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ABSTRACT 

This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic 
traffic volumes and compares the results. The architecture of the neural network consists of the input vector, one hidden 
layer and output layer. Bayesian regularization is employed to obtain the effective number of neurons in the hidden 
layer. The input variables and target of the adaptive neuro-fuzzy inference system are the same as those of the neural 
network. The data clustering technique is used to group data points so that the membership functions will be more tai- 
lored to the input data, which in turn greatly reduces the number of fuzzy rules. Numerical results indicate that these 
two models have almost the same accuracy, while the adaptive neuro-fuzzy inference system takes more time to train. It 
is also shown that although the effective number of neurons in the hidden layer is less than half the number of the input 
elements, the neural network can have satisfactory performance. 
 
Keywords: Neural Network; Adaptive Neuro-Fuzzy Inference System; Chaotic Traffic Volumes; State Space  

Reconstruction 

1. Introduction 

It has been known for decades that chaotic behaviors 
exist in traffic flow systems Gazis et al. [1] developed a 
generalized car-following model, known as the GHR (Ga- 
zis-Herman-Rothery) model, whose discontinuous beha- 
vior and nonlinearity suggested chaotic solutions for a 
certain range of input parameters. Due to the capacity di- 
mension [2] of the attractor being fractal and first Lyapu- 
nov exponent [3] being positive, Disbro and Frame [4] 
showed the presence of chaos in this General Motors’ mo- 
del without signals, bottlenecks, intersections, etc. or with 
a coordinated signal network. Chaos was observed in a 
platoon of vehicles described by the traditional GHR mo- 
del modified by adding a nonlinear inter-car separation 
dependent term [5,6], Poincaré maps of which appear as a 
cloud of points without any repeat. Traffic volume col-
lected at 2-min interval on the Beijing Xizhimen highway, 
China, was also found to posses chaotic behaviors [7]. 

Because of nonperiodic behaviors, chaotic time series 
seem to be unpredictable, but a variety of short-term 
forecast models have been attempted and proven to be 
successful, such as models employing Kalman filtering 
theory [8], the local linear model using information based  

on past values [9], the polynomial model [10], neural 
network-based black-box models [11-15], a model con- 
sisting of a fuzzy C-means clustering and a radial-ba- 
sis-function neural network [16], etc. This paper also 
tries to forecast the short-term chaotic traffic volume at 
the intersection. Two kinds of models are presented for 
comparison. One is the neural network, where the delay 
coordinates [2,17,18] of the reconstructed state space of 
the traffic flow system are used as the input vector of the 
neural network and the first delay coordinate of next state 
as the target of the neural network. The other model is 
the adaptive neuro-fuzzy inference system [19,20], where 
inputs and targets are identical to the first one, but mem- 
bership functions and fuzzy rules [21,22] replace neurons 
in the neural network. The number and the shapes of the 
membership functions are decided and tuned by a data 
clustering technique and backpropagation neural network, 
respectively, which is different from the Park’s model 
[16] in the ways of data clustering and learning process. 

2. Diagnosis of Chaos 

The Poincaré map, time series, autocorrelation function, 
etc., can often provide graphic evidence for chaotic be- 
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havior, while the fractal dimension and largest Lyapunov 
exponent are two principal quantitative measures of chaos. 
This paper selects the fractal dimension, largest Lyapu- 
nov exponent and autocorrelation function to show the 
existence of chaos of the traffic flow. Brief introduction 
to them is as follows. 

2.1. Fractal Dimension 

If there is only one measurement available for a system, 
delay coordinates are usually used to reconstruct its state 
space [17]. Given a time series x(t) and time delay , an 
n-dimensional state space can be reconstructed with the 
delay coordinates:  

       { , , 2 , ,  1x t x t x t x t n       . To get 
the appropriate dimension for reconstructing the state 
space of a chaotic dynamical system, the first step is to 
obtain the fractal dimension of the chaotic attractor in the 
state space. There are a number of ways to measure the 
chaotic attractor dimension [2]. Among them, this paper 
chose the method of correlation dimension, because it is 
much easier to implement and not time-consuming. Con- 
sider an orbit discretized to a set of N points in the state 
space. A sphere of radius r is poisoned at each point of 
the orbit and the number of points within each sphere 
with Euclidean distance less than r is counted. A correla-
tion function is then defined as [2,23] 

       1
lim  

1 i j
n i j

C r H r i j
N N

  
  X X  (1) 

where i j  is the Euclidean distance between 
points Xi and Xj and H is the Heaviside function (or unit 
step function ). For many attractors, this function C(r) 
exhibits a power law dependence on r, as ; that is 

X X

0r 
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Hence, a correlation dimension is defined by the expres- 
sion 
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The chaotic attractor dimension will often approach an 
asymptote d with the dimension of the reconstructed state 
space gradually increasing. To embed a d-dimensional 
chaotic attractor, the state space may be reconstructed 
with dimension greater than or equal to 2d + 1, which ac- 
cording to Takens [24] will be sufficient to have generic 
delay plots. 

2.2. The Largest Lyapunov Exponent 

The largest Lyapunov exponent of a chaotic orbit is de- 
fined by the expression [3] 

2
1 0

1
lim log

m
i

m i i

d

m d


 


             (4) 

The calculation is initiated by locating the nearest 
neighbor to the first point of a reference trajectory in the 
reconstructed state space and the distance between them 
is denoted by d0i. This pair of points is then propagated 
through the attractor for a fixed short time  and its final 
separation di is computed. After that, a replacement for 
the propagated pair is attempted by the following proce- 
dure: 1) The distance of each delay coordinate point in 
the attractor to the propagated point of the reference tra- 
jectory is determined; 2) Points closer than a given length 
and away from another much smaller length (to avoid 
noise) are examined to see if the angle between the 
original pair and attempted pairs is less than a given 
small angle (e.g. 0.3 radians); and 3) The attempted pair 
with the smallest angle is used as replacement for the 
next propagation. The repeating of propagating and re- 
placing are carried out for m cycles. 

2.3. Autocorrelation Function 

To find out the resemblance of the signal  x t  with 
itself as time passes, the autocorrelation function 

     
0

lim d
T

T
R x t x t


  t           (5) 

is an often-seen tool to achieve this purpose. If  R   
approaches the square of the mean of the function  x t  
as   , it means that the signal is only correlated 
with its recent past [25], i.e., sensitive to the initial con- 
ditions. Furthermore, the time lag  at which  R   
first crosses the square of the mean of the function  x t  
is usually considered as the time delay   for recon- 
structing the state space. 

3. Forecasting Models 

There are two models applied in this paper to forecast 
short-term chaotic traffic volumes: the feedforward back- 
propgation neural network and the adaptive neuro-fuzzy 
inference system, which are described as follows. 

3.1. Feedforward Backpropagation Neural  
Network Model 

The first forecasting model used in this paper is a feed- 
forward neural network with the backpropagation train- 
ing algorithm, as shown in Figure 1. The transfer func- 
tion in the single hidden layer is the tan-sigmoid function 

  1 e
, 1,2,3, ,

1 e

i

i

n

i i n
a f n i s






  


      (6) 

w h e r e  ,1 1 ,2 2 , 1 2 R, , , ,i i i i R R in w x w x w x b x x x        
are the elements of the input vector, s is the number of  
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Figure 1. The structure of the feed forward back propaga- 
tion neural network. 
 
neurons, ,1 ,2 ,R  are the weights connecting the 
input vector and the ith neuron, and bi is the bias of the 
ith neuron. The output layer with a single neuron is given 
by the linear function 

, , ,i i iw w w

 a f n n                  (7) 

where 

1,1 1 1,2 2 , 1,1 1,2 ,  are 
the weights connecting the neurons of the hidden layer 
and the neuron of the output layer, and B is the bias of 
the output neuron. 

, , , ,i s s i sn W a W a W a B W W W     

There are many variations of the backpropagation al- 
gorithm, aiming to minimize the network performance 
function, i.e., the mean square error between the network 
outputs and the targets, which is 

 2

1

1
Minimize MSE

m

j j
j

t a
m 

         (8) 

where tj and aj are the jth target and network output, re- 
spectively. This paper chooses the Levenberg-Marquardt 
algorithm [26-28] as the training function to minimize 
the network performance function. This algorithm inter- 
polates between the Newton’s algorithm and the gradient 
descent method. If a tentative step increases the per- 
formance function, this algorithm will act like the gradi- 
ent descent method, while it shifts toward Newton’s 
method if the reduction of the performance function is 
successful. In this way, the performance function will 
always be reduced at each iteration of the algorithm. To 
avoid the problem of overfitting, there are two methods 
to improve the network generalization: Bayesian regu- 
larization [29] and early stopping. The Bayesian regu- 
larization can provide a measure of how many network 
parameters (weights and biases) are being effectively 
used by the network. From this effective number of pa- 
rameters, the number of neurons required in the single 
hidden layer of the neural network can be derived by the 
following equation 

   1Rs s s P               (9) 

where R is the number of elements in the input vector, s 
is the number of neurons in the hidden layer, and P is the 
effective number of parameters found by the Bayesian 
regularization. In the strategy of early stopping, the 
available data is divided into three sets: the training set, 
validation set and testing set. The training set is used for 
computing the gradient and updating the network weights 
and biases, while the error of the validation set is moni- 
tored during the training process. When the network be- 
gins to overfit the training data, the error on the valida- 
tion set typically begins to rise. Once the validation error 
keeps increasing for a specified number of iterations, the 
training is stopped and the weights and biases at the 
minimum of validation error are returned. The testing set 
is not used during the training, but is used to check the 
performance of the trained network. To evaluate the per- 
formance of the trained network, this paper performs 
linear regression analysis between the network outputs 
and the corresponding targets, and computes the correla- 
tion coefficient [30]. 

3.2. Adaptive Neuro-Fuzzy Inference System  
Model 

The second forecasting model used in this paper is an 
adaptive neuro-fuzzy inference system, as shown in Fig- 
ure 2. This model consists of two components: a fuzzy 
inference system and a backpropagation algorithm. For 
an ordinary fuzzy inference, the parameters in the mem- 
bership functions are usually determined by experience 
or the trial-and-error method. However, the adaptive neu- 
ro-fuzzy inference system can overcome this disadvan-
tage through the process of learning to tailor the mem-
bership functions to the input/output data in order to ac-
count for these types of variations in the data values, 
rather than arbitrarily choosing parameters associated 
with a given membership function. This learning method 
works similarly to that of neural networks. The fuzzy in- 
ference incorporated into the adaptive neuro-fuzzy in- 
ference system is the first-order Sugeno-type inference 
[31], the typical rule of which, if there are only two in- 
puts x and y, has the form 

If input 1 and input 2 ,  

then output is

x y

z ax by c

 
  

        (10) 

The output level zi of each rule is weighted by the firing 
strength wi of the rule, which is 

    1 2Min ,iw F x F y           (11) 

where  1F x  and  2F y  are the membership func- 
tions of inputs 1 and 2, respectively. Finally the output of 
the inference system yields 
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Figure 2. The structure of the adaptive neuro-fuzzy infer-
ence system. 
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where N is the number of the rules. Because the number 
of the input variables and data sets are large in this paper, 
the “subtractive clustering” technique [32] is adopted to 
cluster the data and assign every data point a membership 
grade for each cluster. According to the number of 
membership functions and input variables, the number of 
rules is then decided. Due to the fact that membership 
functions are more tailored to the input data, the fuzzy 
inference system will end up having much fewer rules 
than that without clustering. 

4. Numerical Results 

The eastbound traffic volumes at the intersection of 
Jiouru Road and Ningsia Street, Kaohsiung City, Taiwan, 
are taken as examples. The traffic volume data were col- 
lected by the vehicle traffic counter in November, 2008, 
totaling 14 days excluding weekends. Due to data being 
recorded every five minutes, three time intervals are 
chosen: 5-min, 10-min and 15-min. The data are divided 
into three sets: training data (8 days), validation data (4 
days) and testing data (2 days). As mentioned previously, 
training and validation data are used to train forecasting 
models, while testing data are used to examine how good 
the trained models are. All forecasts are only one time 
interval ahead of occurrence, i.e., 5-min, 10-min or 15- 
min ahead of time. The MATLAB software [33] is ap- 
plied to build the neural network and adaptive neuro- 
fuzzy inference system. 

To get a reasonable time delay for reconstruction of 
the traffic flow system, the autocorrelation function 
 R   is plotted. Figures 3-5 show the autocorrelation 

function for 5-min, 10-min and 15-min traffic volumes, 
respectively, where the dotted horizontal line represents 
the square of the mean of time series of the traffic vol- 

ume. All the three curves tend to approach the dotted 
horizontal line and the time lagη for the autocorrelation 
to first cross the dotted horizontal line is found approxi- 
mately at 300 min for all these three time intervals. 
Hence the time delayτ to reconstruct the flow system is 
60 for 5-min interval, 30 for 10-min interval and 20 for 
15-min interval. By using the corresponding time delay 
and gradually increasing the dimension n of the state 
space, the correlation dimension of the chaotic attractor 
will reach an asymptote as n increases. These processes 
are shown in Figures 6 to 8 for 5-min, 10-min and 15- 
min, respectively. These figures indicate that the correla-
tion dimension d for 5-min interval is 6.687, for 10-min 
interval is 6.766 and for 15-min interval is 6.637. There- 
fore, the embedding dimension ( 2d + 1) is 15 for these 
three time intervals. Aside from the fractal dimension, 
the largest Lyapunov exponent of the attractor is also 
calculated to show the presence of chaos. The largest 
Lyapunov exponents are all positive for different time 
intervals and almost identical for each time interval with 
different evolution steps, as shown in Table 1. Only after 
obtaining the required embedding dimension and time 
delay can the forecasting commence. The training input/ 
output data is a structure whose first component is a 15- 
dimensional input:  
 
Table 1. The largest Lyapunov exponent found for different 
time intervals and evolution steps. 

Time interval 5-min 10-min 15-min 

1 3.56E−04 3.50E−04 4.55E−04 

3 3.62E−04 3.50E−04 4.55E−04 

5 3.64E−04 3.49E−04 4.60E−04 

7 3.62E−04 3.50E−04 4.56E−04 

No. of evolution 
steps 

9 3.62E−04 3.50E−04 4.61E−04 
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Figure 3. Autocorrelation function of 5-min traffic volume. 
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Figure 4. Autocorrelation function of 10-min traffic volume. 
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Figure 5. Autocorrelation function of 15-min traffic volume. 
 
       , , 2 , ,  1x i x i x i x i 4     , where  x i  is 

the observation of the time series of traffic volume 
and  is the time delay, and whose second component is 
the output: 

thi

 1x i  . As mentioned previously, the time 
delay is chosen to be 60, 30 and 20 for 5-min, 10-min, 
and 15-min traffic volumes, respectively. Numerical re- 
sults for the neural networks and adaptive neuro-fuzzy 
inference system are discussed as follows. 

4.1. Neural Networks 

By using the Bayesian regularization, the effective net- 
work parameters (weighs and biases) can be found and 
the number of effective neurons in the hidden layer is 
then calculated from Equation (9). The results for three 
time interval are listed in Table 2, which shows the 
number of neurons actually required in the hidden layer 
is indeed less than half the number of input elements. 

The performance of a trained network can be measured 
to some extent by the errors on the training, validation 
and test sets. One option is to perform a regression 
analysis between the network response and the corre- 
sponding targets. Through linear regression analysis, the 
correlation coefficients between outputs and targets for 
different time intervals and data sets are obtained and 
shown in Table 2, ranging from 0.951 to 0.985. 

4.2. Adaptive Neuro-Fuzzy Inference System 

By using the “subtractive clustering” technique, the mini-  
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Figure 7. (a) The curves of  vs  with state 

space dimension  increasing from 3 to 23 (up to bottom); 
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Table 2. The number of effective neurons in the hidden 
layer of the neural network and the correlation coefficient. 

Time interval 5-min 10-min 15-min

No. of neurons 6 6 5 

Training data 0.951 0.978 0.985 

Validation data 0.961 0.981 0.977 
Correlation 
coefficient 

Testing data 0.953 0.977 0.981 

 
mum inference rules are found for 5-min, 10-min and 15- 
min intervals, respectively. The results are shown in Ta-
ble 3. The number of rules found by clustering tech- 

nique is indeed much fewer than that without clustering. 
Through the learning process, the parameters of the 
membership functions in the antecedent and the con- 
stants in the equation of the consequent of each rule are 
decided. After simulating the fuzzy inference, the corre- 
lation coefficients between outputs and targets for dif- 
ferent time intervals and data sets are found, as shown in 
Table 3, ranging from 0.951 to 0.990. 

5. Conclusion 

The phenomena of the fractal dimension, the positive  
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Table 3. The number of inference rules of the adaptive neuro- 
fuzzy inference system and the correlation coefficient. 

Time interval 5-min 10-min 15-min

No. of inference rules 29 19 19 

Training data 0.964 0.982 0.990 

Validation data 0.951 0.973 0.969 
Correlation 
coefficient 

Testing data 0.962 0.972 0.971 

 
largest Lyapunov exponent and the autocorrelation ap- 
proaching the square of the mean of the time series con- 
firm the existence of chaos in the traffic flow system. 
Two forecasting models of the chaotic traffic flow pre- 
sented in this paper prove to be very successful with sat- 
isfactory accuracy. The Bayesian regularization applied 
to the neural network to get effective number of neurons 
in the hidden layer and the subtractive clustering tech- 
nique applied to the adaptive neuro-fuzzy inference sys- 
tem to get the minimum number of fuzzy rules are both 
quite useful and effective. The numerical results show 
that the prediction accuracies of these two modes are 
almost the same, as far as the correlation coefficient is 
concerned, but the adaptive neuro-fuzzy inference system 
requires more time to train, because more parameters 
need to be determined and that the number of effective 
neurons in the hidden layer is usually less than the num- 
ber of elements in the input vector. 
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