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ABSTRACT 

Global statistical techniques often assume homogeneity of relationships between dependent variable and predictors 
across space. This assumption has been criticized by statistical geographers as a fundamental weakness that may yield 
misleading result when it is applied to dataset with spatial context. To strengthen this weakness, a new method that ac-
counts for heterogeneity in relationships across geographic space has been presented. This is one of the family of local 
spatial statistical techniques referred to as geographically weighted regression (GWR). The method captures non-sta-
tionarity of relationship in spatial data that the ordinary least square (OLS) regression fails to account for. Thus, the 
paper is designed to explore and analyze the spatial relationships between cholera occurrence and household sources of 
water supply using GIS-based GWR, also to compare the modeling fitness of OLS and GWR. Vector dataset (spatial) of 
the study region by state levels and statistical data (non-spatial) on cholera cases, household sources of water supply and 
population data were used in this exploratory analysis. The result shows that GWR is a significant improvement on the 
global model. Comparing both models with the AICc value and the R2 value revealed that for the former, the value is 
reduced from 698.7 (for OLS model) to 691.5 (for GWR model). For the latter, OLS explained 66.4 percent while 
GWR explained 86.7 percent. This implies that local model’s fitness is higher than global model. In addition, the em-
pirical analysis revealed that cholera occurrence in the study region is significantly associated with household sources 
of water supply. This relationship, as detected by GWR, largely varies across the region. 
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1. Introduction 

The “one model fits all” syndrome that characterized 
global statistical techniques has motivated modern geog-
raphers and other spatial analysts to model and explore 
the local pattern of relationships that exist between vari-
ables. The global techniques such as regression (which is 
the widely used method of estimating relationships in the 
social science) often assumed a generalized pattern of 
association across the studied space. When applied to 
spatial data, it is quick to assume a constant relationship 
over space with respect to the processes being examined. 
The fact remains that it has shown that every phenome-
non is related to every other phenomenon in space but 
near (localized) phenomena are more related than distant 
(global) ones (Tobler’s first law of geography). This 
fundamental weakness connected with the global method 

of accessing relationships and spatial association, has 
stemmed the advancement and development of strings of 
local spatial statistical models. 

These local spatial statistical models, often referred to 
as disaggregate statistics, are designed to capture both 
spatial association and diversity (heterogeneity) simulta-
neously. A comprehensive distinction between global 
and local statistics can be found in the work of [1] Foth-
eringham et al., (2002). They described local statistics, 
on one hand, as a spatial disaggregation of global statistic, 
which is computed at the individual level and yield 
multi-valued result. On the other hand, global statistics is 
the overall average values of a data set which is assumed 
to represent the situation in every part of the study region 
and often yields a single-valued result. Following their 
classical counterpart, contemporary geographers now 
recognized that every location has an intrinsic degree of 
distinctiveness even from the closest location in a spatial *Corresponding author. 
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component or system.  
However, the most prominent disaggregate spatial sta-

tistical techniques available for empirical analysis, in-
clude geographically weighted regression originally de-
signed by [1] Fotheringham et al., (2002); local indicator 
of spatial association ([2] Anselin, 1995); local Gi* Sta-
tistics ([3] Getis and Ord, 1992); local chi-square ([4] 
Rogerson, 1999); local Moran’s I ([5] Anselin, 1996) and 
([6] the variogram cloud plot (Haslett et al., 1991). Basi-
cally, the use of these local spatial statistics has become 
widespread and prominent especially among spatial ana-
lysts, geographers, medical practitioners, physical and 
social scientists. This is because it is fast becoming an 
established fact that global statistics can no longer satisfy 
contemporary policy needs. 

Empirical literature has shown that the underlying as-
sumption of global statistics is to depict that the rela-
tionships between the predictor(s) and the criterion vari-
able are homogenous across space i.e., the same factor 
initiates the same response in all aspects of the study 
territory ([7] Mathews and Yang, 2012). In the real world 
scenario, this may not be the case. The relationships be-
tween variables might reveal strong evidence of hetero-
geneity and vary geographically. Spatial heterogeneity 
occurs when the same factor provokes a completely dif-
ferent response in different aspects of the study area ([7] 
Mathews and Yang, 2012). 

The global modeling techniques, such as the ordinary 
least squares regression (OLS), linear and other non- 
linear models cannot detect spatial variation and rela-
tionships within geographic entities. As a result, intrinsic 
relationships may be obscured and spatial association 
between variables in a region is concealed. Such incom-
plete information (derived from global statistics), when 
adopted for addressing policy issues, may be counter-
productive. To strengthen this weakness, statistical ge-
ographers ([8] Brunsdon et al., 1996 and [1] Fothering-
ham et al., 2002) recently came up with geographically 
weighted regression (GWR)—a technique designed to 
explore spatial non-stationarity or heterogeneity in geo-
graphic dataset. Spatial non-stationarity is a scenario in 
which global statistical models cannot explain the rela-
tionship between sets of variables ([8] Brunsdon et al., 
1996). 

GWR presents a platform for exploring the relation-
ships that exist between explanatory variables and the 
criterion variable across space and such analysis is con-
ducted within a single framework. It is a data exploratory 
technique carried out in one platform but yields multiple 
results and explanations. Fundamentally, the result of the 
analysis can be visualized on a series of maps. Every 
mapping unit produces its own unique explained value, 
coefficient and residual. The recent integration of GWR 
into ESRI ArcGIS has further increased the quality of 

output. For example, GIS-based GWR has the capability 
of spatially displaying the parameter estimates and coef-
ficient of determination regarding all variables in a raster 
surface and vector map respectively for easy and quick 
visual interpretation of relationships and detected spatial 
patterns. 

Due to its ability to integrate with GIS, by presenting 
mappable values, the technique has been embraced by 
researchers and scholars in numerous academic fields. 
Literature has shown that GIS-based GWR has been ap-
plied enormously in the public health and epidemiologi-
cal-based studies ([9] Lin and Wen, 2011; [10] Nakaya et 
al., 2005; [11] Yang et al., 2009; [12] Chen et al., 2010 
and [13] Goovaerts, 2005). Other areas of application 
include, environmental and ecological management, 
monitoring and hazard ([14] Zhang et al., 2004; [15] 
Fernandez et al., 2013 and [16] Mennis and Jordan, 
2005), public policy ([17] Malczewski and Poetz, 2005; 
[18] Yu et al., 2007; [19] Zhao et al., 2005; [20] Par-
tridge and Rickman, 2005). 

The major objectives of this paper are to explore and 
analyze the spatial relationships that exist between chol-
era occurrence and household sources of water supply 
using GIS-based GWR, and to compare the modeling 
results of the OLS and GWR with respect to the best fit. 
Using disaggregate statistic to test and model such rela-
tionship is a rich and viable methodology for the study of 
cholera as it is associated with household water supply. It 
allows the pattern of association to be visualized on a 
map and all statistical values to be spatially represented 
on raster maps. Overall, GWR will allow the local pa-
rameter estimate and local t-value of the model to be 
interpolated by allowing the audience to explicitly focus 
on the main matter of interest. This is possible because it 
combines the geo-visualization power of GIS to generate 
its output. 

2. Study Region and Data 

The data for this empirical analysis were collected from 
the 36 states (and the Federal capital territory) of Nigeria 
which is located geographically in West Africa sub-re-
gion between latitude 4˚9'N to 13˚46'N and longitude 
3˚15'E to 16˚54'E (Figure 1). It has a territorial coverage 
of about 923,770 km2 inhabited by over 140 million peo-
ple which make it one of the most populous country in 
Africa. Like other developing countries, Nigeria is pla- 
gued by polio, malaria, sleeping sickness and periodic 
outbreak of cholera. Cholera pandemic in the country is 
attributed to the poor quality of health care and inade- 
quate access to potable water.  

The first cholera outbreak in Nigeria occurred in 1970 
(in a Town near Lagos) leading to case fatality rate (CFR) 
of 12.8 percent. Between the  and the end of 1990 few  n   
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Figure 1. Location of the study region-the 36 states and Federal capital territory (FCT). 
 
cases were reported. In 1991, another outbreak occurred 
with CFR of 12.9 percent (this marks the highest for the 
country up to 2012). Since then, it has dropped to be-
tween 4.1 and 3.6 percent. 

The data used in this empirical analysis are divided 
into two parts-spatial and non-spatial datasets. The spa-
tial dataset which comprises the vector map of Nigeria 
(showing the 37 states including FCT) was downloaded 
from map library database in ESRI shape file format. 
This was re-projected from geographic coordinate sys-
tems (GCS) to projected coordinate systems using the 
world geodetic system (WGS) 1984 web Mercator. The 
non-spatial data consist of statistical figures on cholera 
occurrence and the sources of household water supply. 
Data on cholera occurrence for 2005 and major sources 
of household drinking and cooking water for 2005 at 
state level were used for the analysis and this was col-
lected from the National Bureau of Statistics in the coun-
try. To determine and compute population density, the 
2006 population census data was obtained from Nigeria 
Population Commission by state level. 

3. Methodology 

In this empirical analysis, the basic software used for 
computation, exploratory analysis, mapping and visuali-
zation is ESRI ArcGIS version 10.1. This GIS software 
was chosen because it presents numerous extensions for 

spatial statistical and geostatistical modeling (such as 
OLS, GWR, spatial autocorrelation and other geostatis-
tical analyst tools). Generally, these techniques were 
used to map spatial pattern, test relationships, check for 
redundancy among the explanatory variables and geo-
visualization. The model’s framework is shown in Fig-
ure 2. The dependent variable for this model is the 
documented cholera cases for 2005 by state level. This 
statistical values were entered into the prepared GIS 
vector polygon map as non-spatial data. To visualize the 
spatial distribution of such data, a choropleth map was 
generated to show the density of cholera occurrence in 
the country. It was normalized with the area coverage 
polygons (in km2) by state and a five-class natural breaks 
(Jenks) classification method was applied (Figure 3(a)). 
In order to detect cholera hotspots and show continuous 
distribution, empirical Bayesian kriging model with log 
empirical data transformation method was applied on the 
map (Figure 3(b)). 

Basically, the first fundamental geographic question 
(the where question) regarding cholera occurrence in the 
study region has been answered by Figure 3(b) (i.e. by 
displaying the location of cholera hotspots and the spatial 
pattern of distribution). The next logical geographic 
questions that follow are “why” such clustering pattern? 
And “what” are the likely factors that are associated with 
this observed pattern? The GWR is designed to answer 
such scientific questions and others like, does the rela-  
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Figure 2. Methodological framework. 
 

(a) (b)

 

Figure 3. Cholera spatial distribution of Nigeria. 
 
tionship between the dependent variable and the predic-
tors varies across space? Which explanatory variable 
shows stronger influence in a certain area? 

Six major categories of household source of cooking 
and drinking water were identified and selected for the 
analysis as explanatory variables. Population density was 
included as a predictor variable because it may exert 
strong influence over cholera occurrence and spread (i.e. 
it is expected that cholera cases would be high in high 
population density areas). To better understand the spa-
tial pattern of distribution, the seven explanatory vari-

ables were visualized with interpolated raster surface 
(Figure 4). Tanker (variable) represent water vendors 
either by tanker trucks or water hawkers. Rain and well 
variable include those that depend on rain water by col-
lecting and storing in a well during the wet season. Pipe 
borne variable involves the treated source of household 
water managed by government board. This is distributed 
to households through underground pipes. Borehole as a 
source of household water supply is usually untreated 
and mostly privately owned and in some cases, shared by 
gr up of people or communities. o 
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Figure 4. Selected explanatory variables. 
 
Tools for Modeling Spatial Relatio

cal tools 
ionships 

 the OLS. If the VIF 
va

nships 

In this paper, the OLS and GWR spatial statisti
were employed for exploring the spatial relat
between cholera occurrence and the seven predictors. 
The OLS was used as a diagnostic tool and for selecting 
the appropriate predictors (with respect to their strength 
of correlation with the criterion variable) for the GWR 
model. It can automatically check for multicollinearity 
(redundancy among predictors). 

The multicollinearity was assessed with the variance 
inflation factor (VIF) values of

lue(s) is greater than 10, it therefore indicate the exis-
tence of multicollinearity among the predictors. In addi-
tion, autocorrelation statistic was applied to detect 
whether there is spatial autocorrelation or clustering of 
the residuals which violate the assumption of OLS. Pro-
gressively, the spatial independency of the residuals was 
assessed with the global spatial autocorrelation coeffi-
cient Moran’s I. This is defined by the equation:  

  
   

1 1

2

n n

ij i ji j
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 

    
11iji j i

w y y
 
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   (1) 

where n represents the total number of states
i and j depict the various states, y  and yj is the residuals 

 (polygons), 
i

of location i and j respectively, y  is the mean of the 
residual and wij represents a spatial weight matrix for 
measuring spatial proximity between i and j locations. 
Moran’s I values ranges from +1 (positive autocorrela-
tion) and −1 (negative autocorrelation). The expected 
outcome in this case is a complete random pattern i.e. no 
spatial autocorrelation. 

OLS is a global statistical model for testing and ex-
amining relationships between variables. It uses single 
eq

fficient is constant over space) and av-
erage the result of its model which may not represent 

uation to estimate the relationship between the de-
pendent variable and the explanatory variable(s) and as-
sumes stationarity or static relationship across the study 
region. This method computes a single coefficient (im-

every cases. The OLS model’s equation for this analysis 
is presented as: 

0 1 1 2 2 3 3 n nY X X X X

plying that its coe

               (2) 

where Y is the criterion variable (cholera occurrence), the 
betas (β0 to βn) represent the corresponding number of 
the coefficients of predictors, while X1 to Xn de
corresponding number of predictors (in Figure 

pict the 
4) and ε 

is the random error term of the residuals. Assuming that 
these conditions are satisfied, the OLS parameter esti-
mator is determined as: 

  1T TX X X Y


              (3) 

where β is the vector of the global model’s parameter to 
be estimated, X is a matrix of the predictors with ele-
ments of first column set to 1, Y rep
the observed values on the depende

resent the vector of 
nt variable, and 

  1TX X


 is the inverse of the variance-covariance ma-
trix. 

GWR is a local spatial statistical technique that as-
sumes non-stationarity in relationships. That is the rela-

between the dependent variable and the ex-
plana
tionships 

tory variable(s) changes from location to locations. 
GWR on like the global statistics generate an equation 
for every component in the dataset by calibrating each 
one using the target feature and its neighbors. In this re-
spect, nearby features produce a higher weight in the 
calibration than distant features ([21] Scott and Janikas, 
2010). This approach may likely uncover spatial rela-
tionships or associations neglected by OLS. However, 
the underlying tenet of GWR is that parameters are likely 
to be estimated anywhere in the region of study given a 
criterion variable and one or set of explanatory variables 
which have been measured in a known location ([22] 
Charlton and Fotheringham, 2009). 

The model multiplies geographically weighted spatial 
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matrix consisting of geo-referenced data. The matrix 
defines the neighborhood spatial relationships between 
states and aid the detection of spatial variation in the re-
lationship among the variables. The basic GWR model as 
developed by [1] Fotheringham et al., (2002) is estimated 
as: 

   0 , ,i i i k i i ik ik
y u v u v x           (4) 

where  ,i iu v  depicts the geographic location (coordi-
nates)  point in space and is a reali-
zation ontinuous function at
tinuous surface of parameter values, and me

 surface
 surface (

Cook’s D statistics, local R2 
st

e distance or number of nearest neighbors, 
th

The OLS model was calibrated to diagnose multicollin-
 the explanatory variables and the result 

 variable and tanker 
2.812 and 10.416 re-

e wald sta-
tis

ident 
th

of the ith
of the c

 ,k i iu v  
 point i. That is, con-

asurements 
of such  is allowed and is taken at certain points to 
denote the spatial variability of the [1] Fother-
ingham et al., 2002). 

However, the major output from GWR model for each 
observation (state) is a set of parameter estimates (local 
coefficients for each explanatory variable) and associated 
diagnostics (standard errors, 

atistic, and local standard deviation) that can be visual-
ized within a GIS platform ([22] Charlton and Fother-
ingham, 2009; [15] Fernandez et al., 2013). The series of 
maps often generated are vital tools for understanding the 
level of spatial relationship and show locations were each 
predictor exhibit stronger influence on the dependent 
variable.  

The GWR model was computed with geographically 
weighted regression extension in the spatial statistics tool 
box of ArcGIS 10.1. To allow the automatic specification 
of appropriat

e adaptive kernel type was used. This allows the spatial 
context (Gaussian kernel) as a function of feature density 
to vary in extent. It constructs a smaller spatial context 
where the feature distribution is dense and larger spatial 
context where distribution is sparse. In order to deter-
mine the optimal bandwidth of the kernel function, the 
Akaike Information Criterion (AIC) was applied. 

4. Results 

4.1. Global Model Using OLS 

earity among
shows that the population density
variable returned VIF values of 1
spectively. Since these values are higher than the set re-
dundancy threshold of 10 the two variables were re-
moved from the model and re-calibrated. Consequently, 
the R2 value increased from 0.593 to 0.609. The final 
result of the OLS model is presented in Table 1. How-
ever, Table 1 shows that all the predictors returned VIF 
values fairly greater than 1.0 indicating that none of the 
variables are redundant. The explanatory variables-bore 
hole, rain and well, pond and lake returned significant 

t-values of −1.90, 3.78 and 2.78 respectively. 
The OLS global model revealed that it explained about 

60 percent (adjusted R2 = 0.60) of the variation in cholera 
occurrence with AIC = 694.86 (Table 2). The ANOVA 
returned a significant F-value = 12.22 and th

tic has a significant chi-squared value = 30.68. This 
means that generally, the model prove to be statistically 
significant. Jarque-Bera statistic returned a non-signifi-
cant chi-squared value = 3.39 (Table 2) indicating that 
the model’s prediction is free from bias (i.e. the residuals 
are normally distributed). The chi-squared value (14.63) 
of the Koenker statistic is statistically significant. Impor-
tantly, it indicates relationship between some or perhaps 
all of the explanatory variables and the criterion variable 
are non-stationary or consistent across the region.  

The explanation for this is that some independent vari-
ables may be important with respect to predicting the 
outcome of cholera in some states, but in other states 
may demonstrate weak predictive capability. It is ev

at the model’s fitness will likely be improved with 
GWR (since the Koenker statistic detected non-station-
arity in the relationship). This is because GWR assumes 
that relationships across space are non-static. To investi-
gate the distributive pattern of the residuals, the OLS 
generated residuals were mapped (Figure 5). A visual 
examination of the result shows that no pattern exist, 
instead the model’s residuals exhibit a random noise 
meaning that there are no clustering of over predictions 
and under predictions in the model. The poinsettia red  
 

Table 1. Summary of global OLS results. 

Variables
Coefficients 

value 
Std. Error t-statistic 

Probability 
(P-value)

VIF 

Intercept  404.375306 1295.380515 0.312167 0.757003

Pipe 
0.008072 −0.203507 0. 1.100455

−0 8 1.

1.377680

R  

borne 

Bore hole

−0.001643

.00429

840070

0.003889 −1.905169 0.027751* 501469

Rain and 
well 

iver and

0.032496 0.008582 3.786631 0.000657**

stream
0.005904 0.004781 1.234924 0.226137 1.089455

Pond and 
lake 

0.124842 0.044898 2.780547 0.009147** 1.799117

*Significant at 0.05; Si** gni 1

 

Parame P-value 

ficant at 0.00 . 

Table 2. OLS diagnostics statistics. 

ters Values 

Joint F-statistic 12.229463 0.000001* 

Joint w 000011* 

Koen istic 1  0

Jar c 

ald statistic 30.689942 0.

ker (BP) stat 4.637048 .012031* 

que-Bera statisti 3.3966837 0.069601 

R2 = 0. 2 = 0.609 86  = 
698.730 meter at 0. 

663582; Adjusted R
272; *Significant para

321; AIC = 694.
05 level. 

8203; AICc
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Figure 5. Standardized residuals of the OLS model. 
 
color in Figure 5 depicts the und

ositive) while the atlantic blue rep

 

The calibrated GWR results suggest that it is a significant 
th mod-

f the OLS model with about 10.7 
is is a high percentage explained 

(0

a   

er predicted residuals 
resents the over pre-

the explaining power o
percent (Table 3). Th(p

dicted (negative residuals). 
However, the result was further confirmed statistically 

by applying spatial autocorrelation statistic (global
Moran’s I). This will automatically detect significant 
clustering or random pattern in the residuals. The 
Moran’s I report (Figure 6) revealed that the pattern of 
the residuals is significantly different from random, with 
a Moran’s index value = −0.05 and z-score value = −0.28. 
That is the residuals have no statistically significant spa-
tial autocorrelation. In this case, all empirical evidence 
point to the fact that the OLS residuals fit properly. 

4.2. Geographically Weighted Regression 

improvement on the global model. Comparing bo
els with the AICc values, show that the value is reduced 
from 698.7 (for OLS model) to 691.5 (for GWR model). 
The difference is roughly 7.2 implying that local models 
fitness is higher when explaining spatial dataset such as 
cholera occurrence. As expected, GWR model improved 

value not accounted for by the global model.  
Mapping the residuals of GWR indicate that it is ran-

domly distributed (Figure 7). This means the model is 
properly specified. Verifying with autocorrelation statis-
tic (Moran’s I) returned a randomly distributed residuals 
with a z-score = −1.14 and Moran index = −0.14. 

Figure 8 displays the R2 value as a spatial smoothing 
of GWR model showing the states where the model’s 
prediction and strength of relationship is improved. Im-
portantly, that there is regional variation in the strength 
of relationship in the study region. Overall, the R2 value 

.8) shows a strong significant relationship between 
cholera occurrence and sources of household water sup-
ply. At the regional level, the R2 grouped the states into 
four sub-regions-those R2 values between 0.8 - 0.7, 0.7 - 
0.6, 0.6 - 0.5 and 0.5 - 0.4. In fact, 11 states in the ex-
treme north fall within the first group, 3 and 4 states in 
the north central fall within the second and third groups 
respectively while 19 states in the south fall within the 
last group. The resulting spatial v riation in the pattern of 
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Figure 6. Global Moran’s I spatial autocorrelation. 
 

Table 3. Models fitness comparison. 

Fitness parameter OLS GWR 

A 691.498 ICc 698.730 

R2 0.664 0.867 

Adjusted R2 0.609 0.779 

 
relationship how that the stre  relation  
creases  to south. 

Thus, this pattern suggests local fluctuation in the rela-

found in the group of states located in the far north. 

A fundamental merit of GWR is its ability to display 
eter estimate of each explanatory 

variable on a raster surface. This will make the complex 
o comprehend. 

Th

cross 
ths s ngth of ship de-

from north

tionship (non-stationarity). However, the best fit were 

relationship that varies over space easier t

and visualize the param

e resultant surface raster for the predictors show that 
there is spatial variation in relationship between sources 
of household water supply and cholera occurrence a

e country (Figure 9). Positive and negative relation-
ships were manifested in the result of GWR. The positive 
relationship means that as the number of household rely-
ing on a specific source of water increases, cholera cases 
equally increases. On the other hand, negative relation-   
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Figure 7. Standardized residuals for GWR model. 
 
ship implies that as the number of household utilizing a 
particular source of water increases, cases of cholera re-
duce. Local coefficient estimate 

ariables are presented in Figure 9. The color ramp is 

riables) that in-
ccurrence in the country. However, in 
ssion, only the useful predictors (those 

The implication of this is that as the number of house-
holds utilizing these sources of drinking and cooking 

ra cases decreases. This is not un-
expected because these two are the potable (clean and 

hus, this pattern of relationship can be visually 
co

are open sources that can easily be 
contaminated.   

for each explanatory water increases, chole
v
graduated from light to dark gold. Areas with light shade 
represent areas where that particular variable exhibit 
strong influence on cholera occurrence while dark shade 
represent areas where that specific variable exhibit weak 
or low influence on cholera occurrence. 

5. Discussion 

Both models (global OLS and local GWR) were able to 
capture and detect prominent factors (va
fluence cholera o
this discussion se
without bias that were entered into the local model) will 
be analyzed. In the exploratory analysis using OLS, five 
predictors were entered into the models-pipe borne, bore 
hole, rain and well, river and stream, pond and lake. Pipe 
borne and bore hole returned negative relationships (Ta-
ble 1).  

safe) sources of household water supply in the country. 
Hence, states where majority of its households rely on 
such sources of water are likely to have lower cases of 
cholera. T

 

nfirmed from Figures 3 and 4. In fact, a cursory ex-
amination of cholera hotspot in the former and hotspots 
for the two predictors (pipe borne and bore hole) in the 
latter reveals that hotspots of these predictors are found 
in cholera coldspots. 

On the other hand, rain and well, river and stream, 
pond and lake variables returned positive relationships, 
implying that cholera cases increase with increasing 
number of households utilizing these sources of water. 
This is not uncommon because the spread of cholera dis-
ease is often facilitated by unsafe sources of water. Rain 
and well, river and stream, pond and lake unlike pipe 
borne and bore hole 
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Figure 8. Local R2 smoothing for GWR showing model’s fitness spatial variation. 
 

 

Figure 9. Local parameter estimates of GWR. 
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Among these 5 explanatory variables, 3 are statisti-

cally significant, these are bore hole, rain and well, pond 
and lake (Table 1). These variables are the most impor-
tant with respect to explaining cholera occurrence. This 
result is consistent with the current water situation in 
Nigeria. Bore hole as a safe source of household water 
supply is fast becoming the major and recommended 
source of potable water for domestic use. On the other 
hand, pipe borne has become unpopular and relegated to 
certain parts of the country (Figure 4), this is probably 
the reason while it fails to return significant t-value. This 
result therefore suggests that bore hole may be an impor-
tant variable for reducing and checking cholera occur-
rences.  

Rain and well, pond and lake returned a highly sig-
nificant t-value (i.e. significant at 0.001). Drawing from 
this, there is 99 percent confidence that cholera occur-
rence in the study region is positively influenced by these 
household water sources. A quick visual look at Figures 
3 and 4 shows that hotspots for these domestic water 
sources somewhat overlapped with cholera hotspots. This 
result is not unexpected because such sources are unsafe 
and importantly, they are static (unlike river and stream). 
Thus, they are safe anchorage for breeding, and facili-
tates the spread of cholera disease. 

Generally, OLS model was able t
o

is a weak predictor of cholera occurrence in majority of 
the states. This predictor proved to be less relevant in the 
south central, even though there is high concentration of 
households that utilize the source water. Ultimately, 
these two explanatory variables account for significant 
proportion of cholera occurrence in the northern part of 
the country, especially the hotspot detected at the north 
central margin. 

Bore hole, as a significant predictor, exhibits strong 
negative influence over the dependent variable in the 
north western part of the region. On the central part of 
the country, the influence is very weak and continued 
down south-west and south-east. The inverse relationship 
that bore hole seem to reflect on cholera occurrence es-
pecially in the north-west shows that it is a factor not to 
be over looked with respect to policy making and other 
epidemiological investigation. As revealed by the local 
parameter estimates for rain and well, pond and lake 
variables, that household relying on such sources of wa-
ter are vulnerable to the disease, bore hole may serve as a 
factor to lower vulnerability. Especially for the house-
holds in the north-west states. The high dependency on 
bore hole as a source of domestic water supply in the 
north-east, south-west and central part of the country 
(Figure 4) is associated with the observed cholera cold-

(Figure 3). This is confirmed by the o identify three im-
) 

spots in these areas 
p rtant variables (rain and well, bore hole, pond and lake
that significantly explained the occurrence of cholera in 
the study region. In the remaining part of this discussion, 
only these fundamental explanatory variable will be ana-
lyzed in detail regarding the local coefficients derived 
from GWR model. Some predictors exhibited high spa-
tial variability in the resultant parameter estimates of 
GWR model. In some cases, even contradicted the sign 
of global parameter estimates of OLS model. These pre-
dictors are pipe borne, river and stream, both reflected a 
combination of negative and positive coefficients across 
states. Whereas, the OLS global coefficient for pipe borne 
returned negative value and for river and stream, it re- 
turned positive value. This is an evidence that the rela- 
tionship between the criterion variable and the explana- 
tory variables captured by OLS is more complex and for 
a reliable result, needs a local model.  

As shown by GWR local coefficients, rain and well 
explanatory variable is an important factor for estimating 
cholera occurrence. The influence of this predictor is 
stronger in the north eastern states of the country (Figure 
9), this is reasonable because cholera hotspot was de-
tected in this region. While in the south and north-west 
margin, it is a weak predictor of cholera occurrence. An-
other important variable is pond and lake, it has high 
influence in the north western part of the country par-
ticularly around the major cholera hotspot. Unlike the 
former, its sphere of influence is smaller i.e. this variable 

local coefficient for bore hole in Figure 9 were the cen-
tral, north-east and south-west reflects low negative in-
fluence on the dependent variable. That is the reason it is 
not surprising to find high local coefficients values in 
areas where the variable values are low.  

6. Conclusions 

This exploratory analysis explains the spatial variation in 
relationship among geographic dataset and across geo-
graphic regions. Using GIS-based local model and global 
statistic to explore the relationship between cholera oc-
currences and domestic water supply in Nigeria, it was 
able to detect and extract certain key information con-
cerning stationarity and non-stationarity in spatial data. 
Global statistical models often assume homogeneity of 
relationships between variables across space. This paper 
has explicitly shown that in spatial data, relationship is 
not static across geographic space by comparing the re-
sults of global OLS and local GWR model’s fitness and 
parameter estimates. 

It was discovered that cholera occurrence in Nigeria is 
significantly associated with sources of household water 
supply. Intrinsic among others are rain and well, bore 
hole, pond and lake. It was found that rain and well, pond 
and lake sources positively influence cholera occurrence 
in the region, while bore hole negatively influences it. 
The observed cholera distribution and clustering pattern 
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are traced to the sources of domestic water supply and 
this association shows strong spatial heterogeneity across 
the states. 

Finally, this paper is a contribution to the field of GIS, 
spatial statistics and disease modeling. It presents essen-
tial evidence on cholera occurrence in Nigeria and statis-
tically demonstrates that local models exhibit better fit-
ness than global models when modeling spatial data. 
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