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Abstract 
We will be looking at the energy of a graviton, based upon the Stress energy tensor, and from there 
ascertaining how fluctuations in early universe conditions impact the mass of a graviton. Physi-
cally the mass of the graviton would be shrinking right after Planck time and presumably it would 
be going to its equilibrium value of about 10−62 grams, for its present day value. It, graviton mass, 
would increase up to the Plank time of about 10−44 seconds. Note that the result that graviton mass 
shrinks to 10−62 grams for its present day value works only for relic gravitons. 
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1. Introduction, Setting up for Calculation of Using the Results of Initial Energy as  

Due to 
( )tt
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g a t2δ

δ φ
∆ = ≡
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   and Comparing It to a More General Energy  

Expression Given Below 
Start off with looking at from [1], a generalized energy expression with momentum also obeying, if m is for 
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graviton mass. Begin with from [1].  
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Next, from Giovannini [2], if T is the trace of the Stress-Energy tensor, we have that 
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If so, then, the fluctuation of energy would be represented, if 
( )graviton
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2π velocityv
λ

ω
=  and we have [3] 
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Then if we go to look at what [1] 
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Note that the presence of the mass reduces the speed of gravitons with respect to the speed of light. As has 
stressed repeatedly by Dr. Corda and his collaborators. Corda and collaborators have stated that this massive 
graviton mass leads to a situation for which the graviton generates a longitudinal component of strain in the 
arms of a interferometric detector. This point is made abundantly clear in clarified in the papers of Prof. Corda 
and collaborators, i.e. see references [4]-[9]. This will be of crucial importance in the concluding remarks of this 
document. Next. Let us consider what happens if there is a fluctuation in Graviton mass.  
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2. Utilizing Equation (6) in Terms of the Initial Fluctuation of the Graviton Mass  
From [1] [10]-[12], use 
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3. Identifying Change in gravitonω∆ : This Is the Input into Equation (7), Assuming  

( ) ( )v cgravitonvelocity ~ 0.98% light - speed  

We follow what to expect from ( )3~ ~tt
ET

V
ρ

∆
∆ ∆  as given in [1] [2] for 
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as a way to quantify energy density when we have what is coming from Weinberg [12] on initial energy density 
and then from there to say something about initial time step and also potential energy as given Padmanbhan [1]. 
Doing so will isolate out values of the Potential energy, as in [12] which will then be compared to [1]’s potential 
energy value, which in turn gets a value of time, which we will set by first considering the following evolution 
equation. From [12],  

( )3 0H Vφφ φ φ+ + ∂ =                                    (9) 

Then, look at ( )V φ  from [12] as having the value of, if M is related to mass, with α  a variable parameter, 
which can be negative, with then a smallest value of 4α = − , and a frequent value of 2α = −  as in the case of 
chaotic inflation. Here in general  

( ) 4V M α αφ φ+=                                   (10) 

The parameter 2α = −  in the chase of chaotic inflation, i.e. one of the simplest models, whereas it can be 
positive up to 2α =  in other models. The results are though that with 4 2α− ≤ ≤  

So, then the φ  is given by [12]  
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And also look at Padmanabhan’s generalized inflation potential [12], of comparing Equation (2) with Equation 
(12) below  
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We have the Hubble parameter, if before Planck time, during Plank time H Hδ= ±  

initiale ,
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if Planckian time zone
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Then, we could get the following variance in time, ~t t∆  
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4. Finding How to Use this Value of t t ~ ∆  in Order to Estimate a Relic GW  
Frequency 

If so, then, up to a point, in the Pre Plankian regime of space time, according to the signs on Equation (13) and  

Equation (14) and [10] [11] for the change in 
( )2
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   Set then, in early universe conditions,  

let us set, if we are considering gravitons, that we will set, say that the expression below would be for pre 
Planckian times, with t < 10−44 seconds. The upshot would be that there would be a GW frequency, in many 
cases, as a result of pre Planckian physics of greater than or equal 1032 Hz, which would be red shifted down to 
about 1010 Hz, i.e. a 22 order of magnitude drop, in the present era. This is assuming ( )2 110initial ~10a − , as 
well as we are assuming N ~ 1037, as seen in [10] [11]  
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The M as given in this would correspond to the Mass value of the universe, which is roughly 3 × 1055 g 
(where g is for grams) [13].  

5. Conclusion: Putting Equation (15) into Equation (7). What It Says, Physically 
Note that time in Equation (14) remains finite but very small, as it came out less than 10 to the minus 44 power 
seconds, less than Planck time, with the parameter α  usually less than 2. Time, in Equation (14) as estimate is 
actually negative, unless we have that we chose in Equation (14) the Pre Planckian option, which is saying that 
likely Planck time may not be the earliest sub division of time as we know it. This last point above will be im-
portant in our future research. As well as entropy production models due to discussions in [14]-[18] in terms of 
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entropy generation in the Pre Planckian era. The entropy values will influence the N used in Equation (15) above. 
After this is set, for Equation (15) we put Equation (15) into Equation (7) and thereby obtain 
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The first term of Equation (16) roughly cancels with the number of gravitons, which approximately leaves 
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The change in graviton mass is not so much affected by N, entropy count, as this is partly neutralized by the 
near speed of light conditions, for massive gravitons. What is left though is the variation in total mass, M is di-
vided by ( )initial expH tδ± ⋅ , which expands during the Pre Planckian space-time regime, and which shrinks 
right after Planckian time is breached, in the Planckian era (the Universe begins a massive deceleration. The 
term α  would usually be expected to be less than 2. With 4 2α− ≤ ≤ , and 2α = −  chosen in the case of the 
very simple chaotic inflationary model.  

Physically what this is saying is that the mass of the graviton would be shrinking right after Planck time and 
presumably it would be going to its equilibrium value of about 10−62 grams [19], for its present day value. It, 
graviton mass, would increase up to the Plank time of about 10−44 seconds, i.e. the graviton will shrink to 10−62 
grams in the onset of inflation right after 10−44 seconds, for a stable value of rest graviton mass up to the present 
day. We also, again state the critical importance of [4]-[9] as far as the physics, of the following statement that a 
massive graviton generates a longitudinal component of strain in the arms of an interferometric detector and that 
the simplest model to investigate as far as relic conditions would be the chaotic inflationary model chosen if 

2α = − . 
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