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Abstract 
In the present paper, the theoretical frame work of magneto hydrodynamics (MHD) is used to give 
a solution of the problem about the origin, persistence and disappearance of the Sunspots; as well 
as their tendency to appear as bipolar magnetic couples. According to the results obtained, a 
possible explanation about the change of polarity in both solar hemispheres is given. Heuristic but 
logical arguments about the periodicity of the phenomenon of the observed magnetic polarity and 
the tendency of couples of Sunspots to appear solely in certain latitudes that can be called tropical 
regions of the Sun are presented. Finally, an indirect experimental test is proposed to show the 
possible process that produces the polarity of the Sunspots in a given cycle, as well as the inver-
tion of that polarity in the next solar cycle. 
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1. Introduction 
The sun is a huge concentration of fluid at very high temperature, whose parts are kept together and in dynamic 
equilibrium with fluid’s gas pressure force by gravitational attraction. They are also under the influence of a 
self-generated magnetic field. Careful observation of the solar surface shows a granular texture given by short- 
lived objects known as granules, somewhat brighter than their neighbors. Also easily observed are the so called 
Sunspots which are colder and darker regions than the solar photosphere; discovered first by Chinese astrono-
mers, then by Galileo and observed by himself and his contemporaries. These objects have a somewhat nebulous 
origin along with very peculiar properties and general behaviour, which leads to assume that under the surface 
of sun’s photosphere, certain local processes take place destabilizing it and creating the phenomenon. 

The present work focuses on the study of the thermal energy conditions which create a thermal instability in 
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some regions of the photosphere, and their relationship with the appearance, properties and life time of the 
Sunspots. A large amount of observational data has been accumulated of the subject [1]; in particular, it is well 
known that the presence of Sunspots on the solar disk is related to a substantial increase in sun’s activity. The 
most important expression of that activity is the emission of large quantities of charged particles which con-
forms the so called solar wind. The strong interaction of the solar wind with earth’s magnetic field and the io-
nosphere produces on one side the gigantic and most beautiful Aurora Borialis; and on the other side, serious 
perturbations of the telecommunications systems. 

The vast majority of the Sunspots are observed in certain regions of the sun. They appear predominantly in 
two stripes of equal latitude to the North and South of the Solar Equator in which can be called the tropical re-
gions. They have the tendency to appear in big groups or in couples; in each of which its two members always 
have opposite magnetic polarity. 

A typical Sunspot has the following observed structure and dimensions. It possesses a dark nucleus called 
Umbra of about 18,000 km in diameter, and a somewhat lighter halo called Penumbra, 20,000 km wide. The 
lower luminosity of the spot as compared to the photosphere is due to a decrease in its temperature. 

A remarkable fact that should be noted is that the polarity of the Sunspot couples in the northern hemisphere 
is always opposite to the polarity of the Sunspot couples in the southern hemisphere. This disparity changes pe-
riodically with a period of about 11 years. 

This problem is similar to that of the mechanical instability which occurs in some regions of the terrestrial 
atmosphere [2] [3]. It is known that the mechanical equilibrium is broken in this case when the following condi-
tions are fulfilled in the air, considered as a viscous and compressible fluid which moves in a gravitational field. 
The temperature distribution is only a function of the height above ground level and the temperature gradient in 
the vertical direction is directed downward and its magnitude is greater than a certain value [2]. 

The non existence of mechanical equilibrium leads to the appearance a certain movement in the fluid; internal 
currents appear mixing the fluid until its temperature is uniform and reach a constant value in all its volume. 
This type of movement of a fluid in a gravitational field receives the name of Free or Thermal Convection [3]. It 
is known that in the case of the Sunspots, the fluid is under the influence of an intense magnetic field [4]. This 
fact makes difficult the mathematical treatment of the problem because it deals with a complicated interaction 
between the flow of compressible and conducting viscous fluid, and the electromagnetic phenomena deriving 
from the influence of the external magnetic field. It is well known, that this interaction should be treated with the 
help of the balance equations of fluid dynamics and Maxwell equations of classical electrodynamics [5] [6]; that 
is, with the assistance of the magnetohydrodynamic equations [5] [7]. 

A thermal instability which triggers convection currents can be produced in any real fluid with the above 
mentioned characteristics, as long as the fluid is exposed to non uniform heating from below [4]. Nevertheless, 
this tendency to instability can be substantially depressed when dealing with a real conducting fluid under the 
influence of an intense magnetic field, which gives the fluid some kinds of magnetic viscosity and a certain de-
gree of stiffness [4]. This is an important fact because if the magnetic forces generated in a sunspot can substan-
tially reduce convective movements, such reduction must take place at the expense of the thermal energy in 
those regions, resulting in a cold and dark spot due to the energy decrease [4]. In any case, the persistence of the 
magnetic field in the Sunspots proves the existence there of a magnetic mechanism for the regulation of thermal 
convection; this process has the mission to delay as much as possible the onset of the starting mechanism for 
convective movements [2] [3]. 

2. Dynamic Equilibrium between Regulatory and Startup Mechanisms  
of Convection 

For magnetomechanical equilibrium to be reached in any region of the solar photosphere, it is necessary that 
(see Appendix) 

2

,
8π
Hp ρ

 
− = 

 
grad g                                     (1) 

where ( ), ,p Tρ H  is the hydrostatic pressure and H2/8π the hydrostatic magnetic pressure [5] [7]; ( ), tH x  

represents the magnetic field in that region, ( ), tρ x  the mass density of the solar fluid and g  the acceleration 
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of gravity at the surface of the sun. 
If the Z-axis of the reference inertial frame used points vertically upwards, Equation (1) can be written as 

2d ;
d 8π
p g Hgrad
z V

 
= − +  

 
z                                   (2) 

where V = 1/ρ is the specific volume. 
It is known that if temperature is not a constant throughout a fluid, the resulting mechanical equilibrium could 

be stable or unstable depending of certain conditions [2]. In the case of the Sunspots, it is necessary to determine 
the conditions under which the instability could exist in those regions and to find out its consequences. 

The theoretical treatment for the adiabatic displacement of a mass of solar fluid in the photosphere is identical 
to the one given for an air mass adiabatically displaced in the terrestrial atmosphere [2] [3]. The general condi-
tion of stability which is obtained in both cases is the same; that is, the specific entropy of the system increases 
with altitude, thus [2] [3] 

d 0.
d

s
z
>                                          (3) 

It can be shown that for both situations, the previous conditions can be written as follows [2] [3] 
d d d 0,
d d d

P

p

cs T V p
z T z T z

∂ = − > ∂ 
                               (4) 

where cP is the specific heat of the fluid at a constant pressure and T its temperature. Then, according to Equa-
tion (2), from (4) we have that 

2 8π 8πP z
z

p

c grad T ggrad H
V VT
T

> +
∂ 

 ∂ 

                             (5) 

In this case, the condition to be satisfied so that a thermal instability can be produced in some regions of the 
solar photosphere and strongly regulated by the magnetic field that generates the Sunspots can be given as fol-
lows: 

2 8π 8π .P z
z

p

c grad T ggrad H
V VT
T

> +
∂ 

 ∂ 

                           (6) 

In other words, the onset of convective movements in those regions can be substantially delayed if the mag-
nitude of the Z-component of the gradient of the square of the existing magnetic field is larger than a certain 
value. The above condition must be fulfilled so that the thermal convection in the spots is magnetically regulated. 
It simply means that the persistence of the magnetic field in those regions, assures the permanency in time of the 
Sunspots in the solar disk. In fact as the magnetic field fades away, the mechanism of magnetic regulation wea-
kens, allowing the thermal processes to take over the situation; as a result, the mechanism for the onset of con-
vection begins generating and becomes more dominant so that, when 0=H , convective movements are pro-
duced which mix the fluid of the spots with the surrounding fluid until the temperature becomes uniform. At that 
point the sunspots disappear and the solar activity comes to an end in those regions. Therefore, free convection 
is produced when the magnitude of the temperature gradient in the Z-direction is greater than a certain value [2] 
[3]; this is, when  

d
d pP

T gT V
z Vc T

∂   >   ∂   
                                  (7) 

as is easily seen from (6) when 0=H . 
From Thermodynamics we have that [2] [3] 

p
p p

V Vc T
s T

∂ ∂   =   ∂ ∂   
                                (8) 
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Substituting this relation in (5), thereafter integrating the resultant expression and in the result obtained Equa-
tion (8) is used again, it is easy to see that 

2 8π 8πP

p

c gzH
V V
T

> +
∂ 

 ∂ 

                                 (9) 

where z is some characteristic height in the photosphere where the Sunspots are produced. Now, consider that 
+H  y −H , are two magnetic fields with opposite polarity; such that 

2H+ −⋅ =H H .                                   (10) 

Furthermore, 
1 2

8π 8πP

p

c gzQ
V V
T

+

 
 
 = +
 ∂ 
  ∂  

                              (11) 

and 
1 2

8π 8πP

p

c gzQ
V V
T

−

 
 
 = − +
 ∂ 
  ∂  

                             (12) 

so that with (10) and the product of these two numbers the relation (9) is recovered. Thus, the persistence of 
each couple of sunspots on Sun’s surface as assured when the magnitude of the magnetic field which generates 
and maintains them is greater than a certain amount, that is 

1 2

2π 2π2 P

p

c gz
V V
T

+

 
 
 > +
 ∂ 
  ∂  

H                             (13) 

and 
1 2

2π 2π2 P

p

c gz
V V
T

−

 
 
 > +
 ∂ 
  ∂  

H                             (14) 

Clearly, both magnetic fields have the same magnitude. It can further be reasonably assumed that beyond 
sharing the previous quality, they also have the same direction. Thus, if for example +H  is a magnetic field 
with the (N-S) polarity; −H  will be a magnetic field with opposite polarity; that is (S-N). Then, both magnetic 
fields have the same magnitude and direction but opposite polarities. This means that, couples of regions darker 
and colder rather than their surroundings, with opposite magnetic polarities and closely related between them-
selves must appear in the solar photosphere; one, where the lines of force of the magnetic field points outwards 
from Sun’s surface; and another, where they point inwards. In other words, the Sunspots must appear at the 
same heliographic latitude and in the form of magnetic bipolar couples; in full agreement with the results of as-
tronomical observations [4]. 

3. The Velocity of the Fluid in the Sunspots 
Consider a huge mass of viscous compressible and conducting fluid, which moves in the presence of a magnetic 
field and is under the influence of a gravitational field. Let ( ), oT t T T ′= +x  be the corresponding field of 
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temperatures in the photosphere, To the temperature of the Sunspots and T' the temperature at which the dynamic 
equilibrium between the mechanisms of magnetic regulation and the onset of thermal convection is broken, so 
that oT T′

 . Let ( ), otρ ρ ρ′= +x  be the mass density of the solar fluid in the photosphere, with oρ ρ′  
the mass density of the fluid in the Sunspots and ρ' the change in density while the mechanism for the onset of 
convection develops. Since both T' and ρ' are small quantities, speaking in relative terms, it can be said that [2] 
[3] 

o
p

T T
T
ρρ ρ α∂ ′ ′ ′= = − ∂ 

                               (15) 

where the proposed decomposition for density was used. Furthermore, by definition, 
1

pT
ρα

ρ
∂ ≡ −  ∂ 

                                    (16) 

is the thermal expansion coefficient of the conductor fluid. With respect to hydrostatic pressure we have that 
( ), op t p p′= +x , with op p′ . However, po is not a constant, since it represents the pressure corresponding 

to the dynamic equilibrium in the inner regions of the Sunspots whose temperatures and densities are constant 
and equal to To and ρo, respectively. Since the fluid is under to the gravitational attraction of the Sun, it will be 
assumed that po varies with height according to the hydrostatic equation [2] [3] 

constanto op ρ= ⋅ +g x                                (17) 

Consider now the equation of movement of MHD, or generalized Cauchy equation [5] [7] 
d 0
d

odiv
t

ρ σ ρ− − =
v f                                (18) 

where f  is the body force per unit mass, which in this case is equal to g , the acceleration of gravity at the 
surface of the sun [2]. Besides, 

21 1
4π 2

o
ij ij ij i j ijp H H Hσ δ σ δ ′= − + + −  

                        (19) 

Are the components of the generalized stress tensor [7], δij the components of Kronecker’s delta and the third 
term of the right hand side of Equation (19) one has the components of Maxwell’s magnetic stress tensor [5] [7]. 
On the other hand, 

2
3

i j

ij ij ijj i

v v v v
x x x x

σ η δ ζδ
 ∂ ∂ ∂ ∂′ = + − + ∂ ∂ ∂ ∂ 

 

 

                       (20) 

are the components of the viscosity stress tensor [6]. In this expression η and ζ are the coefficients of viscosity 
which in general are functions of pressure and temperature, but will be considered constants for the mechanisms 
of magnetic regulation and the onset of thermal convection. Now, substituting (19) into (18) one gets 

d 1 1
d 4π v

o o

p
t ρ ρ
= − − × + +

v grad H rot H g f                      (21) 

where 

1
v

o

divσ
ρ

′=f                                  (22) 

is the specific viscous force and the following vectorial identity has been used 

( ) 21
2

H⋅ − = − ×H grad H grad H rot H                      (23) 

On the other hand, 

2

1 o o

o o o

p ppp ρ
ρ ρ ρ ρ

′
′= + −

grad gradgradgrad                     (24) 
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where calculation up to the first order term for the small quantities was performed. Now, from (17) is clear that 

1
o

o

p
ρ

=grad g                                      (25) 

and from (15) 

2 o
o

p Tρ α
ρ
′

′= −grad g                                   (26) 

On the other hand, consider that ( ), ot = +H x H h , oH h  being a uniform magnetic field, ( ), tH x  the 
external magnetic field and h  an small perturbation [4]. Then, from (21) the following is obtained 

d 1 1
d 4π o v

o o

p T
t

α
ρ ρ

′ ′= − − − × +
v grad g H roth f                         (27) 

Because is clear from the previous paragraph that 0o =rot H . Now, an equation is required which relates 
pressure with density, temperature and magnetic field. Such a relation is the MHD thermal equation of state, which 
in its most general form is given by the following expression [7] 

2
2

8πo
Hp c T

k
βρ= + +                                   (28) 

where, 2
oc  is the square of the velocity of sound in the medium, β is the volumetric expansion coefficient and k 

the isometric compressibility of the fluid under consideration [7]. On the other hand, from the scalar equation for 
mass density [8] 

( ), ot J
J
ρ

ρ = ⋅x u grad                                 (29) 

where ( )u x  is the displacement vector and J the Jacobian of the transformation [8] [9], the following is ob-
tained 

1o J
J

ρ ρ  ′ = ⋅ −  

u grad                                (30) 

so that, according to (15) 
1 1 J
T J

α  = − ⋅ ′  

u grad                                 (31) 

With (15) into (28) and with the approximations already made, it is easy to see that 
22

2

8π 8π 4π
o o

o o o o o
Hhp T p c T

k
βρ γ ρ

⋅′ ′= − + − + + + +
H h  

where 

2
o

o

c
k
βγ α
ρ

≡ −                                    (32) 

is a constant. On the other hand, for the equilibrium situation between the regulatory and startup mechanisms we 
have that  

2
2

8π
o

o o o o
H

p c T
k
βρ= + +                                (33) 

only, because according the approximations already made, 2
oH ⋅H h . Furthermore, 

2

8πo
hp Tρ γ′ ′= − +                                    (34) 

is the explicit form of the required thermal equation of state. From this result, the following expression can be 
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obtained 

1 o
M

o

p T pγ
ρ

′ ′− = −grad grad grad                           (35) 

Then, from relation (26) the following result is obtained 

d
d 4π

o o
M v

o

T T p
t

γ α
ρ

′ ′= − − − × +
Hv grad g grad roth f                   (36) 

where 
2

.
8π

o
M

o

hp
ρ

≡                                    (37) 

On the other hand, the magnetic field of the Sunspots should satisfy the following field equation [5] 

4π
c

=roth j                                    (38) 

where ( ), tj x  is the conduction current density and c the velocity of light in the empty space. Nevertheless, to 
study the flow of a real conducting fluid, which moves in the presence of an external magnetic field, one must 
recognize that it does not conduct any current. In this case, the previous relationship is reduced to 0=roth , 
since 0=j . Then, in (36) we get 

d
d

o
M vT T p

t
γ α′ ′= − − +

v grad g grad f                        (39) 

From the previous expression it is possible to determine the magnetohydrodynamic force which is responsible 
for the dynamic equilibrium between the onset of thermal convection and the mechanism of magnetic regulation, 
that is 

o
MHD MT pγ ′= −F grad grad                            (40) 

Consider now that for the condition of dynamic equilibrium, the viscous force is not relevant so that in (39) 
the term vf  can be ignored. This approximation is possible due to the following. While conditions (13) and (14) 
are fulfilled, the dominant mechanism is the magnetic regulation of thermal convection and the convective 
movements are controlled, and clearly, sufficiently diminished; so that it is reasonable to assume that the viscous 
force can be ignored in comparison with the MHD force (40) and with the term which contains sun’s accelera-
tion of gravity. As mentioned in the introductory section, the presence of an intense magnetic field in the Suns-
pots confers the fluid a certain rigidity which makes the movement difficult in those regions; so that it is possi-
ble to assume that the velocity of the fluid in the Sunspots is small compared with the velocity of the warmer 
fluid found in their surroundings. In consequence, if the velocity field inside the Spots is small, relatively speaking, 
and the distances dealt with are very large, the velocity gradients should be even smaller. Since vf  is depen-
dent on the gradients of the velocity field, then it is expected to be a small quantity in comparison with the other 
terms. When the magnetic field starts to decay and weakens, the starter mechanism of thermal convection is in-
itiated. Nevertheless, it can be said that while the dynamic equilibrium between both mechanisms exists, the 
conditions to produce convective movements have been arising very slowly; so that it is possible to assert that 
the change in the temperature of the Sunspots from To to T, occur in the steady state. Then the temperature T' at 
which the dynamic equilibrium is broken and convection starts, depends only on the coordinates and not on the 
time. In consequence, throughout the whole life of the Sunspots the viscous force is not important and it can be 
ignored for the whole analysis of the problem. 

Once the equilibrium is broken, convective movements are rapidly established mixing the fluid of the Suns-
pots with that of its surroundings until the average temperature T of the photosphere is reached. It is possible 
that during this process, the viscosity of the medium, and in consequence of the viscous force, becomes very 
important; but at this time, the Sunspots have disappeared because the magnetic field which generates them is 
zero and, clearly, the thermal gradient becomes null and, hence, the solar activity in those regions comes to an 
end. Since the remaining terms of the relation (39) are not explicitly depending on time, that equation can be in-
tegrated to obtain 
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( )o
o M oT T p t tγ α ′ ′ ′ ′= + − − − v v grad g grad                           (41) 

However, 0o =v  because it is the average fluid velocity inside the spots corresponding to the dynamic equi-
librium, when the magnetic field that generates them reaches its maximum value and the convective movements 
are magnetically regulated and very depressed; that is, in the mature stage of the spots. Under this situation, it 
can be said that ov  is the vector addition of the possible fluid movements inside those regions and that such 
vector sum is zero. On the other hand, even when the dynamic equilibrium between the mentioned mechanisms 
may exist and the movement of the fluid in the central regions of the spots may be very depressed; there will be 
great activity at its boundaries. Actually the fluid there overflows diverging from the center to the edge with a 
movement which is practically parallel to the surface of the Sun, due to the gravity pull. This is due to the com-
bination of two effects; one, the dominant effect of the solar gravity, and the other, the fact that at the edges of 
the spots the control of thermal convection by the mechanism of magnetic regulation is not complete enough; so 
that there exists a residual influence of the thermal gradient over the gradient of the magnetic hydrostatic pres-
sure. Thus, and due to the effect of thermal stirring, the fluid flows through the edges of the Spot at a certain ve-
locity ′v , but it almost immediately collapses towards the surface of the sun and under the pull of its gravity, 
giving the spots their characteristic appearance [10]. On the other hand, the thermal fluctuations which are likely 
to occur at the edges, should give origin to large splashing of fluid which raise to a great altitude over the pho-
tosphere, probably constituting the so called Faculae which are the usual companions of the spots. The overflow 
of the fluid in those regions is very similar to what occurs when a viscous liquid boils and overflows over the 
edges of its container. In such process plashing is also very common. In any case when 0o =v  and the scale of 
time is chosen so that to = 0, one has that previous expression 

o
MT T p tγ α ′ ′ ′ ′= − − v grad g grad                           (42) 

If only the Z direction is considered, the following result is obtained 

dd
d d

o
M

z
pTv gT t

z z
γ α
 ′

′ ′ ′= + − 
 

                             (43) 

When the onset mechanism of the thermal convection begins to dominate the phenomenon, the magnetic part 
begins to decrease so that the term Tγ ′grad  takes over of the situation. In the limit when 0=h  the vectorial 
velocity at which the convective movements begins is obtained in (42); this is 

( )c T T tγ α′ ′ ′ ′= −v grad g                                 (44) 

and, its vertical component clearly is 

d
dzc
Tv T t
z

γ α
′ ′ ′ ′= + 

 
g                                 (45) 

where the subscript c indicates that the process of thermal convection is being considered. 

4. The General Equation for Heat Transfer 
So far the velocity field and the MHD force responsible for the dynamic equilibrium have been calculated. Also 
available is the scalar equation for the mass density, which is valid for any fluid, and of course, the thermal equ-
ation of state for the phenomenon of the solar spots. The general equation of heat transfer remains missing in 
order to have an analytical solution to the problem of origin, duration and disappearance of the spots. This last 
equation can be obtained from the law of energy conservation for MHD [7]; which for any viscous conducting 
and compressible fluid, that moves in the presence of a magnetic field is given by 

( )

2
2

2
2

2

1
2 8π

1 ;
2 4π 16π

Hv
t

cdiv v T

ρ ρε

ρ ω σ κ
σ

 ∂
+ + ∂  

  ′ ′= − + + × × − × − ⋅ −  
  

Hv v H H rot H v grad

         (46) 

where 2 8πp Hω ε ρ ρ′ = + +  is the generalized specific enthalpy, κ the coefficient of thermal conductivity 
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and σ the electrical conductivity of the continuous medium [5] [7]. Besides, ε is the specific internal energy of 
the solar fluid. If the left member of (46) is developed, it can be shown that [2] 

2
2 2

2

1 1 d
2 8π 2 d

1 1 ;
2 4π

H sv div v T p
t t t

v
t

ρ ρε ρ ω ρ ρ

ρ

 ∂   ∂ + + = − + + ⋅ + + ⋅    ∂ ∂   
∂ + ⋅ + ⋅  ∂ 

v v v grad

Hv grad H

v

         (47) 

where pω ε ρ= +  is the usual specific enthalpy. On the other hand [7], 

( ) ( )
2

2
2

1 1
4π 4π 16π

c
t σ

∂
⋅ = ⋅ ∇× × + ⋅ ∇  ∂

HH H v H H H                     (48) 

Then from Navier-Stokes equations for MHD in the absence of body forces 

( ) ( )
2 1

8π 4π v
Hp

t
ρ ρ

 ∂
= − ⋅ − + + ⋅ + ∂  

v v grad v grad H grad H F                 (49) 

where 

v divσ ′=F                                     (50) 

is the viscous force, with σ ′  the viscosity stress tensor of Navier-Stokes [3]; the following is obtained 
2

21
2 8π v

Hv p div
t

ρ ρ
 ∂  ⋅ = − ⋅ − ⋅ − + ⋅  ∂    

vv v grad v grad v v F                  (51) 

because 

( )
2 2

8π 4π 8π
H Hdiv

   
⋅ + ⋅ ⋅ =     

   

vv grad H grad H v                      (52) 

and has been used the vectorial identity [3] [11] 

( ) 21
2

v v ⋅ = − × 
 

v grad grad v rotv  

and the fact that [11] 

( ) ( ) 0⋅ × ≡ × ⋅ =v v rotv v v rotv . 

By substituting (51) in (47) it’s easy to see that 

( ) ( )

2
2 2

2
2

2

1 1 d
2 8π 2 d

1 .
4π 16π

v
H sv div v T

t t

c

ρ ρε ρ ω ρ

σ

 ∂   ′+ + = − + + ⋅ +    ∂    

+ ⋅ ∇× × + ⋅ ∇  

v v F

H v H H H

              (53) 

From Equation (50) the following is obtained 

( )
i

v ij j

vdiv
x

σ σ ∂′ ′⋅ = ⋅ −
∂

v F v                                 (54) 

where the previous approximation with relation to the mass density has been used and an integration by parts 
has been done. Substituting in relation (46) all the results previously obtained one gets  

( ) ( ) ( )

( ) ( )

2
2

2

2

2

d 1
d 4π 16π
1 .

4π 16π

i

ij j

s v cT div T
t x

c

ρ κ σ
σ

σ

∂′− − + ⋅ ∇× × + ⋅ ∇  ∂

= − ∇ ⋅ × × + ∇ ⋅ × ∇×      

grad H v H H H

H v H H H
            (55) 
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Now, let = ×b v H  be any vector, so that 

( ) ( )1 1
4π 4π

− ∇ ⋅ × × = ⋅ ∇× ×      H v H H v H                        (56) 

where the following vectorial identity [11] has been used 

( ) ( ) ( )∇ ⋅ × = ⋅ ∇× − ⋅ ∇×a b b a a b  

plus the fact that 

( ) ( ) 0× ⋅ ∇× =v H H  

because they are orthogonal vectors, and its scalar product is zero. 
If in the second term of the right hand side member of (55) the previous vectorial identity is used again along 

with the following expression 

( ) ( ) 2 2∇× ∇× = ∇× ∇ ⋅ −∇ = −∇H H H H                        (57) 

we simply get, 

( ) ( ) ( )2 2∇⋅ × ∇× = + ⋅ ∇  H H rot H H H                        (58) 

just because 0∇⋅ =H . In this case, in (55) we get 

( ) ( )
2

2
2 .

16π

i

ij j

s v cT s div T
t x

ρ σ κ
σ

∂ ∂  ′+ ⋅ = + + ∂ ∂ 
v grad grad rot H            (59) 

This is the general equation of heat transfer for MHD [5] [7]. On the other hand, according to the approxima-
tions already done, it is clear that in (59) the following equation is obtained 

( )
2 2

2
216π

J c
σ σ

= roth ;                              (60) 

where j2/σ is the Joule heat per unit volume [5] [7]. However, since 0=roth  as we have seen before, then the 
value of the previous relationship is zero. 

Then, in (59) we have that 

( )
i

ij j

s vT s S div T
t x

ρ κ
′∂ ∂ ′ ′ ′+ ⋅ = + ∂ ∂ 

v grad grad                        (61) 

In fact, because we can write that o ′= +v v v  with o ′v v . But we saw that 0o =v , so ′=v v . Besides 

2
3

i j

ij ij ijj i

v v v vS
x x x x

η δ ζδ
 ′ ′ ′ ′∂ ∂ ∂ ∂′ = + − + ∂ ∂ ∂ ∂ 

 

 

                        (62) 

is the corresponding viscosity stress tensor in terms of the perturbation in the velocity field. Equation (61) is the 
general equation of heat transfer for any fluid in terms of the perturbed quantities. 

5. The Magnetic Field of the Sunspots 
According to the previously given arguments, the velocity of the fluid inside the spots is damped, due to the 
stiffness in the fluid conferred by the magnetic viscosity which in turn is created by the magnetic field responsi-
ble for the generation of the spots; so that it is possible to assume that inside those regions the magnitude of the 
fluid velocity is smaller than the speed of sound in that continuous medium. Therefore, it could be thought that 
variations in hydrostatic pressure occurring as a consequence of the motion are so small, that any changes in 
density and in other thermodynamic quantities involved should be neglected. Nevertheless, it is clear that the 
solar fluid is subject to nonuniform heating so that its density undergoes changes which cannot be ignored, so 
that it is not possible to say that it is a constant. In consequence, it can be shown that [2] 

p
s TT s c T
t t

ρ ρ
′∂ ∂   ′ ′ ′+ ⋅ = + ⋅   ∂ ∂   

v grad v grad                     (63) 
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where 

p
p

sc T
T
∂ =  ∂ 

                                        (64) 

is the specific heat of the fluid at constant pressure [12]. Then, from Equation (64) the following is obtained 

2 1 i

ij j
p

T vT T S
t c x

χ
ρ

′ ′∂ ∂ ′ ′ ′ ′+ ⋅ = ∇ + ∂ ∂ 
v grad                            (65) 

with 

pc
κχ
ρ

≡                                          (66) 

being the thermometric conductivity of the fluid [3]. 
As it is easy to see from (62), ijS ′  is a second order term in the approximations. On the other hand, ′v  is a 

small quantity and if the distances are relatively large, the gradient of the velocity field are very small. Then, the 
term i j

ijS v x′ ′∂ ∂  is even smaller. In that case, the viscous term in (65) can be neglected in comparison with the 
other quantities because it is a higher order term; with this the following result is obtained 

2d 0
d
T T
t

χ′
′− ∇ = .                                    (67) 

This is the final form of the general equation of heat transfer for the full process of generation, duration and 
disappearance of the solar Spots. On the other hand, since T' has been assumed to depend on the coordinates 
only, 0T t′∂ ∂ = ; and in the previous relationship the following is obtained 

0i
ii T v grad T

x
χ∂  ′ ′ ′− = ∂

                                (68) 

where an integration by parts has been made and the term i iT v x′ ′∂ ∂  has been neglected because is a term of 
higher order in the approximations. The previous equation can be integrated in order to obtain 

T Tχ ′ ′ ′=grad v ,                                     (69) 

where the integration constant has been assumed to be zero without losing of generality. Now, and according to 
expression (41) 

[ ] o
MT T t T p T tχ γ α ′ ′ ′ ′ ′ ′− = − + grad g grad                        (70) 

Let’s assume that for the condition of dynamic equilibrium, the thermometric conductivity can be neglected, 
so that only the other term is preserved. This is due to the fact that it could be very interesting to observe the 
phenomenon of the solar Spots as if it were frozen in time. Generally speaking, it is not possible to make such 
approximation as it will be seen in the next sections. Nevertheless, if for the moment that term is ignored, the 
following result is obtained in (70) 

o
Mp T Tγ α′ ′= −grad grad g                               (71) 

This is the analytical expression for the process of dynamic equilibrium in the solar spots. If only the 
z-component of the previous equation is considered, we get again that g= −g k ; with k  the unitary vector 
along the Z-axis of the inertial frame of reference used and of course, g is the average constant value of the 
gravity at the surface of the Sun. In that case, it is proposed that the convective movements in the spots can be 
damped by magnetic regulation thus ensuring their permanency in the solar disk, if the following condition of 
dynamic equilibrium is satisfied 

2 8πz o zgrad h grad T gTγρ α′ ′>  +                          (72) 

Now, from the z-component of relation (71) the following is obtained 

d
d

o
MT p gT

z
γ α ′ ′− = −                                 (73) 
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in which case 

( )2 8π oh T gzγρ α′= +                                  (74) 

where z is any characteristic height of the photosphere in the region where the solar spots are produced. From 
the previous relationship, the following expressions can be obtained 

λ+ +=h k                                       (75) 

and 
λ− −= −h k                                      (76) 

where 

( ) 1 2
8π oT gzγλ ρ α+ ′= +                                 (77) 

and 

( ) 1 2
8π oT gzλ ρ γ α− ′= − +                                (78) 

In (75) and (76), +h  and −h  are two magnetic fields which have opposite polarity. Thus, the permanence of 
the solar Spots on the surface of the Sun is assured if the magnitude of the magnetic field for each member in the 
couple is proposed to have the following value 

( ) 1 2
2 2π oh T gzγρ α+ ′= +                               (79) 

and 

( ) 1 2
2 2π oh T gzγρ α− ′= +                               (80) 

Clearly, both magnetic fields have the same magnitude. On the other hand, from (76) and (78) it is easy to see 
that λ− +=h k ; so that those fields are also oriented in the same direction. In consequence, if +h  is a magnetic 
field with (N-S) polarity; −h  will have the opposite polarity; that is (S-N). It would look as if these were the 
poles of a horseshoe shaped magnet. 

It can be seen from Equation (71) that as the intensity of the magnetic field generating the solar spots weakens 
its influence declines in favour of the thermal gradient basically because the other term is a constant for a partic-
ular couple of spots. Under such circumstances, the conditions for the startering mechanism of thermal convec-
tion are given; so that thermal processes become more important taking over the situation little by little. Again, 
in the limit when 0=h , we have that 

d
d
T gT
z

α
γ

′ ′
= −                                   (81) 

As usual [2] [3], the condition to generate the convective movements that mark the disappearance of the solar 
spots turns out to be similar to that proposed in the introductory paragraph, that is to say that, the magnitude of 
the thermal gradient be greater than a given value; this is 

d
d
T gT
z

α
γ

′ ′
>                                   (82) 

Finally, integrating Equation (81) the following result is obtained 

expo
gzT T α
γ

 ′ = − 
 

                              (83) 

This relation gives the temperature at which the thermal convection starts. Here, To is the characteristic tem-
perature of the solar spots. According to some numerical data from specialized literature, it is possible to make 
an approximate calculation of that temperature. For example let To = 3700 K; α = 0.5 × 10-4 K−1; g = 2.74 × 104 
cm/seg2; z = 8 × 107 cm; γ = 2.4 × 108 cm2/K⋅seg2. In this case, from (83) we obtain T' = 2344 K; so that T = To + 
T' = 6.044 K which is the approximate average temperature of the solar photosphere. Additionally, and with the 
help of the previous data, it is easy to see that convective movements are generated when 
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5d 1.32 10 K cm
d
T
z

−′
> ×                                    (84) 

Finally, considering that if ρ = 10−5 gr/cm3 [4], the value of density inside the Spots would have to be slightly 
smaller than that in the photosphere, according to the decomposition proposed in paragraph 2 of this paper. In 
this case assuming that for the interior of the spots, ρo = 0.715 × 10−6 gr/cm3, then, 

3837 gauss;h =                                       (85) 

as it is easy to see from (79) or (80). Certainly, the obtained value is within the order of magnitude of the mag-
netic fields of the solar spots measured with the aid of the Zeeman Effect [4] [10] [13]. 

6. Persistency of the Sunspots 
From the Z-component of relation (70) the following result can be obtained 

d
d

o
M

qt
pT q gT
z

χ

γ α
′ =

 
′ ′− + 
 

;                                (86) 

where 

d
d
Tq
z
′

≡                                        (87) 

is the thermal gradient in the Z-direction. 
Persistence of the Sunspots seems to depend mainly on the z-components of both the thermal gradient and the 

gradient of the square of the magnetic field which generates them. Nevertheless, the dominant mechanism at the 
beginning of the phenomenon is that of magnetic regulation of the convective movements; while at the end of it, 
disappearance of the Spots is determined by the predominance of the thermal gradient over the other quantities.  
In consequence it seems reasonable to assume that the average life time of the Sunspots can be determined from 
the dynamic equilibrium condition between the magnetic regulation and starting mechanisms of thermal convec-
tion; so that for the case in which MHD 0=F , in (86) we only have 

2

q
gT
χτ

α
≈

′
                                     (88) 

which is not other than the average life time of the spots. The previous relationship must at least provide an or-
der of magnitude for the time duration of the Sunspots. Astronomical observations of the phenomenon made by 
other researchers show that the average life time of the phenomenon could be of days, weeks or even several 
months [4]. In general, it is asserted that the average life time is somewhat greater than one solar revolution [1]; 
this is, approximately 28 days. Let’s consider for example that for the most superficial layers of the sun’s pho-
tosphere, χ = 1018 cm2/seg. Then, with the numerical data from the previous paragraph and with q = 2 × 10−5 
K/cm [4] the following is obtained 

31 daysτ ≈                                     (89) 

Obviously, the permanency in time of a particular couple of spots in the solar disk, depends on the difference 
between its temperature To and that of the photosphere, T; this is, it depends on T'. Thus, the higher the spots 
temperature, the smaller the T', and consequently, the larger the spot average life time. 

7. Conclusions and Discussion 
From the results obtained, it can be assumed that the Sunspots are phenomena very related with processes oc-
curing on the surface of the sun, at a very shallow depth in the solar photosphere; that is, they are basically sur-
face phenomena. Generation, evolution and disappearance of the Sunspots can be explained in terms of the 
competition established between two dynamic mechanisms: one of magnetic nature which controls and delays 
thermal convection, and the other one of thermal nature which propitiates convective movements. What happens 
there may be possibly as follows: the magnetic field characteristic of the solar spots starts to be created at any 
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moment in certain regions of the photosphere. While its intensity increases, a growing magnetic viscosity is 
generated in the fluid which makes it stiff. Such stiffness damps thermal agitation in the fluid makes it difficult 
for the fluid to move in those regions. As a consequence, the temperature in those places decreases creating the 
required conditions for the appearance of a thermal gradient whose value is adjusted to the increasing value of 
the magnetic field intensity, being created. Thus, as the magnetic field intensity grows, the stiffness in the fluid 
increases and the magnitude of the thermal gradient grows bigger, firmly opposing the establishment of the said 
magnetic field. The fight between these two mechanisms leads to a gradual loss of thermal energy in those re-
gions, resulting in areas which are darker and colder than their surroundings, which constitutes the Sunspots. On 
the other hand, the solar activity in those regions begins to grow and reaches its maximum value when the crea-
tion of the thermal and magnetic field gradients is completed. 

Next an evolution period of the spots takes place, which is characterized by the existence of a state of dynam-
ic equilibrium between both mechanisms, and by the fact that sun’s activity in those regions is at its maximum. 
In that intermediate stage, the dominant force is the huge solar gravity which acts over the fluid. Throughout of 
this period, the hot fluid flows more or less parallel to the surface of the sun due to its gravitational attraction, 
diverging from the center of the spot and overflowing through its boundaries [10]. At the same time, different 
varieties of the so called faculae are produced depending on their size; that is, as sparks, torches and flames. It is 
possible that the origin of such things can be found in the splashing caused by thermal fluctuations in the fluid, 
which occurs at the edges of the spots. 

In the final stage, the magnitude of the magnetic field begins to decrease; meanwhile the importance of the 
thermal processes increases until they become the dominant part when 0=h . At this moment, the starting me-
chanism of thermal convection is completed and violent convective movements begin, which mix the fluid in-
side the spots already free of its magnetic stiffness, with the fluid from the photosphere; thus equalizing the 
temperature in those regions with that of its surroundings. With that, the spots disappear at those latitudes and 
the solar activity in them is depleted. 

Another interesting result explains the polarity of the Sunspots, as well as its tendency to appear as magnetic 
bipolar couples. Apparently, they can be considered as huge electromagnets produced by gigantic solenoids 
formed under the surface of the photosphere by the ionized fluid which rotates at high speed and creates the 
monstrous electric currents which generate and maintain the characteristic magnetic field in those regions. The 
following hypothesis is suggested by the polarity in the spots, their appearance, permanency in the solar disk and 
subsequent disappearance. The highly ionized solar fluid [13] must be basically formed by an inhomogeneous 
mixture of positive and negative ions; as well as by electrically neutral atoms. It can be assumed that throughout 
one solar cycle, the contents of positive ions are larger than that of negative ions; so that the electric current 
produced by such an excess of charge would determine the polarity of the spots in each hemisphere. On the oth-
er hand, and due to the fact that the surface where the spots appear is relatively small as those regions move 
through the solar disk, and at the end of a certain time which must coincide with their average life time, it can be 
expected that locally, the number of positive and negative ions which rotate in the solenoid become equal. 
Clearly, both kinds of ions must move in the same sense. As a positive particle in motion is equivalent to a neg-
ative particle which moves in the opposite direction [14], the net current in the solenoid is zero and, of course, 
the magnetic field is cancelled. This fact is enough to give a heuristic explanation about the origin, the duration 
and the disappearance of the spots, as well as their polarity and the end of the solar activity in those regions. 

To explain the change in polarity at both hemispheres in each solar cycle, it’s enough to assume that in sun’s 
latitudes where the spots are usually observed, gigantic turbulent fluid flows take place, in a way similar to what 
occurs in the Earth at the cyclonic zones. The flows and the turbulent eddy in the northern hemisphere move in 
the opposite sense as they do in the southern hemisphere due to the Coriolis force [15]. If throughout one cycle, 
the highly ionized fluid has a net charge of a given sign, the polarity of the electromagnets will be inverted in 
one hemisphere with respect to the other one. Thus, for example, couples of spots in the northern hemisphere 
would have (N-S) polarity; while in the southern hemisphere their polarity would be (S-N). At the end of 11.5 
years, a new cycle begins and that disparity is inverted, so that northern couples will have (S-N) polarity and the 
southern couples (N-S) polarity. This fact suggests that in one cycle the huge electric currents which feed the 
gigantic solenoids which create the magnetic field of the spots, are generated by an excess of charge of the same 
sign in both solar hemispheres; and in the following cycle, by an excess of charge of the opposite sign. The 
question is: what would be the physical mechanism which originated such change in polarity with so much re-
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gularity and in such a short time? The following argument is considered. Due to the high temperatures and 
pressures in the deep regions of the sun, the conditions are given for the production of the solar plasma, basically 
formed by a mixture of positive and negative ions. Assume that the highly ionized fluid under the influence of a 
tremendous thermal stirring is slowly pushed against the solar gravity and the disorderly thermal movement, to-
wards regions of the photosphere until the turbulent tropical regions of the sun, is reached. There, they would 
feed the solenoids responsible for the production of the intense magnetic fields of the couples of Sunspots. 

The transport of ions from the convective zone up to the surface of the sun, is responsible of removing both 
the huge quantity of heat produced and products of the combustion process, while at the same time, feeding with 
new fuel the thermonuclear oven [10], it can be the responsibility of the powerful shock waves coming from that 
zone and from the oven itself. However, shock waves would drag positive and negative ions in a different way; 
that difference depending on the mass of each type. In fact, even in the case of ionized hydrogen (H+), the dif-
ference between its mass and that of the free electron (e−) produced during the process of ionization is around 
2000. For other elements ionized by the loss of one or more orbital electrons, that difference could be even larg-
er; such was the case of (He+) whose mass could be four times bigger than that of (H+). Then, it could be ex-
pected the migration of positive ions to be slower than that of negative ions; and such difference could make the 
former to reach the photosphere with a delay of 11.5 years with respect to the latter, in each Solar Cycle. 

Thus, in one cycle there could be surges of ionized fluid mainly of negative charge and in the following, 
mainly of positive charge. This last argument is only one hypothesis derived from the results previously ob-
tained, and is subjected to validation. It is put forward here as an heuristic attempt to explain the above men-
tioned phenomenon, because it is difficult to imagine some other processes occurring inside the sun that can 
have so regular effects. Nevertheless, maybe one could have an indirect proof of the periodicity and origin of 
this phenomenon by determining whether in the solar wind of the present solar cycle there is excess of a certain 
type of charge reaching the Earth and coming from both hemispheres of the sun, and if the sign of that charge 
coincides with the present polarity of the spots. The next step would be to measure whether in the next cycle al-
so there is the said excess of charge and if it is of the opposite sign than the excess of charge of the previous 
cycle. If the answer is affirmative, the polarity of the spots in both hemispheres has to be as expected and, clear-
ly, it must be opposite to that of the previous cycle. If the previous hypothesis is proven, the problem of finding 
a theoretical solution to the phenomenon of ionic migration in a star like the sun remains unsolved. Such task 
will be attempted in the near future. In the opposite case, another possible explanation would be searched for. 
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Appendix 
The influence of the external magnetic field on the system must be taken into account in order to determine its 
thermodynamic state [16]. In particular, the thermodynamic pressure can be written as follows [7] [16] 

( )
2

2, ,
8πo
Hp T c T

k
βρ ρ= + +H                              (A-1) 

where 

2
o

pc
ρ

 ∂
=  ∂ 

                                    (A-2) 

is the square of the velocity of sound in the medium, ( ), tρ x  is the mass density and T the temperature. Be-
sides 2 8πH  is the hydrostatic magnetic pressure [7] [16]; since 

p
k T
β ∂ =  ∂ 

                                  (A-3) 

with 
1 V
V T

β ∂ =  ∂ 
                                 (A-4) 

the coefficient of volumetric expansion and 

1 Vk
V p
 ∂

= −  ∂ 
                                (A-5) 

the isothermic compressibility which is always positive [17] [18]. 
On the other hand, it is affirmed in astrophysics that the solar plasma behaves as an ideal gas from the ther-

modynamic point of view; so that the equation p R Tρ=  must be fulfilled; with R being the universal gas con-
stant. In that case, in (A-1) we have that 

( ),ip T R Tρ ρ′=                                 (A-6) 

where ( ), tρ x  is the mass density and ( ),T tx  the temperature, in such a way that  

( )
2

,
8πi
Hp t p≡ −x                                (A-7) 

and R' = 2R. Let’s consider that the hydrostatic pressure in the interior region of the solar spots is such that it sa-
tisfies the hydrostatic Equation (17); this is, 

( ), constanti op t ρ= ⋅ +x g x ;                         (A-8) 

where g  is the acceleration of the gravity on the surface of the Sun. If the gradient is calculated from expres-
sion (A-7), the relationship (A-8) is used and the fact that oρ ρ ρ′= +  with ρo a constant and oρ ρ′

  a 
small variation in the mass density is taken into account, oρ ρ ρ ρ′= − ≈g g g g ; because it is the dominant term, 
Equation (1) is obtained. 
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