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Abstract 
Distortion risk measures are extensively used in finance and insurance appli-
cations because of their appealing properties. We present three methods to 
construct new class of distortion functions and measures. The approach in-
volves the composting methods, the mixing methods and the approach that 
based on the theory of copula. We also investigate the tail subadditivity for 
VaR and other distortion risk measures. In particular, we demonstrate that 
VaR is tail subadditive for the case where the support of risk is bounded. Var-
ious examples are also presented to illustrate the results. 
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1. Introduction 

A risk measure ρ  is a mapping from the set of random variables  , standing 
for risky portfolios of assets and/or liabilities, to the real line R. In the 
subsequent discussion, positive values of elements of   will be considered to 
represent losses, while negative values will represent gains. Distortion risk 
measures are a particular and most important family of risk measures that have 
been extensively used in finance and insurance as capital requirement and 
principles of premium calculation for the regulator and supervisor. Several 
popular risk measures belong to the family of distortion risk measures. For 
example, the value-at-risk (VaR), the tail value-at-risk (TVaR) and the Wang 
distortion measure. Distortion risk measures satisfy a set of properties including 
positive homogeneity, translation invariance and monotonicity. When the 
associated distortion function is concave, the distortion risk measure is also 
subadditive (Denneberg, 1994; Wang & Dhaene, 1998). VaR is one of the most 
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popular risk measures used in risk management and banking supervision due to 
its computational simplicity and for some regularity reasons, despite it has some 
shortcomings as a risk measure. For example, VaR is not a subadditive risk 
measure (see, for instance, Artzner et al., 1999; Denuit et al., 2005), it only 
concerns about the frequency of risk, but not the size of risk. TVaR, although 
being coherent, concerns only losses exceeding the VaR and ignores useful 
information of the loss distribution below VaR. Clearly, it is difficult to believe 
that a unique risk measure could capture all characteristics of risk, so that an 
ideal measure does not exist. Moreover, since risk measures associate a single 
number to a risk, as a matter of fact, they cannot exhaust all the information of a 
risk. However, it is reasonable to search for risk measures which are ideal for the 
particular problem under investigation. As all the proposed risk measures have 
drawbacks and limited applications, the selection of the appropriate risk 
measures continues to be a hot topic in risk management. 

Zhu & Li (2012) introduced and studied the tail distortion risk measure which 
was reformulated by Yang (2015) as follows. For a distortion function g, the tail 
distortion risk measure at level p of a loss variable X is defined as the distortion 
risk measure with distortion function 

( )
, if 0 1 ,

1
1, if 1 1.

p

xg x p
g x p

p x

  
≤ ≤ −  = −  

 − < ≤

 

Some properties and applications can be found in Mao, Lv, & Hu (2012), Mao 
& Hu (2013) and Lv, Pan, & Hu (2013). 

As an extension of VaR and TVaR, Belles-Sampera et al. (2014a) proposed a 
new class of distortion risk measures called GlueVaR risk measures, which can 
be expressed as a combination of VaR and TVaR measures at different 
probability levels. They obtain the analytical closed-form expressions for the 
most frequently used distribution functions in financial and insurance 
applications, while a subfamily of these risk measures has been shown to satisfy 
the tail-subadditivity property which means that the benefits of diversification 
can be preserved, at least they hold in extreme cases. The applications of 
GlueVaR risk measures in capital allocation can be found in the recent paper 
Belles-Sampera et al. (2014b). 

Cherubini & Mulinacci (2014) propose a class of distortion measures based on 
contagion from an external “scenario” variable. The dependence between the 
scenario and the variable whose risk is modeled with a copula function with 
horizontal concave sections, they give conditions to ensure that coherence 
requirements be met, and propose examples of measures in this class based on 
copula functions. 

The first purpose of this paper is to construct new risk measures following 
Zhu & Li (2012), Belles-Sampera et al. (2014a) and Cherubini & Mulinacci 
(2014). The newly introduced risk measures are included the tail distortion risk 
measure and the GlueVaR as specials. The second goal of the paper is to 
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investigate the tail asymptotics of distortion risk measures for the sum of 
possibly dependent risks with emphasis on VaR. The rest of the paper is 
organized as follows. We review some basic definitions and notations such as 
distorted functions, distorted expectations and distortion risk measures in 
Section 2. In Section 3 several new distortion functions and risk measures are 
introduced. In Section 4 we investigate the tail asymptotics as well as 
subadditivity/superadditivity of VaR. In Section 5 we analyze the subadditivity 
properties of a class of distortion risk measures and Section 6 focuses on 
conclusion. 

2. Distortion Risk Measures 
2.1. Distorted Functions 

A distortion function is a non-decreasing function [ ] [ ]: 0,1 0,1g →  such that 
( ) ( )0 0, 1 1g g= = . Since Yaari (1987) introduced distortion function in dual 

theory of choice under risk, many different distortions g have been proposed in 
the literature. Here we list some commonly used distortion functions. A 
summary of other proposed distortion functions can be found in Denuit et al. 
(2005). 
 ( ) ( )1x pg x > −= 1 , where the notation A1  to denote the indicator function, 

which equals 1 when A holds true and 0 otherwise. 

 ( ) min ,1
1

xg x
p

 
=  

− 
. 

• Incomplete beta function ( ) ( ) ( ) 11
0

1 1 d
,

x bag x t t t
a bβ

−−= −∫ , where 0a >  

and 0b >  are parameters and ( ) ( )1 11
0

, 1 dbaa b t t tβ −−= −∫ . Setting 1b =  

gives the power distortion ( ) ag x x= ; setting 1a =  gives the dual-power 

distortion ( ) ( )1 1 bg x x= − − . 

• The Wang distortion ( ) ( ) ( )( )1 1 ,0 1g x x p p− −= Φ Φ +Φ < < , where Φ  is 
the distribution function of the standard normal. 

• The lookback distortion ( ) ( ) ( ]1 ln , 0,1 .pg x x p x p= − ∈  
Obviously, every concave distortion function is continuous on the interval 

( ]0,1  and can have jumps in 0. In contrast, every convex distortion function is 
continuous on the interval [ )0,1  and can have jumps in 1. The identity 
function is the smallest concave distortion function and also the largest convex 
distortion function; ( ) ( )0 0: xg x >= 1  is concave on [ ]0,1  and is the largest 
distortion function. ( ) ( )

0
1: xg x == 1  is convex on [ ]0,1  and is the smallest  

distortion function. For 0 1p< < , we remark that ( )1 : min ,1
1

xg x
p

 
=  

− 
 is  

the smallest concave distortion function such that ( ) ( )1 1x pg x > −≥ 1 . In fact, we 
consider a concave distortion function g such that ( ) ( )1x pg x > −≥ 1 , then 1g ≡   

on ( ]1 ,1p− . As g is concave, it follows that ( )
1

xg x
p

≥
−

 for 1x p≤ − , and 
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thus ( ) min ,1
1

xg x
p

 
≥  

− 
 for 0 1x< < . Any concave distortion function g  

gives more weight to the tail than the identity function ( )g x x= , whereas any 
convex distortion function g gives less weight to the tail than the identity 
function ( )g x x= . 

2.2. Distorted Risk Measures 

Let ( ), ,F PΩ  be a probability space on which all random variables involved are 
defined. Let XF  be the cumulative distribution function of random variable X 
and the decumulative distribution function is denoted by XF , i.e. 

( ) ( ) ( )1X XF x F x P X x= − = > . Let g be a distortion function. The distorted 
expectation of the random variable X, notation [ ]g Xρ , is defined as 

[ ] ( )( ) ( )( )0

0
d 1 d ,g X XX g F x x g F x xρ

+∞

−∞
 = + − ∫ ∫  

provided at least one of the two integrals above is finite. If X a non-negative 
random variable, then gρ  reduces to 

[ ] ( )( )0
d .g XX g F x xρ

+∞
= ∫  

From a mathematical point of view, a distortion expectation is the Choquet 
integral (see Denneberg (1994)) with respect to the nonadditive measure 

g Pµ =  . That is [ ] dg X Xρ µ= ∫ . In view of Dhaene et al. (2012: Theorems 4 
and 6) we know that, when the distortion function g is right continuous on 
[ )0,1 , then [ ]g Xρ  may be rewritten as 

[ ] [ ] [ ] ( )10,1
d ,g qX VaR X g qρ +

−= ∫  

where [ ] ( ){ }sup | XVaR p X x F x p+ = ≤ , and when the distortion function g is 
left continuous on ( ]0,1 , then [ ]g Xρ  may be rewritten as 

[ ] [ ] [ ] ( ) [ ] [ ] ( )10,1 0,1
d d ,g q qX VaR X g q VaR X g qρ −= =∫ ∫  

where [ ] ( ){ }inf |p XVaR X x F x p= ≥  and ( ) ( ): 1 1g q g q= − −  is the dual 
distortion of g. Obviously, g g= , g is left continuous if and only if g  is right 
continuous; g is concave if and only if g  is convex. The distorted expectation 

[ ]g Xρ  is called a distortion risk measure with distortion function g. Distortion 
risk measures are a particular class of risk measures which as premium 
principles were introduced by Denneberg (1994) and further developed by Wang 
(1996, 2000) among others. 

Distortion risk measures satisfy a set of properties including positive 
homogeneity, translation invariance and monotonicity. A risk measure is said to 
be coherent if it satisfies the following set of four properties (see, e.g., Artzner et 
al., 1997, 1999): 

(M) Monotonicity: ( ) ( )X Yρ ρ≤  provided that ( ) 1P X Y≤ = . 
(P) Positive homogeneity: For any positive constant 0c >  and loss X, 
( ) ( )cX c Xρ ρ= . 
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(S) Subadditivity: For any losses ,X Y , then ( ) ( ) ( )X Y X Yρ ρ ρ+ ≤ + . 
(T) Translation invariance: If c is a constant, then ( ) ( )X c X cρ ρ+ = + . 
It is furthermore shown by Artzner et al. (1999) that all mappings satisfying 

the above properties allow a representation: 

( ) [ ]sup ,p
p

X E Xρ
∈

=


 

where   is a collection of “generalised scenarios”. A risk measure ρ  is called 
a convex risk measure if it satisfies monotonicity, translation invariance and the 
following convexity (C): 

( )( ) ( ) ( ) ( )1 1 , 0 1.X Y X Yρ λ λ λρ λ ρ λ+ − ≤ + − ≤ ≤  

Clearly, under the assumption of positive homogeneity, monotonicity and 
translation invariance, the convexity of a risk measure is equivalent 
subadditivity. 

The most well-known examples of distortion risk measures are the 
above-mentioned VaR and TVaR, corresponding to the distortion functions,  

respectively, are ( ) ( )1x pg x > −= 1  and ( ) min ,1
1

xg x
p

 
=  

− 
. Notice that  

[ ]pTVaR X  can be alternatively expressed as the weighted average of VaR and 
losses exceeding VaR: 

[ ] [ ]
[ ]( ) [ ] [ ]

1
| .

1
X p

p p p p

F VaR X
TVaR X VaR X E X VaR X X VaR X

p

−
 = + − > −

(2.1)  

For continuous distributions, TVaR coincide with the expected loss exceeding 
p-Value-at Risk, i.e., the mean of the worst ( )1 100%p−  losses in a specified 
time period which defined by 

[ ] [ ]| .p pCTE X E X X VaR X = >   

Detailed studies of distortion risk measures and their relation with orderings 
of risk and the concept of comonotonicity can be found in, for example, Wang 
(1996), Wang & Young (1998), Hua & Joe (2012) and the references therein. The 
following lemma will be used in proofs of later results, which characterizes an 
ordering of distortion risk measures in terms of their distortion functions. 

Lemma 2.1 (Belles-Sampera et al., 2014b). If ( ) ( )*g x g x≤  for [ ]0,1x∈ , 
then [ ] [ ]*g g

X Xρ ρ≤  for any random variable X. 

3. Generating New Distortion Functions and Measures 
Distortion functions can be considered as a starting point for constructing 
families of distortion risk measures. Thus, constructions of distortion functions 
play an important role in producing various families of risk measures. Using the 
technique of mixing, composition and copula allow the construction of new class 
of distortion functions and measures. 

3.1. Composting Methods 

The first approach to construct distortion functions is the composition of 
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distortion functions. 
Let 1 2, ,h h   be distortion functions, define ( ) ( )1 1f x h x=  and composite 

functions ( ) ( )( )1 , 1, 2,n n nf x f h x n−= =  . It is easy to check that 
( ) , 1, 2,nf x n =   are all distortion functions. If 1 2, ,h h   are concave 

distortion functions, then each ( )nf x  is concave and satisfies that 

1 2 3f f f≤ ≤ ≤  

and 

( ) ( ) [ ]0lim , 0,1 .n xn
f x x>→∞

= ∈1  

The associated risk measures satisfy (by Lemma 2.1) 

[ ] [ ] [ ]
1 2 3f f fX X Xρ ρ ρ≤ ≤ ≤  

and 

[ ] [ ] ( )1lim esssup .
nfn

X VaR X Xρ
→∞

= =  

If 1 2, ,h h   are convex distortion functions, then each ( )nf x  is convex and 
satisfies that  

≥≥≥ 321 fff  

and 

( ) ( ) [ ]1lim , 0,1 .n xn
f x x=→∞

= ∈1  

The associated risk measures satisfy (by Lemma 2.1) 

[ ] [ ] [ ]
1 2 3f f fX X Xρ ρ ρ≥ ≥ ≥  

and 

[ ] [ ] ( )0lim essinf .
nfn

X VaR X Xρ
→∞

= =  

Consider two distortion functions 1g  and 2g . If 

( )2

, if 0 1 ,
1
1, if 1 1,

x x p
pg x

p x

 ≤ ≤ − −= 
 − < ≤

 

then we get 

( ) ( )( ) 1
1 2

, if 0 1 ,
: 1

1, if 1 1.
p

xg x p
g x g g x p

p x

  
≤ ≤ −  = = −  

 − < ≤

 

The corresponding risk measure [ ]
pg Xρ  is the tail distortion risk measure 

which was first introduced by Zhu & Li (2012), and was reformulated by Yang 
(2015). In particular, on the space of continuous loss random variables X, 

[ ] [ ]( )( )0
1 | d .

pg p pX g P X x X VaR X xρ
∞

= − ≤ >∫  

If ( )1 ,0 1rg x x r= < <  and 

( )2

, if 0 1 ,
1
1, if 1 1,

x x p
pg x

p x

 ≤ ≤ − −= 
 − < ≤
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then 

( ) ( )( )12 1 2
, if 0 1 ,: 1

1, if 1 1,

r
x x pg x g g x p

p x

 
 ≤ ≤ − = = − 
 − < ≤

 

and 

( ) ( )( )
( )

( )

1

21 2 1
1

, if 0 1 ,
1:

1, if 1 1.

r
r

r

x x p
pg x g g x

p x


≤ ≤ − −= = 


− < ≤

 

Clearly, 1 21g g<  and 2 12g g< , so that, by Lemma 2.1, [ ] [ ]
1 21g gX Xρ ρ<  

and [ ] [ ]
2 12g gX Xρ ρ< . 

In practice, sometimes one needs distort the initial distribution more than one 
times. 

Example 3.1 Consider two risks X and Y with distributions, respectively, are: 

( )

0, if 0,
0.6, if 0 100,
0.975, if 100 500,
1, if 500,

X

x
x

F x
x

x

<
 ≤ <=  ≤ <
 ≥

 

and 

( )

0, if 0,
0.6, if 0 100,
0.99, if 100 1100,
1, if 1100.

Y

x
x

F x
x

x

<
 ≤ <=  ≤ <
 ≥

 

Then 50EX EY= = , [ ] [ ]0.95 0.96 100VaR X VaR X= = ,  
[ ] [ ]0.95 0.96 100VaR Y VaR Y= = . 

TVaR can be calculated by formula (2.1): 
[ ] [ ]0.95 0.95 300TVaR X TVaR Y= = , [ ] [ ]0.96 0.96 350TVaR X TVaR Y= = . So that 

when 0.95α =  and 0.96β = , according to the measures of VaR and TVaR, 
both X and Y bear the same risk! However, the maximal loss for Y (1100) is 
more than double than for loss X (500), clearly, risk Y is more risky than risk X. 
Now we consider distortion expectation 

pgρ  with 

( ) ( )1 2

, if 0 1 ,
1
1, if 1 1.

x x p
pg x g x

p x

 ≤ ≤ − −= = 
 − < ≤

 

One can easily find that, with 0.95p = , [ ] 500
pg Xρ =  and [ ] 1100

pg Yρ = . 

3.2. Mixing Methods 

One of the easiest ways to generate distortion functions is to use the method of 
mixing along with finitely distortion functions or infinitely many distortion 
functions. Specifically, if wg  ( ,w a b∈ ) is a one-parameter family of 
distortion functions, ψ  is an increasing function on ,a b  such that  
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( )
,

d 1
a b

wψ =∫ , then the function ( )
,

dwa b
g g wψ= ∫  is a distortion function, 

the associated risk measure is given by 

[ ] [ ] ( )
,

d .
wg ga b

X X wρ ρ ψ= ∫                  (3.1) 

In particular, if ψ  is discrete distribution, then (3.1) can be written as the 
form of convex linear combination i iig w g=∑  ( )0, 1i iiw w≥ =∑  , the 
associated risk measure is given by 

[ ] [ ].
ig i g

i
X w Xρ ρ=∑                     (3.2) 

Further studies on this line can be found recent papers He et al. (2015) and 
Wei (2017). 

The following lemma is well known (cf. Kriele & Wolf (2014: Theorem 2.1, p. 
33)). 

Lemma 3.1 If all 
wgρ  ( ,w a b∈ ) are monotone, positively homogeneous, 

subadditive and translation invariant, then [ ]g Xρ  also has the corresponding 
properties. That is, if all wg  ( ,w a b∈ ) are coherent, then [ ]g Xρ  is also 
coherent. 

Now we list three interesting special cases: 
 If [ ) [ ), 0,a b = ∞ , ( ) ( )1 1 , 1i

ig x x i= − − ≥  and 0, 1i iiw w≥ =∑ , then v in 
(3.2) is coherent since ( )ig x  is concave. As in Tsukahara (2009), if we take 

iw  from Bin v ( 0 1θ< < ), then ( ) 2g u u u uθ θ θ= + − . If we take 

( )
, 0,

e 1 !

i

iw
iθ

θ
θ= >

−
 

then 

( )
( )e 1 e

.
e 1

u

g u
θ θ

θ θ

−−
=

−
 

Also, if we take ( ) 11 i
iw θ θ−= −  ( 0 1θ< < ), the geometric distribution, then 

( ) ( )
,

1
ug u

u uθ θ
=

+ −
 

which is the proportional odds distortion; see Example 2.1 in Cherubini & 
Mulinacci (2014). 
 If [ ] [ ], 0,1a b = , [ ]

wg wVaR Xρ =  and ( ) ( )d dw w wψ φ= , then [ ]g Xρ  in 
(3.1) reduces to 

[ ] [ ] ( )1

0
d ,wX VaR X w wφρ φ= ∫                   (3.3) 

which is spectral risk measure (see Acerbi, 2002). Here φ  is called a  

weighting function satisfies the following properties: 0φ ≥ , ( )1

0
d 1w wφ =∫ . The 

following lemma gives a sufficient condition for [ ]Xφρ  to be a coherent risk 
measure (cf. Kriele & Wolf (2014)). 

Lemma 3.2 Spectral risk measure [ ]Xφρ  is coherent if φ  is (almost 
everywhere) monotone increasing. 
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Clearly, there exists a one-to-one correspondence between distortion function 

g and weighting function φ , namely, ( ) ( )
0

1 1 d .
t

g t s sφ− = − ∫  

 If [ ] [ ], 0,1a b = , [ ]
wg wTVaR Xρ =  and ψ µ=  is a probability measure on 

[ ]0,1 , then [ ]g Xρ  in (3.1) reduces to 

[ ] [ ] ( )1

0
d ,wX TVaR X wµρ µ= ∫                 (3.4) 

which is the weighted TVaR (see Cherny (2006)). pTVaR  is a special weighted 
TVaR with ( ) ( )1w w pµ = ≥ . According to Lemma 3.1, since each [ ]wTVaR X  
is coherent risk measure, the weighted TVaR is coherent risk measure. The 
weighted TVaR can be rewritten as the form of spectral risk measure as 
following: 

[ ] [ ] ( ) [ ] ( )

[ ] ( ) ( )

[ ] ( ) [ ] ( )

1 1 1

0 0

1

0 0

1 1
10 0

1d d d
1

1 d d by the Fubini theorem
1

d d ,

w qw

q
q

q q

X TVaR X w VaR X q w
w

VaR X w q
w

VaR X q q VaR X g q

µρ µ µ

µ

φ −

 = =  − 
 =  − 

= =

∫ ∫ ∫

∫ ∫

∫ ∫

 

where g is a function with ( )0 0g =  and satisfies 

( ) ( ) ( )
0

11 d .
1

q
g q q w

w
φ µ′ − = =

−∫  

Because ( )qφ  is increasing function of q, it follows from Lemma 3.2 that the 
weighted TVaR [ ]Xµρ  is coherent. Or, equivalently, ( )g q′  is decreasing 
function of q, i.e. g is a concave function, moreover, g is increasing and 

( ) ( ) ( )

( ) ( )

1 1

0 0 0

1 1 1

0 0

11 1 d d d
1

1 d d d 1.
1

q

w

g g w w q w
w

w q w
w

µ

µ µ

′= − =
−

= = =
−

∫ ∫ ∫

∫ ∫ ∫
 

so that g is a concave distortion function, and hence the weighted TVaR is 
coherent. 

Conversely, the distortion measure with concave distortion function g can be 
expressed by the weighted TVaR. In fact, note that ( ) ( )1q g qφ ′= −  is 
monotone increasing, we define a measure [ ]( ) ( )0, q qν φ= . As in the proof of 
Theorem 2.4 in Kriele & Wolf (2014) we have 

[ ] [ ] ( )1

0
d ,g wX TVaR X wρ µ= ∫  

where 

( ) ( ) ( )d 1 d .w w wµ ν= −  

It can be shown that µ  is a probability measure. In fact, 

( ) [ ]( ) ( ) ( )1 1 1 1

0 0 0 0
d 0, d d d 1.w w w w w g w wµ ν φ ′= = = =∫ ∫ ∫ ∫  

We now give some examples of interesting distortion functions and risk 
measures. 
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Example 3.2 If 4
1 2 3 4 1, , , 0, 1iiw w w w w

=
≥ =∑ , then 

( ) ( ) ( ) ( ) ( )1 2 3 4 ,g x w x w x w x w xαβ β α β αν ν ψ ψ= + + +  

is a distortion function, where , , ,β α β αν ν ψ ψ  are the distortion functions of 
TVaR and VaR at confidence levels β  and α , respectively. Then the 
corresponding risk measure 

[ ] [ ] [ ] [ ] [ ]1 2 3 4 ,g X w TVaR X w TVaR X w VaR X w VaR X
αβ β α β αρ = + + +  

is called the GlueVaR risk measure, which were initially defined by 
Belles-Sampera et al. (2014a) (in the case 4 0w = ) and the closed-form 
expressions of GlueVaR for Normal, Log-normal, Student’s t and Generalized 
Pareto distributions are provided. Two new proportional capital allocation 
principles based on GlueVaR risk measures are studied in Belles-Sampera et al. 
(2014b). 

Although GlueVaR has superior mathematical properties than VaR and TVaR, 
however, the GlueVaR risk measure may also fails to recognize the differences 
between two risks. For example, consider two risks X and Y in Example 3.1, we 
have computed that [ ] [ ]0.95 0.96 100VaR X VaR X= = ,  

[ ] [ ]0.95 0.96 100VaR Y VaR Y= = . [ ] [ ]0.95 0.95 300TVaR X TVaR Y= = ,  
[ ] [ ]0.96 0.96 350TVaR X TVaR Y= = . So that when 0.95α =  and 0.96β = , we 

have [ ] [ ]g gX Y
αβ αβ

ρ ρ= . Thus according to gαβ
ρ , both X and Y bear the same 

risk! However, the maximal loss for Y (1100) is more than double than for loss X 
(500), clearly, risk Y is more risky than risk X. 

Example 3.3 Let [ ]0,1λ∈ , define a distortion function 

( ) ( ) ( ) ( )0 1 ,g x g x g xλ λ λ= + −  

where ( ) ( )0 0: xg x >= 1  and g is an arbitrary distortion function. Note that gλ  
can be rewritten as 

( ) ( ) ( )
0, if 0,

1 , if 0 1.
x

g x
g x xλ λ λ

=
=  + − < ≤

 

In particular, if ( )g x x= , then we get the esssup-expectation convex 
combination distortion function with weight λ  on the essential supremum, 
which was introduced in Bannör & Scherer (2014). The corresponding risk 
measure 

[ ] ( ) ( ) ( )esssup 1 ,g X X E X
λ

ρ λ λ= + −  

which is a convex combination of the essential supremum of X and the ordinary 
expectation of X w.r.t. P. 

If 

( ) ( )

( )

11 , if 0 1 ,
1

1 1 , if 1 1,

x x p
pg x

x p x

α
α β

αβ α α β

 −
− + ≤ ≤ − −=  

 + − + − − < ≤

 

where 0 , 1α β≤ ≤ , 0 1p< <  are constants, then we get 
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[ ] ( ) ( ) [ ]esssup 1 ,g gX X X
λ

ρ λ λ ρ= + −  

where 

[ ] ( ) ( ) [ ] ( ) [ ]1 1 .g p pX E X VaR X TVaR Xρ α β αβ α= − + + −  

As illustration, we consider the risks X and Y in Example 3.1, if 0.95p = , 
then [ ] [ ] 50 250 300g gX Yρ ρ αβ α= = − + . It follows that 

[ ] ( )( )500 1 50 250 300g X
λ

ρ λ λ αβ α= + − − +  

and 

[ ] ( )( )1100 1 50 250 300 .g Y
λ

ρ λ λ αβ α= + − − +  

Taking 
1 , 1, 0
2

λ α β= = = , then [ ] 275g X
λ

ρ =  and [ ] 575g Y
λ

ρ = . Taking 

1
2

λ α β= = = , then [ ] 437.5g X
λ

ρ =  and [ ] 737.5g Y
λ

ρ = . Thus gλ
ρ  can 

measure the differences between two risks X and Y. 

3.3. A Copula-Based Approach 

If F is a distribution function on [ ]0,1 , then F can be used as a distortion 
function. The well-known examples are the PH transform and the dual power 
transform and, more generally, the beta transform; see Wirch & Hardy (1999) 
for details. Similarly, we use this technique to a distribution function on [ ]20,1 . 
We first introduce the notion of copula in the two-dimensional case. 

Definition 3.1. A two-dimensional copula ( ),C u v  is a bivariate distribution 
on the square [ ]20,1  having uniform margins. That is a function 
( ) [ ] [ ]2, : 0,1 0,1C u v →  is right-continuous in each variable such that 
( ) ( )0, ,0 0C v C u= = , ( ),1C u u= , ( )1,C v v=  and for 2 1 2 1,u u v v> > , 

( ) ( ) ( ) ( )2 2 2 1 1 2 1 1, , , , 0.C u v C u v C u v C u v− − + ≥  

For an introduction to copula theory and some of its applications, we refer to 
Joe (1997), Denuit et al. (2005) and Nelsen (1999). 

The well-known examples of copulas are ( ) ( ), min ,C u v u v+ = , 
( ),C u v uv⊥ =  and ( ) ( ), max 1,0C u v u v− = + −  describing, respectively, 

comonotone dependence, independence and countermonotone dependence 
between two random variables X and Y. The copula version of the 
Fréchet-Hoeffding bounds inequality tells us 

( ) ( ) ( ), , , .C u v C u v C u v− +≤ ≤  

Any copula has the following decomposition (cf. Yang et al. (2006)) 

( ) ( ) ( ) ( ) ( ), , , , , ,C u v C u v C u v C u v lG u vα β γ+ ⊥ −= + + +  

where , , , 0lα β γ ≥ , 1lα β γ+ + + = . Here G is a copula which called the 
indecomposable part. 

For a given two-dimensional copula ( ),C ⋅ ⋅ , define one-parameter family  

{ } ( ]0,1p p
g

∈
 by ( ) ( ),

p

C u p
g u

p
=  or ( ),C p u

p
. Clearly, for each p, pg  is a right 
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continuous distortion function. For example, 

 ( ) ( ),
p

C u p
g u u

p

⊥

= =  is continuous and both convex and concave, the 

associated risk measure is EX ; 

 ( ) ( )
1

,1
min ,1

1 1p
C u p xg u

p p

+

−

−  
= =  

− − 
 is continuous and concave, the 

corresponding risk measure is pTVaR ; 

 ( ) ( ), 1max ,0p
C u p u pg u

p p

−  + −
= =  

 
 is continuous and convex, the 

corresponding risk measure is [ ] [ ]
0

1 d
p

p
g qX VaR X q

p
ρ = ∫ . 

Conversely, if { } ( ]0,1p p
g

∈
 is a family of distortion functions, then, however, 

( ) ( ), PC u p pg u=  is not a copula in general; A sufficient condition can be 
found in Cherubini & Mulinacci (2014). 

We give below the most common bivariate copulas and the corresponding 
distortion functions. 
 The Archimedean copulas: 

( ) [ ] ( ) ( )( )1,C u v u v−
Ψ = Ψ Ψ +Ψ  

for some generator ( ]: 0,1 R+Ψ →  with ( )1 0Ψ =  such that Ψ  is convex. 
The pseudo-inverse of Ψ  is the function [ ]1−Ψ  with [ ] [ ]1Dom 0,−Ψ = ∞  and 

[ ] [ ]1Ran 0,1−Ψ =  given by 

[ ] ( ) ( ) ( )
( )

1
1 , if 0 0 ,

0, if 0 .
t t

t
t

−
− Ψ ≤ ≤ ΨΨ = 

Ψ ≤ ≤ ∞
 

If Ψ  is twice differentiable and ( )0Ψ = ∞ , then CΨ  is componentwise  

concave if, and only if 
1
′Ψ

 is concave, where ′Ψ  is the derivative of Ψ  (see  

Dolati & Nezhad (2014)). Aa a consequence, we have 
Theorem 3.1 For each 0v > , the distortion function  

( ) ( ) ( )( )11
vg u u v

v
−= Ψ Ψ +Ψ  

is concave if, and only if 
1
′Ψ

 is concave. 

Some examples of the Archimedean copulas and the corresponding distortion 
functions: 

a) The Clayton copula with parameter 0α >  is generated by  

( ) ( )1 1t t α

α
−Ψ = −  and takes the form 

( ) ( ) 1
, 1 , > 0.C u v u v

αα α
α α

−− −= + −  

The limit of ( ),C u vα  for 0α ↓  and α ↑ ∞  leads to independence and 
comonotonicity respectively (Nelsen, 1999). The corresponding distortion 
functions are 
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( ) ( ) ( ]
1

,
1 1 , 0, 0,1 .vg u u v v
v

αα α
α α

−− −= + − > ∈  

In particular, if = 1α , we get the proportional odds distortion which is found 
by Cherubini & Mulinacci (2014): 

( ) ( )1, .
1v

ug u
u v u

=
+ −

 

Since 
( ) ( ) 11 1 0t
t

αα α −
′′ 
= − + <  ′Ψ 

, ( ),vg uα  is concave. 

b) In case ( ) e 1ln
e 1

t

t
α

α

−

−

 −
Ψ = −  

− 
, we get the Frank copulas: 

( )
( )( )e 1 e 11, ln 1 , 0.

e 1

u v

C u v
α α

α α α
α

− −

−

 − −
 = − + ≠
 − 

 

The corresponding distortion functions are 

( )
( )( )

,

e 1 e 11 ln 1 .
e 1

u v

vg u
v

α α

α αα

− −

−

 − −
 = − +
 − 

 

Since 
( )

1 e t

t
αα

′′ 
= −  ′Ψ 

, ( ),vg uα  is convex if 0α <  and concave if 0α > . 

c) In case ( ) 1 1t t α−Ψ = − , we get the Pareto survival copulas: 

( ) ( )1 1ˆ , 1 , 0.C u v u v
αα α

α α
−− −= + − >  

The corresponding distortion functions are 

( ) ( )1 1
,

1 1 .vg u u v
v

αα α
α

−− −= + −  

Since 
( )

1 11 11 0t
t

α

α
−

′′   = − + <    ′Ψ   
, ( ),vg uα  is concave. 

d) In case ( ) ( ) [ )1 1
ln , 1,1

t
t

t
α

α
+ −

Ψ = ∈ − , we get the Ali-Mikhail-Haq 

copulas: 

( ) ( )( )
, .

1 1 1
uvC u v

u vθ α
=

− − −
 

The corresponding distortion functions: 

( ) ( )( ), .
1 1 1v

ug u
u vθ α

=
− − −

 

Since 
( )

1 2
1t

α
α

′′ 
=  ′Ψ − 

, ( ),vg uθ  is convex if [ ]1,0α ∈ −  and concave if 

[ )0,1α ∈ . 
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e) In case ( ) ( )lnt t αΨ = − , we get the Gumbel-Hougaard copulas:  

( ) ( ) ( )( ){ }1
, exp ln ln , 1.C u v u v

αα α
α α= − − + − ≥  

The corresponding distortion functions: 

( ) ( ) ( )( ){ }1

,
1 exp ln ln .vg u u v
v

αα α
α = − − + −  

The value 1α =  gives independence and the limit for α ↑ ∞  leads to 
comonotonicity. Since 

( ) ( ) 2 2

2

0, if 0 1,1 2,
1 1 2ln 1 0, if e 1, 2,

ln
0, if 0 e , 2,

t
t t

t t t
t

α α

α

α
α α

α
α

α

− −

−

≤ < ≤ ≤ ≤′′  − −  = − − + > < ≤ >    ′Ψ    < < < >

 

( ),vg uα  is concave if 1 2α≤ ≤  and, if 2α > , ( ),vg uα  is convex on ( 2e ,1α−   
and concave on ( )20,e α− . 

Among other copulas, which do not belong to Archimedean family, it is worth 
to mention the following three copulas, given in the bivariate case as: 
 The Farlie-Gumbel-Morgenstern copulas: 

( ) ( )( ) [ ], 1 1 , 1,1 ,C u v uv uv u vα α α= + − − ∈ −  

The corresponding distortion functions are 

( ) ( )( ) [ ] [ ], 1 1 , 1,1 , 0,1 ,vg u u u u v vα α α= + − − ∈ − ∈  

which is convex if [ ]1,0α ∈ −  and concave if [ ]0,1α ∈ . 
 The Marshall-Olkin copulas: 

( ) { } [ ]1 1
, , min , , , 0,1 .C u v u v uvα β

α β α β− −= ∈  

Note that this copula is not symmetric for α β≠ . The corresponding 
distortion functions are 

( ) { } [ ] ( ]1
, , min , , , 0,1 , 0,1 ,vg u u uv vα β

α β α β− −= ∈ ∈  

which is concave. In particular, ( ) ( ),0, 0, ,v vg u g u uα β= = , 

( )1,1, min 1, .v
ug u
v

 =  
 

 

 The normal copulas: 

( ) ( ) ( )( )1 1, , ,C u v u vρ ρ
− −= Φ Φ Φ  

where ρΦ  is a bivariate normal distribution with standard normal marginal 
distributions and the correlation coefficient 1 1ρ− < < , 1−Φ  is the inverse 
function of the standard normal distribution. The corresponding distortion 
functions: 

( ) ( ) ( )( )1 1
,

1 , .vg u u v
vρ ρ

− −= Φ Φ Φ  

4. Tail-Asymptotics for VaR 

Subadditivity is an appealing property when aggregating risks in order to 
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preserve the benefits of diversification. Subadditivity of two risks is not only 
dependent on their dependence structure but also on the marginal distributions. 
Value at risk is one of the most popular risk measures, but this risk measure is 
not always subadditive, nor convex, exception of elliptically distributed risks. 
This family consists of many symmetric distributions such as the multivariate 
normal family, the multivariate Student-t family, the multivariate logistic family 
and the multivariate exponential power family, and so on. A recent development 
in the VaR literature concerns the subadditivity in the tails (see Daníelsson et al. 
(2013)) which demonstrate that VaR is subadditive in the tails of all fat tailed 
distributions, provided the tails are not super fat. However, in most practical 
models of interest the support of loss is bounded so that the maximum loss is 
simply finite. We will also show that for this class losses VaR is subadditive in 
the tail. We can illustrate the ideas here with three simple examples. In Examples 
4.1 and 4.3, X and Y are independent, while in Example 4.2, X and Y are 
dependent. 

Example 4.1 Let X and Y be i.i.d. random variables which are Bernoulli (0.02) 
distributed, i.e. ( ) ( )1 1 0 0.02P X P X= = − = = . Then 

( ) ( ) ( ) 20 0 0 0.98 0.9604,P X Y P X P Y+ = = = = = =  

( ) ( ) ( ) ( ) ( )1 1 0 0 1 0.0392,P X Y P X P Y P X P Y+ = = = = + = = =  

( ) ( ) ( )2 1 1 0.0004.P X Y P X P Y+ = = = = =  

Dhaene et al. (2006) verified that VaR is not subadditive since 
[ ] [ ]0.975 0.975 0VaR X VaR Y= =  and [ ]0.975 1VaR X Y+ = . However, for 0.98p ≥ , 

[ ] [ ] 1p pVaR X VaR Y= =  and 

[ ] 1, if 0.98 0.9996,
2, if 0.9996.p

p
VaR X Y

p
≤ <

+ =  ≥
 

Thus for 0.98p ≥ , 

[ ] [ ] [ ].p p pVaR X Y VaR X VaR Y+ ≤ +  

Example 4.2 Suppose we have losses X and Y, both dependent on the same 
underlying Uniform (0,1) random variable U as follows. 

1000, if 0.04
0, if 0.04

U
X

U
≤

=  >
 

0, if 0.96
1000, if 0.96

U
Y

U
≤

=  >
 

Note that 

( ) ( ) ( )0 0, 0 0.04, 0.96 0.92,P X Y P X Y P U U+ = = = = = > ≤ =  

( ) ( ) ( )1000 0, 1000 1000, 0 0.08.P X Y P X Y P X Y+ = = = = + = = =  

Hardy (2006) found that [ ] [ ]0.95 0.95 0VaR X VaR Y= = , [ ]0.95 1000VaR X Y+ = . 
Thus 

[ ] [ ] [ ]0.95 0.95 0.95 .VaR X Y VaR X VaR Y+ ≥ +  
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However, for any 0.96α > , [ ] [ ] 1000VaR X VaR Yα α= = ,  
[ ] 1000VaR X Yα + = . Thus, 

[ ] [ ] [ ].VaR X Y VaR X VaR Yα α α+ ≤ +  

Example 4.3 Let X and Y be i.i.d. random variables which are Uniform (0,1) 
distributed. Then 

( )
( )

2

2

0, if 0,
1 , if 0 1,
2

11 2 , if 1 2,
2

1, if 2,

X Y

z

z z
F z

z z

z

+

<

 ≤ <
= 
 − − ≤ <

 ≥

 

and for ( ]0,1p∈ , [ ] [ ]p pVaR X VaR Y p= = , 

[ ]
( )

12 , if 0, ,
2

12 2 1 , if ,1 .
2

p

p p
VaR X Y

p p

  ∈   + = 
  − − ∈   

 

Thus for 
1 ,1
2

p  ∈   
, 

[ ] [ ] [ ].VaR X Y VaR X VaR Yα α α+ ≤ +  

Generally, we have the following result. 
Theorem 4.1 If the risks 1 2, , , kX X X  have finite upper endpoints, then 

[ ]
1

1
1

limsup 1.
k

p ii
k

p p ii

VaR X

VaR X
=

→
=

 
  ≤
∑

∑
 

Proof The proof is very simple. Denote by ( ) ( ){ }esssup sup : 1i iX x P X x= ≤ < . 
Then ( )esssup iX < ∞  and ( )( )esssup 1, 1,2, ,i iP X X i k≤ = =  , which lead to 

( )
1 1

esssup 1.
k k

i i
i i

P X X
= =

 ≤ = 
 
∑ ∑  

Hence 

( )
1 1

esssup esssup ,
k k

i i
i i

X X
= =

  ≤ 
 
∑ ∑  

and the result follows. 
Next theorem consider the random variables 1 2, , , kX X X  that are not 

necessarily has finite upper endpoint, we first recall the notion of (extended) 
regularly varying function: 

Definition 4.1 A function f is called regularly varying at some point x−  (or 
x+ , respectively) with index Rα ∈  if for all 0t > , 

( )
( )

lim
s x

f st
t

f s
α

↑
=  

https://doi.org/10.4236/jfrm.2018.71002


C. C. Yin, D. Zhu 
 

 

DOI: 10.4236/jfrm.2018.71002 28 Journal of Financial Risk Management 
 

(or ( )
( )

lims x

f st
t

f s
α

↓ = , respectively). We write xf Rα

−
∈  ( xf Rα

+
∈ , 

respectively). For 0α =  we say f is slowly varying; for α = −∞  rapidly 
varying. 

Definition 4.2 Assume that F is the distribution function of a nonnegative 
random. We say F belongs to the extended regular variation class, if there are 
some 0 α β< ≤ < ∞  such that 

( )
( )

( )
( )

liminf limsup , for all 1,
x x

F sx F sx
s s s

F x F x
β α− −

→∞ →∞
≤ ≤ ≤ ≥  

or equivalently 

( )
( )

( )
( )

liminf limsup , for all 0 1.
x x

F sx F sx
s s s

F x F x
α β− −

→∞ →∞
≤ ≤ ≤ < ≤  

We write ( ),F ERV α β∈ − − . 
A standard reference to the topic of (extended) regular variation is Bingham et 

al. (1987) while main results are summarized by Embrechts et al. (1997). 
Theorem 4.2 We assume that 1 2, , , kX X X  have the same absolutely 

continuous marginal distributions F with infinite upper endpoint. 
1) If 

( )1

1

lim 1,
k

ii

z

P X z

zP X
k

=

→∞

>
<

 > 
 

∑
                    (4.1) 

then 

[ ]
1

1
1

lim 1;
k

p ii
kp

p ii

VaR X

VaR X
=

→
=

 
  <
∑

∑
                   (4.2) 

(2) If 

( )1

1

lim 1,
k

ii

z

P X z

zP X
k

=

→∞

>
=

 > 
 

∑
 

then 

[ ]
1

1
1

lim 1;
k

p ii
kp

p ii

VaR X

VaR X
=

→
=

 
  =
∑

∑
 

3) If 

( )1

1

lim 1,
k

ii

z

P X z

zP X
k

=

→∞

>
>

 > 
 

∑
 

then 

[ ]
1

1
1

lim 1.
k

p ii
kp

p ii

VaR X

VaR X
=

→
=

 
  >
∑

∑
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Proof We prove (1) only since the other cases follow immediately in the same 
way. Because all the marginal distributions are absolutely continuous, so we have 
for any ( )0,1p∈ , 

[ ]( )1 1
1 1

1 .
k k

p i p i
i i

P X VaR X P X VaR X p
= =

  > = > = −    
∑ ∑  

This, together with (4.1), implies that 

[ ]( )1 1

1

1 1

lim 1.
1

p

p k
p ii

P X VaR X

P X VaR X
k

→

=

>
<

  >   
∑

                (4.3) 

The absolute continuity of F implies that F  is continuous and strictly 
monotone decreasing. Then from (4.3) we have 

[ ]1

1

1

lim 1,1
p

p k
p ii

VaR X

VaR X
k

→

=

>
 
 ∑

 

which is (4.2). This completes the proof. 
Example 4.4 Suppose that each iX  is regularly varying with index 0α− < . 

When the iX  are mutually independent, it follows from (Feller, 1971: p. 279) 
that 

( )1

1

lim .
k

ii

s

P X s k
s kP X
k

α

=

→∞

>
=

 > 
 

∑
 

Thus we get 

[ ]
1

1
1

1, if 1,
lim 1, if 1,

1, if 1.

k
p ii

kp
p ii

VaR X

VaR X

α
α
α

=

→
=

< > 
  = =
> <

∑
∑

 

Suppose that the iX  are comonotonic, i.e. ( )1 1kP X X= = = , then 

( )1

1

lim 1.
k

ii

s

P X s

sP X
k

=

→∞

>
=

 > 
 

∑
 

So that in the case 1α =  the result for the independent and the comonotonic 
case are the same. 

The following result generalizes the result in Jang & Jho (2011) in which all 

iY ‘s are assumed identically distributed. 
Theorem 4.3 Suppose 1, , kY Y  are nonnegative random variables (but not 

necessarily independent or identically distributed.) If 1Y  has distribution F 
satisfying ( ) ( )1 , 0, 0F x x L x xα α−− = > > , where 0L R∞∈  is slowly varying at  

infinity. If ( )
( )
i

i

P Y x
c

F x
>

→  and 
( )

( )
,

0,i jP Y x Y x
i j

F x

> >
→ ≠ , as x →∞ ,  

, 1, 2, ,i j k=  , then 
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[ ]
1

1
1

1, if 1,
lim 1, if 1,

1, if 1.

k
p ii

kp
p ii

VaR Y

VaR Y

α
α
α

=

→
=

< > 
  = =
> <

∑
∑

 

Proof It follows from Lemma 2.1 in Davis & Resnick (1996) that 

( )
( )

1

1
, as .

1

k
kii

i
i

P Y x
c x

F x
=

=

>
→ →∞

−

∑
∑  

This leads to 

( )
( )

1 1

1 1
1 1

lim .

k k
ki p ii i

ikp i
p ii

P Y VaR Y
c

P Y VaR Y

= =

→ =
=

 >   =
 >  

∑ ∑
∑

∑
            (4.4) 

Because 

[ ]( )1 1
1 1

1 .
k k

p i p i
i i

P Y VaR Y P Y VaR Y p
= =

  > = > = −    
∑ ∑  

Thus from (4.4) that 

[ ]( )
( )

1 1

1 1
1 1

lim ,
kp

ikp i
p ii

P Y VaR Y
c

P Y VaR Y→ =
=

>
=

 >  
∑

∑
 

which is equivalent to 

[ ]( )

( )
1 1

11

1 1 1

lim 1.p

p
k k

i p ii i

P Y VaR Y

P Y c VaR Yα
→ −

= =

>
=

 
 >   

 
∑ ∑

 

This implies that 

[ ]

( )
1

11

1 1

lim 1,p

p
k k

i p ii i

VaR Y

c VaR Yα
→ −

= =

=
 
 ∑ ∑

 

since F  is continuous and strictly monotone decreasing. Note that 1 = 1c , 
[ ] [ ]1

1 ~i p p ic VaR Y VaR Yα  (as 1p → ) and 
1

11

1
1

1
1

, if 1,

, if 1,

, if 1,

k
ii

k
k

i ii
i k

ii

c

c c

c

α
α

α

α

α

α

=

=
=

=

< >
  = = 

  
> <

∑
∑ ∑

∑
 

completing the proof. 
Remark 4.1 The above result is obtained by Embrechts et al. (2009) for 

identically distributed and Archimedean copula dependent iY ‘s. However, our 
result can not obtained from their’s due to the following fact: The famous 
Farlie-Gumbel-Morgenstern family, does not belong to Archimedean family, 
which has the form 

( ) ( ) ( ) ( ) ( )( )1 2 1 2, 1F x y F x F y F x F yα= +  

where 1 2,F F  are two distributions and [ ]1,1α ∈ −  is a constant. When  
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1 2F F= , it satisfying 
( )
( )1

,
0

F x x
F x

→  as x →∞ . 

In the next theorem we consider the extended regularly varying instead of 
regularly varying. 

Theorem 4.4 Suppose 1, , kY Y  are nonnegative random variables with the 
common identical distribution function F. If ( ),F ERV α β∈ − −  and 
( )

( )
,

0,i jP Y x Y x
i j

F x

> >
→ ≠ , as x →∞ , , 1, 2, ,i j k=  , then 

1) If 1β < , 

[ ]
1

1
1

limsup 1;
k

p ii
k

p p ii

VaR Y

VaR Y
=

→
=

 
  >
∑

∑
 

2) If 1α > , 

[ ]
1

1
1

liminf 1;
k

p ii
kp

p ii

VaR Y

VaR Y
=

→
=

 
  <
∑

∑
 

3) If 1α β= = , 

[ ]
1

1
1

lim 1.
k

p ii
kp

p ii

VaR Y

VaR Y
=

→
=

 
  =
∑

∑
 

Proof It follows from Lemma 2.2 in Zhang et al. (2009) that 

( )
( )

1 , as .
1

k
iiP Y x

k x
F x
=

>
→ →∞

−

∑
 

This leads to 

( )
( )

1 1

1
1 1

lim ,

k k
i p ii i

kp
p ii

P Y VaR Y
k

P Y VaR Y

= =

→
=

 >   =
 >  

∑ ∑

∑
 

from which and using the same argument as that in the proof of Theorem 4.3 
leads to 

[ ]( )
( )

1 1

1
1 1

lim .p

kp
p ii

P Y VaR Y
k

P Y VaR Y→
=

>
=

 >  ∑
                (4.5) 

If 1β < , then 

( )

1

1

11

1

limsup 1.

k
p ii

p
k

p ii

F k VaR Y

k F VaR Y

β

β

β

−

=

−
→ −

=

 
    

  ≤
 

     
 

∑

∑
 

This and (4.5) imply that 
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[ ]( )1

11

1

limsup 1.p

p k
p ii

F VaR Y

F k VaR Yβ
−→

=

≥
 

    
 

∑
 

It follows that 

[ ]
1

1

1
1

limsup 1.p
kp

p ii

k VaR Y

VaR Y

β

→
=

≤
 
 ∑

                   (4.6) 

Thus 

[ ]1

1
1

limsup 1.p
kp

p ii

kVaR Y

VaR Y→
=

<
 
 ∑

 

Similarly, if 1α > , 

[ ]
1

1

1
1

liminf 1p
kp

p ii

k VaR Y

VaR Y

α

→
=

≥
 
 ∑

                   (4.7) 

and hence 

[ ]1

1
1

liminf 1.p
kp

p ii

kVaR Y

VaR Y→
=

>
 
 ∑

 

If 1α β= = , then by (4.6) and (4.7) one has 

[ ]1

1
1

lim 1.p
kp

p ii

kVaR Y

VaR Y→
=

=
 
 ∑

                    (4.8) 

This ends the proof of Theorem 4.4. 
To give applications of our results we employ extreme value theory techniques. 

A distribution function F (or the rv X) is said to belong to the Maximum 
Domain of Attraction (MDA) of the extreme value distribution H if there exist  
constants > 0,n nc d R∈  such that ( ){ }( )1

1max , , d
n n nc X X d H− − → . We  

write ( )X MDA H∈  or ( )F MDA H∈ . According to the Fisher-Tippett 
theorem (see Theorem 3.2.3 in Embrechts et al. (1997)) H belongs to one of the 
three standard extreme value distributions: 

( ) { }
0, if 0,

Frechet type : 0.
exp , if 0,

x
x

x xα α α−

≤Φ = > − >
 

( ) ( ){ }exp , if 0,
Weibull type : 0.

1, if 0,

x x
x

x

α

α α
 − − ≤Ψ = >
 >

 

( ) { }Gumbel type : exp e , .xx x R−Λ = − ∈  

Let Fx  denote the right-endpoint of the support of F: ( ){ }inf : 1Fx x F x= = . 
Then we have the following results (see Embrechts et al. (1997: pp. 132-157)). 
 Fréchet case: For some 0α > , ( )F MDA F Rα α

∞
−∈ Φ ⇔ ∈ . 
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Examples are Pareto, Cauchy, Burr, Loggamma and Stable with index 2β < . 
 Weibull case: For some 0α > , ( ) FF MDA xα∈ Ψ ⇔ < ∞ ,  

( )1FF x x R α
∞
−− ∈ . 

Examples are Uniform and Beta distribution. 
 Gumbel case: ( ) FF MDA xα∈ Λ ⇔ ≤ ∞  and there exists a positive 

measurable function a such that for t R∈  

( )( )
( )

lim e .
F

t

x x

F x ta x
F x

−

↑

+
=                     (4.9) 

Examples are Exponential-like, Weibull-like, Gamma, Normal, Lognormal, 
Benktander-type-I and Benktander-type-II. 

Remark 4.2 1) For 0α > , if ( )1 2, , , kX X X MDA α∈ Ψ , in view of Weibull 
case above they are all have finite supports. It follows from Theorem 4.1, pVaR  
is subadditive for p is sufficiently close to 1. 

2) For 0α > , if ( )1 2, , , kX X X MDA α∈ Φ  and are identically distributed, 
( )1 2, , , kX X X− − −  has an Archimedean copula with generator ψ , which is 
regularly varying at 0 with index 0β− < . We apply (2.2) in Alink et al. (2004) 
and Definition 4.1 to obtain 

( ) ( )
( )

( )

( ) ( )

( )( )( )

( )

1 1 1

1
1 1

1

1

1
1

1

lim lim

, lim

,
lim

1, if 1,
, 1, if 1,

1, if 1,

k k
i ii i

z z

k z

k

z

k

P X z P X z P X z
z zP X zP X P X
k k

P X z
q

zP X
k

P X z q

zP X
k

k q

α

α

β α

β α

α
β α α

α

= =

→∞ →∞

→∞

−

→∞

−

> > >
=

>   > >   
   

>
=

 > 
 

>
=

 > 
 
< >
= = =
> <

∑ ∑

 

where in the last step we have used Lemma 3.1(d) in Embrechts et al. (2009) 
which states that 

{ } ( ) { }min , , max , .kk k q k kα αβ α≤ ≤  

This, together with Theorem 4.2 we recover the result Theorem 2.5 in 
Embrechts et al. (2009). 

3) If ( )1 2, , , kX X X MDA α∈ Λ  have common distribution F, 
( )1 2, , , kX X X− − −  has an Archimedean copula with generator ψ , which is 
regularly varying at 0 with index 0β− < . We apply (2.6) in Alink et al. (2004) 
to obtain  

( )
( )

1
1

1

lim e ,
k

ii Gk
kz

P X z
q

zP X
k

β
−=

→∞

>
=

 > 
 

∑
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where 

( )
1

1

11
11

d e d d .
d d

i
k

ii

k k
xG

k kx
ik

q x x
x x

β
ββ

=

−
−

≤
=∑

 =  
 
∑∫ 



 

The constant ( )
1

eG k
kq β ≤  is strictly increasing in β  with 

( ) ( )
1

0
lim 0, lim e .G G k

k kq q
β β

β β
→ →∞

= =  

For more details, see Alink et al. (2004) for the case 2k =  and Chen et al. 
(2012) for general case. Thus by Theorem 4.2, 

[ ]
1

1
1

lim 1.
k

p ii
kp

p ii

VaR X

VaR X
=

→
=

 
  ≤
∑

∑
 

In particular, when α →∞ , 

[ ]
1

1
1

lim 1
k

p ii
kp

p ii

VaR X

VaR X
=

→
=

 
  =
∑

∑
 

5. Tail-Subadditivity for Distortion Risk Measures 

The tail-subadditivity property for GlueVaR risk measures were initially defined 
by Belles-Sampera et al. (2014a) and the milder condition of subadditivity in the 
tail region is investigated. Furthermore, they verified that a GlueVaR risk 
measure is tail-subadditive if its associated distortion function ( )1 2,

,
h hk uβ α  is 

concave in [ )0,1 α− , where parameters α  is confidence level and β  is an 
extra confidence level such that 0 1α β≤ ≤ ≤  and, 

( ) ( )1 2

1

, 2 1
, 1

, if 0 1 ,
1

1 , if 1 1 ,

1, if 1 1,

h h

h u u

h hk u h u u

u

β α

β
β

β β α
β α

α

 ≤ < − −
−

= + − + − ≤ < −
−

 − ≤ ≤



 

where 1h  and 2h  are two distorted survival probabilities at levels 1 β−  and 
1 α− , respectively. Here 1 20 1h h≤ ≤ ≤ . We note, however, from their proof to 
Theorem 6.1 that the result will hold for any distortion function that is concave 
in [ )0,1 α− , not restricted to ( )1 2,

,
h hk uβ α . In this section we state the 

corresponding result without proof. As in Belles-Sampera et al. (2014a), for a 
given confidence level α , the tail region of a random variable Z is defined as 

( ){ }, |ZQ w Z w sα α= > ⊆ Ω , where ( ){ }inf | 1Zs z F zα α= ≤ −  is the α-quantile. 
For simplicity, we use the notation ( ) ( ):Z ZS z F z= . 

Theorem 5.1 For a confidence level [ ]0,1α ∈  and two risks ,X Y  defined 
on the same probability space. If , , ,X Y X YQ Q Qα α α + ≠ ∅   and g is a concave 
distortion function in [ ]0,1 α− , then the distortion risk measure gρ  is 
tail-subadditive. That is 
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( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

0

0 0

0

0 0

0

0 0

1 d d

1 d d

1 d d ,

X Y X Ym m

X Xm m

Y Ym m

g S z z g S z z

g S z z g S z z

g S z z g S z z

α α

α α

α α

∞

+ +∧ ∨

∞

∧ ∨

∞

∧ ∨

 − + 

 ≤ − + 

 + − + 

∫ ∫

∫ ∫

∫ ∫

 

where ( ) ( ) ( ){ }sup , , .m s X s Y s X Yα α α α= +  

Example 5.1 Consider the distortion functions associated with the 
Gumbel-Hougaard copulas (cf. Section 3.3): 

( ) ( ) ( )( ){ }1

,
1 exp ln ln .vg u u v
v

αα α
α = − − + −  

If 2α > , then ( ),vg uα  is concave on ( )20,e α−  and convex on ( 2e ,1α−  . 
Thus the distortion risk measure ( ),vg uα

ρ  is tail-subadditive. 

6. Conclusion 

In this paper, we give three methods to construct new class of distortion 
functions and distortion risk measures and then we investigate the tail 
asymptotics of distortion risk measures for the sum of possibly dependent risks 
with emphasis on VaR. We study the concept of tail subadditivity for distortion 
risk measures and give sufficient conditions for a distortion risk measure to be 
tail subadditive. The multivariate tail distortion risk measure and more 
applications of the risk measure will be investigated in the coming research. 
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