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Abstract 
In this paper, a very simple novel model is presented concerning the unified 
field theory (“theory of everything”). In the scope of this novel theory, it is 
assumed that matter, space and time are quantized. It is assumed that the 
space is subdivided into cubic elementary cells (space quanta), and in each of 
its eight corners a Delta potential is positioned. That means the Delta poten-
tials are equidistantly arranged, so that the Delta potentials are forming a lat-
tice similar to a crystal lattice in solid state physics. The novel theory is ana-
logue to the Kronig-Penney model well-known in solid state physics: a crystal 
lattice comprises Delta potentials arranged equidistantly to one another, so 
the lattice space can be considered as being quantized by an array of equally 
spaced Delta potentials or the lattice space is divided into cubic elementary 
cells (space quanta). But instead of electrons, material quanta are inserted in-
to the cubic elementary cells or space quanta. So the material quanta are not 
freely vibrating (unbound state), but are vibrating in a bound state with dis-
crete energy levels separated by an energy gap. This is due to the presence of 
the array of Delta potentials. In the frame of this novel theory the Schrödin-
ger Equation for the Kronig-Penney-Model is not solved by differentiation, 
but the Schrödinger Equation is integrated yielding the formula  

( ) ( )2
0– kinx na E E zVψ = = , by whose discussion the existence of an energy 

gap is revealed. This energy gap is responsible if the material quantum occurs 
as light quantum (photon) or mass quantum. 
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1. Introduction 

In the frame of the unified field theory research (“theory of everything”), there 
exist two theories competing one another: the first one is called the string theory 
and the second one is called the loop quantum gravity theory.  

According to the string theory the universe consists of freely vibrating objects 
called strings with the dimension in the order of Planck length [1]-[10]. At the 
moment mainly two kinds of strings are discussed: the first one comprises open 
strings featured by a segment with two endpoints and the second one comprises 
closed strings featured by a closed segment similar to a loop e.g. like a circle [11]. 
A further development of this theory is called Superstring theory [12]. A genera-
lization of string theory is the so-called M-theory [13] [14]. 

In 1974, K. Wilson has developed a gauge theory featured by regulisation of 
space and time [15]. 

According to the loop quantum gravity theory, the space and time is quan-
tized, while the space is structured by a very fine network of woven finite loops 
[16] [17] [18] [19] [20]. 

D. Vaid has tried to combine both well-recognized theories the string theory 
and the loop quantum gravity theory into a common theory, so both theories are 
not competing one another but are completing one another [21]. 

2. Theoretical Contemplation 

In the scope of the novel theory it is assumed that matter is quantized. In the 
following this matter quantum is also called material quantum. Besides it is as-
sumed that space is also quantized: the space is subdivided into cubic elementary 
cells confined by eight corners, and in each corner a Delta potential is located. 
That means the Delta-potentials are equidistantly arranged or the Delta poten-
tials are forming a lattice similar to a crystal lattice in solid state physics. In the 
following these cubic space elementary cells are called space quanta. Also it is 
assumed that the time is also quantized (time quantum). 

The novel theory is analogue to the Kronig-Penney model well-known in the 
solid state physics [22] [23] [24]: The equidistantly spaced positively charged 
atom cores are represented as Delta potentials, thus a crystal lattice is contem-
plated which contains Delta potentials arranged equidistantly to one another, so 
the lattice space can be considered as being quantized by an array of equally 
spaced Delta potentials or the lattice space is divided into cubic elementary cells 
(corresponding to space quanta of the novel theory). In solid state physics this 
yields the Schrödinger Equations as a system of coupled differential equations. 
The Schrödinger Equations for the Kronig-Penney-Model is solved by differen-
tiation, that means as an approach a complex exponential function is applied 
yielding a dispersion function leading to the existence of an energy gap. 

But by the novel theory instead of electrons, material quanta (e.g. in form of 
zero-dimensional punctual mass objects) are inserted into the cubic elementary 
cells or space quanta. So the material quanta are not freely vibrating (unbound 
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state), but are vibrating in a bound state with discrete energy levels separated by 
an energy gap. This is due to the presence of the array of Delta potentials. It is 
important to mention that the material quanta are not considered as strings at 
this point.  

In this case of the novel theory, instead of solving the Schrödinger Equation 
by differentiation the Schrödinger Equation is solved by integration, that means 
the Schrödinger Eqauation is integrated and yields the formula  

( ) ( )2
0kinx na E E zVψ = = − , by whose discussion the existence of an energy 

gap is revealed. This energy gap is responsible if the material quantum occurs as 
light quantum (well-known als photon) or mass quantum (until now not expe-
rimentally confirmed). 

It is assumed that space is subdivided into cubic space quanta which are con-
fined by Delta potentials in its corner points. This is equivalent with a space 
model traversed by an array of equally spaced (equidistant) Delta-potentials 

( )0V x naδ =  which is comparable to a common simple cubic crystal lattice with 
a lattice constant “a” described by the Kronig-Penney model in solid state phys-
ics. Between the Delta potentials material quanta occur which can be resting or 
moving with or without acceleration. The material quanta are not free or un-
bound but bound by the array or lattice of Delta potentials. The material quanta 
are described by the probability distribution ( ) 2

xψ : the material quanta are 
located either between two adjacent Delta potentials or at the site of the Delta 
potentials. For the purpose of simplicity it is supposed that exactly one material 
quantum is located between two Delta potentials, so in every cubic space quan-
tum exactly one material quantum exists. 

Thus the corresponding Schrödinger equation is as followed: 

( )
2

0       
2 n

V x na E
m

ψ δ ψ ψ
∞

=−∞

− ∆ + + =∑
�  

But instead of solving the Schrödinger equation by an complex exponential 
function leading to the dispersion relation, now the Schrödinger equation is in-
tegrated from −∞ to +∞ after having been multiplied with the complex conju-
gated *ψ : 

( )
2

* * *
0d d d

2 n
x V x na x E x

m
ψ ψ δ ψ ψ ψ ψ

∞

=−∞

− ∆ + + =∑∫ ∫ ∫
�  

In consideration of ( ) ( ) 2* a aψ ψ ψ= , the normalization * d 1xψ ψ
∞

−∞
=∫ , the 

definition of the Dirac Delta distribution ( ) ( ) ( )df a x a f x xδ
∞

−∞
= −∫  and the 

assumption that ( )xψ ψ=  is overall a steady and differentiable function, a 
short calculation yields the formula: 

( ) 2
0kinE V x na Eψ+ Σ = =  or ( ) ( )2

0kinx na E E VψΣ = = −  

Now it is assumed that between every two adjacent Delta potentials exactly 
one material quantum is located. So due to ( ) 2

na zψΣ =  (summarization above 
all Delta potentials): 

( ) ( )2
0kinx na E E zVψ = = −  
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This formula can be interpreted as follows: the probability density  
( ) 2
x naψ =  of a material quantum at the Delta-potential ( )x naδ =  is max-

imum, if the kinetic energy is zero, while the material quantum probability den-
sity ( ) 2

x naψ =  at the Delta-potential ( )x naδ =  is minimum, if the total 
energy E is equal to the kinetic energy Ekin.  

Now the material quantum probability density ( ) 2
naψ  is drawn against the 

kinetic energy Ekin, thus due to  
( ) ( )2

0 0 0, kin kin kinna E E E zV E zV E zVψ = − = −  this yields a linear graph with 
a negative slope 01m zV= −  and with a y-intercept 0b E zV=  as shown in 
Figure 1.  

Thus we discuss the graph as follows: the zero point of the graph (point of in-
tersection between the graph and x-coordinate (axis of abscissae)) is denoted as 
E0, then the physically reasonable solutions are located in the area between 

00 kinE E E≤ ≤ =  between the minimal kinetic energy Ekin = 0 (the kinetic ener-
gy Ekin is zero) and the maximal kinetic energy Ekin = E = E0 (kinetic energy Ekin is 
equal to the total energy E). Beyond Ekin = E0, that means in the area of Ekin > E0, 
the solutions are not reasonable, because firstly the kinetic energy Ekin must not 
be higher as the total energy E and secondly ( ) 2

naψ  must not become nega-
tive. On the other hand, the area Ekin < 0 is also physically forbidden, because the 
kinetic energy Ekin must not become negative either. At Ekin = 0, the probability 
distribution ( ) 2

naψ  at the Delta potential ( )x naδ =  becomes maximal, 
while at Ekin = E (total energy E is equal to the kinetic energy Ekin), the probabili-
ty distribution ( ) 2

naψ  at the Delta potential ( )x naδ =  becomes minimal or 
to be more precise, it becomes zero. 

Now we can distinguish between several cases:  
 

 

Figure 1. The material quantum probability density ( ) 2
, kinx na Eψ =  is drawn against the 

kinetic energy Ekin yielding a linear graph with the slope of −1/zV0 and an y-intercept of 
E/zV0. 
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In the first case we assume E = Ekin, that means the total energy E is equal to 
the kinetic energy Ekin. As mentioned above, the probability distribution  

( ) 2
x naψ =  is zero at the Delta potential x = na, that means no material quan-

tum is located at the Delta potential. Consequently, the material quantum is lo-
cated not at the Delta potentials, but it is located between them due to the nor-
malisation condition * d 1xψ ψ =∫  as shown in Figure 2(a). Consequently, the 
probability density ( ) 2

0 x naψ < <  betweent two adjacent Delta potentials is 
maximum, so the first case describes the state of lowest energy. 

In the second case the kinetic energy Ekin is gradually reduced thus yielding 
0kinE E< < , the probability density ( ) 2

x naψ =  at the Delta potential x = na 
is increasing steadily and linearily as shown in Figure 2(b). So the probability 
density ( ) 2

x naψ =  at the sites of Delta potentials x = 0, x = a and x = na is 
small, but not negligible any more, while the probability density  

( ) 2
0 x naψ < <  betweent two adjacent Delta potential becomes smaller. 

In the third case, the kinetic energy Ekin is further reduced, thus the probability 
density ( ) 2

x naψ =  at the Delta potential x = na is further rising, so  
( ) 2
x naψ =  at the sites of Delta potential becomes significant, while the prob-

ability density ( ) 2
0 x naψ < <  between two adjacent Delta potentials is further 

reduced (Figure 2(c)).  
In the fourth case, the kinetic energy Ekin is still decreasing and the probability 

density ( ) 2
x naψ =  is still rising, until the probability density function x:  

( ) 2
x xψ→  becomes constant (Figure 2(d)). This case marks a turning point, 
because now the probability density ( ) 2

x naψ =  at the sites of Delta potential 
becomes larger than the probability density ( ) 2

0 x naψ < <  betweent two ad-
jacent Delta potentials (fifth case, see Figure 2(e)). 

In the sixth case Ekin is equal to zero and so Ekin attains its minimum value, 
consequently ( ) 2

x naψ =  reaches its maximum value E/zV0, while the proba-
bility density ( ) 2

0 x naψ < <  betweent two adjacent Delta potentials becomes 
minimum or even zero (sixth case, see Figure 2(f)). That means that the proba-
bility density ( ) 2

x naψ =  at the sites of Delta potential is equal to E/zV0. In 
this situation, the material quantum is located at the Delta potentials (the sixth 
case describes the state of highest energy). 

Although, in the third, fourth and fifth case (Figures 2(c)-(e)) a normalisa-
tion problem occurs: because the third, fourth and fifth case does not match with 
the normalisation condition * d 1xψ ψ =∫ . This can be very well observed in the 
fourth case (see Figure 2(d) and Figure 2(g)): the probability density function x: 

( ) 2
x xψ→  is constant and thereby delocalisated throughout the entire Delta 
potential array; that means it reaches theoretically from plus infinity to minus 
infinity. In order to comply with the normalisation condition, the probability 
density ( ) 2

xψ  must become almost zero as it is shown in Figure 2(g). Al-
though this is mathematically not forbidden, this does not make any physical 
sense. Consequently, while the first case (Figure 2(a)) is physically allowed and 
senseful (low energy) and while the sixth case (Figure 2(f)) is also physically  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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(f) 

 
(g) 

Figure 2. (a) The material quantum probability density distribution ( ) 2
, kinx Eψ  inside 

of an array of Delta potentials is shown; in the case of Ekin = E: the material quantum 

probability density distribution ( ) 2
, kinx na Eψ =  is zero at the site of any Delta potential 

( )x naδ = , while the material quantum probability density distribution  

( ) 2
0 , kinx na Eψ < <  is maximal in the space between two adjacent Delta potentials 

( )x naδ = . (b) In the case of Ekin decreasing and thus a little bit smaller than E:  

( ) 2
, kinx na Eψ =  is small, but not zero at the sites of Delta potential, while  

( ) 2
0 , kinx na Eψ < <  is slightly decreasing between two adjacent Delta potentials. (c) In 

the case of Ekin further decreasing: ( ) 2
, kinx na Eψ =  is further increasing at the sites of 

Delta potential, while ( ) 2
0 , kinx na Eψ < <  is further decreasing between two adjacent 

Delta potentials. (d) In the case of Ekin continues to decrease: ( ) 2
, kinx na Eψ =  is in-

creasing at the sites of Delta potential, while ( ) 2
0 , kinx na Eψ < <  continues to decrease 

between two adjacent Delta potentials, until ( ) 2
0 , kinx na Eψ < <  is equal to  

( ) 2
, kinx na Eψ =  and the material quantum probability density function x: ( ) 2

x xψ→  

becomes constant. (e) In the case of Ekin still continues decreasing: ( ) 2
, kinx na Eψ =  con-

tinues increasing at the sites of Delta potential, while ( ) 2
0 , kinx na Eψ < <  continues 

decreasing between two adjacent Delta potentials, thus ( ) 2
, kinx na Eψ =  becomes larger 

than ( ) 2
0 , kinx na Eψ < < . (f) in the case of Ekin = 0: ( ) 2

, kinx na Eψ =  is equal to E/zV0 

and thus maximal, while ( ) 2
0 , kinx na Eψ < <  is equal to zero and thus minimal. 

 

allowed and senseful (high energy), the fourth case is forbidden physically (me-
dium energy), which is equivalent to the existence of an energy gap in a solid 
state lattice. But in case of quantized space and material quantum this energy 
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gap makes the difference between light and mass: In the first case (if E = Ekin and 
thus ( ) 2

x aψ =  is zero that means the material quantum is located between 
two adjacent Delta potentials (Figure 2(a))) then the material quantum is 
representing a “mass quantum”, while in the last case (if Ekin = 0 and thus 

( ) 2
x aψ =  is maximal that means the material quantum is located at the site of 

a Delta potential (Figure 2(f))) then the material quantum is representing a 
“light quantum” or photon.  

One can compare the situation with the harmonic oscillator treated classically 
and by quantum mechanics (Figure 3) [25]. As shown in Figure 3, at the lowest 
energy level (so-called zero-point energy level), the probability distribution den-
sity ( ) 2

xψ  is maximal at the center and almost zero at the side lines. This 
corresponds to the situation in Figure 2(a), where the probability distribution 
density ( ) 2

xψ  is also maximum at the center (x = a/2) and minimum at the 
side lines (x = 0, a). Classically treated, the harmonic oscillator is resting and so 
pending at the center where it spends all its time, while it spends no time at the 
side lines. At higher energy the probability distribution density ( ) 2

xψ  of the 
harmonic oscillator becomes lower or almost zero at the center and is increas-
ing at the side lines (Figure 3). This corresponds to the situation in Figure 2(f), 
where the probability distribution density ( ) 2

xψ  is minimum at the center 
(x = a/2) and maximum at the side lines (x = 0, a). Classically treated, the 
harmonic oscillator spends most of its time at the side lines (turing point with 
v = 0), while it spends the least of its time at the center (transition with max-
imal velocity).  

 

 
Figure 3. Harmonic oscillator treated quantum mechanically: at the lowest 
energy level (so-called zero-point energy level) the probability distribution 

density ( ) 2
xψ  is maximal at the center and almost zero at the side line, 

while at higher energy the probability distribution density ( ) 2
xψ  becomes 

lower or almost zero at the center and is increasing at the side line. 
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Consequently the situation of the material quantum between two adjacent 
Delta potentials (Figures 2(a)-(f)) can be interpreted as a vibration formally 
similar to a harmonic oscillator, but with a decisive difference: at the highest ki-
netic energy Ekin the probability distribution density ( ) 2

xψ  of the material 
quantum is maximum at the center of the cubic space quantum and minimum at 
the Delta potentials located at the side lines of the cubic space quantum (Figure 
2(a) and Figure 1: point of intersection between graph and axis of abscissae), 
while at the lowest kinetic energy Ekin the probability distribution density 

( ) 2
xψ  of the material quantum is minimum at the center of the cubic space 

quantum and maximum at the Delta potentials at the side lines of the cubic 
space quantum (Figure 2(f) and Figure 1: point of intersection between graph 
and axis of ordinates). In case of a harmonic oscillator it is quite vice versa: at 
low kinetic energy the probability distribution density ( ) 2

xψ  is maximum at 
the center and minimum at the side lines as above discussed, while at high (ki-
netic) energy the probability distribution density ( ) 2

xψ  is minimum at the 
center and maximum at the side lines (or to be more precisely: in the momenta-
ry state of maximum kinetic energy, ( ) 2

xψ  is minimum at center and in the 
momentary state of maximum potential energy, ( ) 2

xψ  is maximum at the 
side lines).  

Eventually one can interpreted this as something similar to an inverse (har-
monic) oscillator. 

Optionally one can cited that Schrödinger Equation yields that the material 
quantum starts vibrating only after the insertion into a cubic space quantum 
confined by Delta potentials as described above. Before insertion into the cubic 
space quantum, no vibration occurs. So one could eventually assert that the ma-
terial quantum becomes a string only by insertion into a cubic space quantum 
due to the presence of the equally spaced Delta potentials which makes the ma-
terial quantum vibrating. Without any Delta potentials in its surrounding, the 
material quantum is nothing else as a non-significant zero-dimensional punctual 
material quantum without any physically relevant features or characteristics and 
totally lost in space, time and universe. 

This could be vaguely and faintly similar to an oscillator featured by a Higgs 
potential as well as to the Higgs postulation citing that a particle mass arises only 
by interaction between a particle and the Higgs field.  

3. Conclusions 

In the attempt to find an unified field theory, it is an usual way to contrive a 
novel field whose covariant derivation yields a field strength tensor and thus a 
Lagrange density. But until now this approach has not succeeded.  

This can be explained by an array of Delta potentials as the novel field as fol-
lows: A field or an array of Delta potentials cannot be covariently derived due to 
irregularities at the site of Delta potentials. But the Delta potentials are the rele-
vant feature or characteristics of such a novel field, because elsewhere the poten-
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tial is zero. This could eventually explain why until now no Lagrange function 
has been found by covariant derivation.  

Another advantageous aspect of the theory of arrayed Delta potentials as the 
novel field is the formation of gravitation waves only in case of mass acceleration. 
It is well-recognized that resting or constantly moving mass objects without any 
acceleration does not produce any gravitation waves, while in case of accelera-
tion gravitation waves are generated. This can be simply explained by the model 
of arrayed Delta potentials: In case of resting the mass quantum stay in their cu-
bic space quantum and nothing happens. In the state of unaccelerated moving 
the mass quanta are migrating with a constant velocity v across the cubic space 
quantum, whereby at the site of the Delta potentials the mass quanta are scat-
tered. The frequency f of the scattered wave is assumed to be linearily propor-
tional to the mass quantum velocity v: f ∝ v. In a very simple case of two subse-
quently arranged Delta potentials, the migrating mass quanta (moving with con-
stant velocity without any acceleration) are scatterd at the site of the first Delta 
potential generating a first scattering wave with the first frequency f, and at the 
site of the second Delta potential the migrating mass quanta (still moving with 
the same velocity) are also scattered generating the second scattering wave with 
the same frequency f. So it is imaginable that by the right choice of phase differ-
ence between both scattering waves, the two scattering waves totally destructive-
ly interfere with one another, thus nothing is left due to the completely destruc-
tive interference.  

Now we consider the following case: the migrating mass quantum is accele-
rated thus at the site of the first Delta potential the mass quantum has a velocity 
of v1, and the mass quantum is scattered by the first Delta potential generating a 
first scattering wave with the first frequency f1 ∝ v1. In the meantime the mass 
quantum is accelerated. Thus at the site of the second Delta potential the mass 
quantum has the velocity v2. There the mass quantum is scattered again gene-
rating a second scattering wave with the frequency f2 ∝ v2. Now f2 > f1 due to v2 > 
v1 and f ∝ v. By this reason a complete destructive interference between both 
scattering waves is not possible any more because f2 is not equal to f1, but f2 is 
slightly larger than f1. Instead the superposition of the two scattering waves 
yields a beat with a modulation frequency 2 1bf f f= − . Exactly this beat is 
perceived as a gravitation wave with the frequency 2 1bf f f= − .  

If the acceleration vanished, that means the acceleration becomes zero, the 
frequency of the beat 2 1bf f f= −  also becomes zero and the gravitation wave 
disappears. This could explain why gravitation waves only occurs in case of ac-
celeration and not in case of non-acceleration.  

This simple model is valid only for one dimension. Eventually by time and 
space quantisation one can generalize this model to three dimensions. 
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