the exploit was created for the iPhone, we dem-
onstrate the overflow on a Windows PC in cygwin to
mimic a Unix-like environment. First the exploit source
code was downloaded and compiled. Then, a malicious
TIFF badDotRange.tiff was created.

An interesting outcome occurred when we attempted
to create the code badDotRange.tiff. The file creation
was blocked by Norton AntiVirus software running on
the machine, and it claimed the file was “Bloodhound.
Exploit.166” [24]. Further information on the vulnerabil-
ity shows Norton characterizing badDotRange. tiff as a
Trojan and a Virus, as shown in Figure 6 [24].

Figure 4. Big-endian [22].

Figure 5. Little-endian [22].

Once the work area was put in the list of directories to

be excluded by Norton AntiVirus, badDotRange.tiff was
created; a hex editor view of the file is available in [25].

Next, we demonstrate the malicious TIFF file causing
a buffer overflow in libtiff. We also show a well formed
TIFF file being handled properly by libtiff. A program
was written to simulate the stack buffer overflow. Below
is a snippet from driver.cpp file.

int main() {
 cout << "Start!" << endl;
 TIFF* tif = TIFFOpen("c:/thesis/tiffExp/t1.tiff",

"r");
 if (tif) {
 cout << "Opened file successfully" << endl;
 } else {
 cout << "FAILED to open tiff file" << endl;
 }
 TIFFClose(tif);
 cout << "End!" << endl;
 return 0;
}
Next, badDotRange.tiff is copied to t1.tiff and

driver.cpp is compiled, linked with libtiff.a, and run,
which results in a segmentation fault, as shown below.

$cp badDotRange.tiff t1.tiff
$g++ -I /usr/local/include –g driver.cpp –c
$g++ driver.o –L. –ltiff –o driver.exe
$./driver.exe
Start!
Segmentation fault <core dumped>
The program execution sequence is the following:

TiffOpen() calls TIFFReadDirectory(), which upon en-
countering the DotRange tag calls TIFFFetchShortPair ()
as can be seen from the following snippet from tif_dir-
read.c.

case TIFFTAG_DOTRANGE:
 (void) TIFFFetchShortPair(tif, dp);

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

81

Figure 6. Bloodhound.Exploit.166 trojan [24].

 break;
case TIFFTAG_REFERENCEBLACKWHITE: …
As seen earlier, that function allocates memory for two

shorts, but instead receives the request to fetch 255 of
them. Below is the corresponding line in the source code
of the attack.
0x50,0x01,0x03,0x00,0xff,0x00,0x00,0x00,0x84,0x00,0
x00,0x00,

Since we are assuming little-endian representation, the
first two bytes become 0x0150, which represents the
DotRange tag. The next two bytes give us the value
0x0003, which means the data type is SHORT. The next
four bytes give us the number of different values for this
tag, which is 0x000000ff or 255 in decimal. Finally, the
final four bytes give us 0x00000084, which is the offset
to the actual values for the tag [18].

By looking at the TIFF specification [18] and also
looking at the code for the version of libtiff with sanity
check [17], we see that the number of parameters ex-
pected by DotRange is two. As seen in the stack buffer
overflow example, attempting to fetch 255 shorts causes
a stack buffer overflow. In our example, the program
overwrites the return value in the stack, changing it to
some area in memory that is not accessible, resulting in a
segmentation fault. Below, the line in badDotRange.tiff

corresponding to the DotRange tag is shown, as it ap-
pears in Hex Editor. The twelve bytes corresponding to
the DotRange tag appear from 0x74 to 0x7f.
0000070: 0100 0000 5001 0300 ff00 0000 8400 0000
P...........

Thus far, we have solved half of the problem of creat-
ing an attack by gaining control of the stack. Before we
move on to injecting particular code and executing it, we
first confirmed that a well-formed TIFF file is not recog-
nized as a virus by Norton AntiVirus and does not cause
a crash when opened with our program.

We now consider the code that provides root access to
the iPhone and observe how it is executed. As mentioned
earlier, this exploit uses the return-to-libc technique to
execute a sequence of pre-existing functions. These pre-
existing functions come from the dynamically loaded
libSystem. dylib, which can be disassembled and
searched for blocks of code that perform desired tasks
[26]. The iPhone only allows access to a small section of
the file system to add and remove music and other files.
This “sandbox” area is the directory /var/root/Media. The
algorithm used in the exploit renames /var/root/Media to
/var/root/OldMedia. It then creates a symbolic link with
/var/root/Media pointing to root, “/” and next it remounts
root with the “MNT_UPDATE” flag to make it writable

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

82

[23]. The malicious tiff file is crafted skillfully to set up
the stack to call the necessary functions from libSys-
tem.dylib. Each of those functions must be studied care-
fully to discover how many values it reads from the stack
and in what registers. The stack pointer must be set ap-
propriately, and the link registers must be set properly
for the next function call. With this method the exploit
uses pre-existing functions to make the iPhone root wri-
tablein other words, it “jailbreaks” the iPhone.

3.7. Summary of Jailbreaking

Let’s recap the tools needed and the process taken for
jailbreaking method used above. Vulnerability in tiff
library was targeted to create a stack buffer overflow and
inject desired code. Then return-to-libc technique was
used to execute desired code to make the root directory
of iPhone writeable – i.e. to jailbreak it. During the
process knowledge of TIFF was necessary in order to
construct a vulnerable TIFF file. Also, knowledge of
ARM processor architecture and it’s deficiencies were
required to ensure the attack works consistently on any
given iPhone. Furthermore, knowledge of ARM instruc-
tions was required to construct the code for the attack. In
summary, a great deal of research and learning was re-
quired in order to pick up the necessary tools to success-
fully create the Jailbreak attack.

4. Unlocking

The iPhone is considered unlocked when it is able to use
a cellular service other than that of AT & T. There are
several free and paid software unlocking solutions avail-
able on the Internet including AnySIM, TurboSIM, and
SimFree. Among these solutions, AnySIM seems to be
quite popular, likely because it is free. It is developed
by a group of people who call themselves the iPhone dev
team.

AnySim works by patching the firmware on the base-
band [27]. We can predict that somewhere in the base-
band firmware, there is code that checks whether the
SIM card being used is AT & T’s. If the check passes,
the baseband allows the phone part of the iPhone to work
normally; conversely, if the check fails, the phone func-
tion does not work. AnySim performs a patch to the
firmware so that it skips the above check and jumps to
the section of code that executes when the check passes
[27]. This procedure unlocks the iPhone because a SIM
card from any GSM wireless carrier can then be used to
make phone calls. If the baseband firmware is upgraded
or downgraded, the iPhone gets “un-unlocked”, as the
patch that skips the check will almost certainly no longer
be part of the code.

SimFree, also known as iPhone SimFree or IPSF, is
unlocking software that currently sells for approximately
$60, and at one point cost $99 [28]. Since it is a paid
product, details about how it works are not revealed. It
claims not to rely on firmware patching, so a phone
unlocked with SimFree should remain unlocked even
when a baseband upgrade is performed [27].

TurboSim is another paid solution for unlocking. It
tricks the iPhone SIM card checking function into think-
ing it is an AT & T SIM card by providing an Interna-
tional Mobile Subscriber ID (IMSI) and an Integrated
Circuit Card ID (ICC-ID)—also known as SIM Serial
Number (SSN). For TurboSim to work, it must be pro-
grammed with a valid AT & T SIM, which it copies for
later use [29].

Following table summarizes the above mentioned
unlocking methods.

Unlocking Method Technique used

AnySim
Patch the baseband to skip AT & T
SIM card check.

SimFree
Proprietary software application that
patches the iPhone firmware

TurboSim
Tricks iPhone into thinking that it’s
SIM card is an AT & T SIM card

5. Jailbreaking and Unlocking Newer

Versions of Iphone

As mentioned earlier, for the purposes of this project,
iPhone firmware version 1.1.1 and baseband bootloader
version 3.9 are assumed. As of 2008, Apple had released
versions 1.1.2, 1.1.3, and 1.1.4 of the firmware. Also, the
baseband bootloader version is 4.6 in some of the phones.
Can these phones be jailbroken and unlocked?

We use a simple approach: on newer versions of the
iPhone, we downgrade the firmware to version 1.1.1 and
the bootloader to version 3.9. Then we use the known
attacks to jailbreak and unlock the iPhone. Several
hacker websites, including iphone.unlock.no, offer in-
structions on how to downgrade the firmware and boot-
loader, and they also have different firmware files avail-
able for download [27].

Unlocking is not possible if the iPhone has version 4.6
or higher of bootloader because that version requires a
secpack—a special password—to modify the baseband
[30] and unlocking cannot be achieved without modify-
ing the baseband. Since version 3.9 of the bootloader
does not require any passwords, the baseband can be
modified, and unlocking can be achieved. For that reason
a “bootloader downgrader” tool gbootloader was devel-
oped by George Hotz and made available to iPhone users
[31]. The tool downgrades the bootloader from version

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

83

4.6 to version 3.9 so that a patch to the baseband can be
made and the iPhone can be unlocked.

Several other small utilities have been developed in
addition to the ones mentioned here, which allows users
to sort out different versions of firmware, baseband, and
bootloader and make appropriate choices. Tools have
been developed to upgrade the firmware on jailbroken
phones to pick up some of the latest features developed
by Apple for the iPhone.

6. Other Malicious Attacks

Attacks that we have examined so far do not carry the
intention to be malicious, though the libtiff attack cer-
tainly could be malicious, depending on the type of code
injected. For jailbreaking, the code injected was non-
malicious—both behavior and intention-wise. However,
using the libtiff vulnerability, malicious code could cer-
tainly be injected for a malicious attack. Now, let us
examine a couple of malicious attacks created by a group
of researchers at Independent Security Evaluators by
exploiting other vulnerabilities; those attacks give us
further insight into iPhone security. Details of the attacks
discussed below are not revealed; the goal of the re-
searchers was to make Apple aware of some of the issues
and not to let the hackers find out the details of the vul-
nerabilities and the attacks. The attacks expose well-
known security weaknesses in the OS X operating sys-
tem used in the iPhone, including lack of address ran-
domization and an executable heap [32].

The first attack consists of an exploit written to attack
Safari on the iPhone. When a malicious HTML docu-
ment was visited using MobileSafari, the iPhone was
forced to make a connection to an outbound compro-
mised server controlled by the attackers. The attackers
were then secretly and automatically able to obtain per-
sonal data including contacts, call history, text message,
and voice mail from the attacked iPhone. Attackers con-
cluded that further personal information including pass-
words and emails could have been obtained had they
chosen to do so [32]. What makes this attack even more
dangerous is the ease with which it can be carried out. A
link to a compromised website could be sent via email,
and the iPhone owner could be lured into visiting it. That
is all it would take to capture all of the personal data of
the iPhone owner.

A second exploit was written to perform physical ac-
tions on the phone such as making a system sound and
vibrating [32]. This exploit was run on the iPhone when
another malicious HTML was viewed using Safari
browser. To make matters worse, certain API functions
discovered during this exploit could have allowed it to
send text messages, dial phone numbers, or even record
audio and transmit it over the network [32]. This vulner-
ability is particularly dangerous since the phone bill or
text message bill could be increased by the attacker,
which could cost the iPhone’s owner a significant sum.
The attacker could also send maliciously provocative
messages to the owner’s contacts, which could result in
personal or professional relationship problems.

These malicious exploits are, collectively, comparable
to having one’s iPhone stolen. If attacks like these be-
come widespread, there is a potential that customers
would reconsider buying the iPhone.

While details of the attacks above were not disclosed,
let us look at the high level approach used in the above
MobileSafari attacks. This information could certainly be
used as a guideline for the attacks above, provided one is
able to write appropriate payloads. The iPhone uses
Webkit, an open source web browser engine used by
Mobile Safari [33], which in turn uses the Perl Compati-
ble Regular Expression Library (PCRE). One of the first
versions of iPhone used a version of PCRE that was
more than a year old. Several versions of PCRE had been
released with several bug fixes since the version used by
iPhone. One of the bug fixes found in the change log of a
newer version 6.7 [34] follows.

A valid (though odd) pattern that looked like a POSIX
character class but used an invalid character after [(for
example [[,abc,]]) caused pcre_compile() to give the er-
ror “Failed: internal error: code overflow” or in some
cases to crash with a glibc free() error. This could even
happen if the pattern terminated after [[but there just
happened to be a sequence of letters, a binary zero, and
a closing] in the memory that followed.

Now, one can review the bug fix and immediately get
ideas for possible attacks on the iPhone. Attackers used
the above vulnerability and constructed a regular expres-
sion in an HTML file that attacked the vulnerability
when the file was viewed in Safari. The HTML docu-
ment used was constructed as below [35]:

<SCRIPT LANGUAGE="JavaScript"><!--
var re = new RegExp("[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

84

[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]]ABCDEFGHIJKLMNOPQRSTUVWXYZAB-

CDEFG[\x01\x02\x03\x04\x05\x06\x07\x09\x0b\x0e\x0f\x11\x12\x13\x14\x15\x17\x19\x1b\x1c\x1d\x1f\x20\x21\x22
\x23\x25\x26\x27\x29\x2a\x2b\x2c\x2d\x2f\x30\x32\x33\x35\x37\x39\x3a\x3b
\x3c\x3e\x3f]XYZABCDEFGHIJKLMNOPQR");
</script>

To develop the exploit, attackers resorted to a tech-

nique called “fuzzing” [35], which involves passing dif-
ferent inputs that cause a given program to crash and
then analyzing the crash to gain insight about the pro-
gram. From the crash reports, they were able to get
useful information such as the stack pointer and values in
different registers. They then employed a technique to
overwrite the return address on the stack to point to the
heap area where shell code was injected [35]. The shell
code then executed and did the job of stealing private
information. The code consisted of typical socket con-
nect, open, read, and write functions. The researchers
have revealed some of the functions they used to perform
physical actions on the phone including making a system
sound, dialing phone calls, and sending SMS text mes-
sages. Those functions include AudioServicesPlaySys-
temSound from the Audio Toolbox library and CTCall-
Dial, CTSMSMessageCreate, and CTSMSMessageSend
from the Core Telephony library [35]. The purpose of
each function is clear from its name.

To summarize, vulnerabilities in PCRE were targeted
by creating a malicious HTML file to create a buffer
overflow, which facilitated injection and execution of
malicious code.

7. Security Analysis

Having briefly examined several vulnerabilities in the
iPhone and attacks that exploit those vulnerabilities, we
now analyze the iPhone security structure from a high
level. What was the approach Apple took while design-
ing the security architecture for the iPhone? Were there
flaws in this philosophy? What high-level approaches
can be used to exploit the security flaws? What are some
of the ways that Apple can either fix some of the vulner-
abilities or at least make it difficult for an attacker to
exploit them? Let us try to answer some of these ques-
tions.

It is clear that iPhone is a vulnerable device with sev-
eral security holes. The iPhone security philosophy itself
has a signifcant flaw. Apple’s approach to making the
iPhone a secure device was to reduce “the attack surface
of device” or “the device’s exposure to vulnerabilities”
[32]. To achieve this, Apple allowed write access only to
a sandbox area in the file system and disallowed installa-
tion of third-party applications. Several features of Safari

were removed in Mobile Safari, including the ability to
use plug-ins like Flash and the ability to download cer-
tain file types. Mobile Safari was restricted to only exe-
cute Javascript code, and only do so in the sandbox area.
In short, Apple’s approach was to make a controlled,
essentially closed-box device. Apple’s security approach
might be summed up by the following analogy: rather
than teaching a child how to swim to prevent him from
drowning, he is simply not allowed to jump in a lake.

While the security philosophy is debatable, the archi-
tecture has significant holes. Since Apple banked on
preventing the iPhone from being compromised in the
first place, it put very little effort into protecting different
parts of the device individually. This conclusion is sup-
ported by the fact that all significant processes run as a
super user or with administrative privileges—a major
mistake from a security perspective. A result of this con-
figuration is that an attacker is likely able to control the
entire iPhone if he is able to exploit any vulnerability in
any of its applications [32]. For example if Mobile Mail
were compromised by an attack, the attacker could also
gain access to contacts and pictures. In simple terms, the
iPhone’s security architecture looks like a home owner
putting all effort for securing his or her home into buying
a strong lock to stop an intruder from getting in. No ef-
fort is made to, say, secure individual room, to put valu-
ables in a safe-deposit box, to use a home security sys-
tem, etc. While it may be difficult to enter the house, if a
thief can do so, he can easily steal all its contents.

A security hole is also created by the fact that the
iPhone uses several applications including MobileSafari
and MobileMail that are based on open source projects.
While the use of open source is itself likely a good idea,
using (and sharing) of open source projects with old and
outdated versions of those projects is clearly a problem.
Earlier we looked at examples of an old version of libtiff
library facilitating the jailbreak attack, and an old version
of the PCRE library allows another malicious attack. By
using outdated versions of open source projects, Apple
made it relatively easy for hackers to develop ideas and
approaches for attacks attacks.

Apple also failed to make the exploitation of vulner-
abilities challenging for hackers. By not utilizing com-
mon techniques such as Address Space Layout Ran-
domization (ASLR) or non-executable heap in the ver-
sion of OS X used for iPhone, Apple has not posed any

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

85

particular difficulties for hackers in the development and
distribution of buffer overflow exploits [32].

The table below summarizes the attacks discussed in
this paper.

Attack Vulnerability targeted Tools used Effects

Jailbreaking Vulnerable libtiff
TIFF, buffer overflow,

return-to-libc, ARM architecture and
instructions

Get root access

Unlocking
Jailbroken phones allow for installation

of unauthorized applications
Installation of unauthorized

application
Being able to use the iPhone with

non-AT&T wireless services

Mobile safari (malicious) Vulnerable PCRE
Malicious HTML, fuzzing,

buffer overflow
Stolen personal data and other

malicious effects

Apple did employ some good practices and has shown

more effort recently in making the iPhone more secure.
That has not stopped the hackers, however, as they have
found solutions to the obstacles presented by Apple. For
example, the stack is non-executable in the iPhone, so an
attacker cannot simply add payload to the stack via a
buffer overflow and execute it. However, a non-execu-
table stack does not protect against the return-to-libc
attack, which was employed in the jailbreaking attack, as
we observed earlier. New versions of firmware have
been released with certain vulnerabilities fixed to prevent
jailbreaking. Unfortunately, these have been somewhat
countered by the ability to downgrade the firmware. Ap-
ple also attempted to prevent unlocking by using a new
version of the bootloader. That attempt failed because
hackers found a way to downgrade the bootloader as
well.

After evaluating Apple’s security for the iPhone, one
can safely conclude that overall the company failed to
make the iPhone as secure as it could possibly have been.
Looking at the security approach and the decisions the
company made, it is no surprise that the initial iPhones
were considered a fairly vulnerable device.

8. Analysis of Sample Decisions by Apple

Now that we have had a chance to analyze the iPhone’s
security structure, we can ask several questions regarding
different choices Apple has made. Why are they using
versions of open-source based packages that are about a
year out of date? Why did they choose to have almost all
important processes run as super user? Why did they not
use ASLR? Why did they use a vulnerable version of the
tiff library? This final question is particularly important
because even after three new versions of firmware and a
new version of the bootloader, Apple was still paying for
this mistake.

It seems implausible that Apple had no knowledge of
the vulnerability in libtiff that causes buffer overflow,
since this vulnerability is well known in the hacking
community and other mobile devices including Sony’s
PSP had been hacked using it. We can only speculate as

to why Apple used the vulnerable version of libtiff. Per-
haps there was an existing version of Safari with the
vulnerable version of libtiff ready to be used with iPhone.
One can certainly see that there is some cost involved in
using a new version of libtiff in Safari, which would
have to be thoroughly tested prior to being deployed in a
new version for iPhone. Perhaps Apple found that there
were other known vulnerabilities in the version used
anyway. Perhaps Apple performed a cost analysis of
losses suffered by delaying the new version of firmware
versus losses due to the number of people who would
hack the iPhone to jailbreak it and eventually unlock it
and use a wireless service other than that of AT & T.
Such a decision would express disregard for consumer
security, since the same vulnerability could be also used
to perform truly malicious acts.

From a short-term perspective, it is hard to argue with
the success of the iPhone. However, from the consumer
confidence or reputation perspective, the situation is not
so clear. Apple is generally regarded as a company that
delivers secure and robust products. They may have lost
some of that sheen with the iPhone.

9. Suggestions to Improve Security Structure

We have pinpointed several flaws in the initial iPhone
security structure. A large security hole would have been
filled if most of the processes were not run with adminis-
trative privileges, or as the super user. This would gener-
ally make it more difficult for an attacker to gain full
control of an iPhone.

While using open-source based applications is a good
idea, Apple needs to be more cognizant about using ver-
sions that do not have serious known bugs. Apple should
also use a technique such as ASLR for heap and stack
address randomization to make it more difficult for
hackers to develop stable attacks and distribute them [32].
Moreover, it could develop a mechanism that prohibits
both writing to and executing an area of the heap. Some
attacks copy the exploit payload into the heap area that is
both writeable and executable, and they execute it there.
If an area in heap was not both writeable and executable,

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

86

such attacks would be thwarted. Also, if ASLR were
employed, even if an attacker could successfully write an
attack that relies on an address in the stack or heap, dis-
tribution of the attack would be difficult, as the target
address is unreliable due to randomization.

10. Conclusions

In this paper, we considered the iPhone security structure
and its vulnerabilities. The Jailbreaking attack analyzed
here relied on a known vulnerability in the TIFF library.
The analysis of the attack required some knowledge of
the ARM architecture and the TIFF file format. We
showed that using a vulnerable version of the TIFF li-
brary proved costly for Apple, in the sense that updates
could not easily prevent “rollback” attacks. Interestingly,
hackers found ways to jailbreak later iPhone without
even losing the new features introduced in newer ver-
sions. Perhaps predictably, the attacks on the iPhone and
the countermeasures by Apple quickly devolved into a
cat and mouse game.

The security problems discussed here have resulted in
financial losses for both Apple and AT&T and, arguably,
a reputation loss for Apple. For each iPhone that was
unlocked to access an alternate wireless carrier, AT & T
stood to lose about $1500 in revenue for the two-year
contract period. As we noted earlier, the number of
unlocked iPhones was estimated at nearly a million in
just its first six months [1]. Apple too missed out on
some gains, as it receives a certain amount from AT & T
for each iPhone activated with AT&T. The security vul-
nerabilities of the iPhone have also affected Apple’s
reputation as a company, as it had been generally be-
lieved to deliver relatively secure products. While Ap-
ple’s exclusive deal with AT & T and its decision to use
a closed system undoubtedly increased the motivation to
attack the iPhone.

We have also explained that malicious attacks can be
created for the iPhone. However, the significant attacks
have not been malicious, but were instead focused on
enabling people more freedom to do what they want with
their telephone product.

We conclude that Apple’s initial effort in making the
iPhone a secure device was somewhat disappointing.
While Apple worked to improve iPhone security, the
initial release unnecessarily gave hackers the upper hand,
which, to some extent, has continued to this day.

10. References

[1] C. Maxcer, “Apple Minus AT&T Equals Lots of iPhones

Somewhere Else,” Mac News World. http://www.mac-
newsworld.com/story/61389.html?welcome=1209968031

[2] iPhone, Apple–iPhone. http://www.apple.com/iphone/

[3] ARM, ARM1176 Processor. http://www.arm.com/prod-
ucts/CPUs/ARM1176.html

[4] A. L. Shimpi, “Apple’s iPhone Dissected: We did it, so
you don’t have to,” Anandtech, 29 June 2007. http://www.
anandtech.com/mac/showdoc.aspx?i=3026&p=3

[5] In brief, Network Security, Vol. 2009, No. 7, July 2009,
pp. 3.

[6] Best iPhone Apps. http://www.Installerapps.com

[7] K Dunham, “Mobile Malware Attacks and Defense,”
Elsevier 2009, pp. 197-265.

[8] B. Haines, “Seven Deadliest Wireless Technologies At-
tacks,” Syngress, 2010.

[9] Max Console. http://www.maxconsole.net/?mode=news&
newsid= 9516

[10] Common Vulnerabilities and Exposures, 2006. http://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3459

[11] TIFF Library and Utilities, 15 January 2008. http://www.
libtiff.org/

[12] National Vulnerability Database, 2006. http://nvd.nist.
gov/nvd.cfm?cvename=CVE-2006-3459

[13] “Stack buffer overflow,” Wikipedia. http://en.wikipedia.
org/wiki/Stack_buffer_overflow

[14] M. Stamp, “Information Security: Principles and Prac-
tice,” Wiley 2005.

[15] C. Cowan, et al., “StackGuard: Automatic Adaptive De-
tection and Prevention of Buffer-Overflow Attacks,”
Proceedings of the 7th USENIX Security Symposium, San
Antonio, Texas, January 26-29, 1998.

[16] “Return-to-libc,” Wikipedia. http://en.wikipedia.org/wiki/
Return-to-libc

[17] Maptools, 15 January 2008. http://dl.maptools.org/dl/lib-
tiff/

[18] Adobe Developers Association, TIFF Revision 6.0 Final,
3 June 1992. http://partners.adobe.com/public/developer/
en/tiff/TIFF6.pdf

[19] “Tagged Image File Format,” Wikipedia. http://en.wiki-
pedia.org/wiki/TIFF

[20] Simple Machines, The ARM instruction set. http://www.
simplemachines.it/doc/arm_inst.pdf

[21] “1176JZF-S Technical Reference Manual Revision
r0p7,” ARM. http://infocenter.arm.com/help/topic/com.
arm.doc.ddi0301g/DDI0301G_arm1176jzfs_r0p7_trm.pdf

[22] “Little-endian,” Wikipedia. http://en.wikipedia.org/wiki/
Little_endian

[23] Toc2rta, TIFF exploit. http://www.toc2rta.com/files/itiff_
exploit.cpp

[24] “Bloodhound.Exploit.166 Technical Details,” Symantec,
9 November 2007.

[25] V. Pandya., IPhone security analysis, Masters Thesis,
Department of Computer Science, San Jose State Univer-
sity, 2008. http://www.cs.sjsu.edu/faculty/stamp/students/
pandya_vaibhav.pdf

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

87

[26] Metasploit. http://www.metasploit.com

[27] iPhone UnlockUSA.com. http://iphone.unlock.no

[28] iPhone Sim Free. http://www.iphonesimfree.com

[29] Hackintosh, Turbosim Technical Background. http://
hackint0sh.org/forum/showthread.php?t=18048

[30] Hackintosh, iPhone. http://www.hackint0sh.org

[31] G. Hotz, “On the iPhone,” 15 February 2008. http://
iphonejtag.blogspot.com/

[32] C. Miller, J. Honoroff and J. Mason, “Security Evaluation
of Apple’s iPhone,” Independent Security Evaluators, 19

July 2007. http://securityevaluators.com/files/papers/ex-
ploitingiphone.pdf

[33] The Webkit Open Source Project. http://webkit.org/

[34] Perl Compatible Regular Expressions, Change log. http://
www.pcre.org/changelog.txt

[35] C. Miller, “Hacking Leopard: Tools and Techniques for
Attacking the Newest Mac OS X,” Black Hat Media Ar-
chives, 2 August 2007. https://www.blackhat.com/pres-
entations/bh-usa-07/Miller/Presentation/bh-usa-07-miller.
pdf

