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Abstract 
This paper analyzes the predictive performance of the Conditional Autoregressive Value at Risk 
(CAViaR) developed by Engle & Manganelli (2004) for major equity markets during tranquil and 
turbulent periods. The CAViaR model shifts the focus of attention from the distribution of returns 
directly to the behaviour of the quantile. We compare the predictive performance of four alterna-
tive CAViaR specifications, namely Adaptive, Symmetric Absolute Value, Asymmetric Slope and In-
direct GARCH(1,1) models due to Engle & Manganelli (2004) along with the improved asymmetric 
CAViaR (I-CAViaR) model due to Huang et al. (2009). We employ daily returns for six stock mar-
kets indices, namely S & P500, FTSE100, NIKKEI225, DAX30, CAC40 and Athens Exchange General 
index for the period January 2, 1995 to August 23, 2013. We compare the predictive performance 
of the alternative specifications for three subperiods: before, during and after the recent 
2007-2009 financial crisis. The comparison is done with the use of a battery of tests which in-
cludes unconditional and conditional coverage tests, the Dynamic Quantile high-order indepen-
dence test and the White (2000) empirical coverage probability and predictive quantile loss tests. 
The main findings of the present analysis is that the CAViaR quantile regression models and the 
I-CAViaR model have shown significant success in predicting the VaR measure for various periods 
although this performance varies over the three periods before, during and after the 2007-2009 
financial crisis. 
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1. Introduction 
The global financial crisis of 2007-2009 has called once again into question financial risk management practices, 
and one key issue is whether risk measures can actually be forecasted accurately enough to accomplish this task. 
Thus the current financial crisis has indeed highlighted once again the importance of risk management where in-
stitutions such as banks and major hedge fund companies are found to inevitably fail from time to time as we 
have witnessed the last twenty years. Quantitative risk measure forecasting has become, at least since the market 
crash in 1987 and then as a consequence of the financial crisis of 1997-1998, as well as the bankruptcy of sever-
al financial institutions such as the BCCI and Barings international banks that led to increased price volatility 
and financial uncertainty the benchmark for measuring market risk. Such financial uncertainty has increased the 
likelihood of financial institutions suffering substantial losses as a result of their exposure to unpredictable mar-
ket changes. These events have made investors become more cautious in their investment decisions, while it has 
also led to an increased need for more careful study of price volatility in stock markets. Moreover, the recent 
crisis has shown the necessity of having adequate risk-management protocols in order to achieve greater resi-
lience, and hence, the need to improve the existing procedures for quantifying the market risk. The present paper 
is motivated mainly by this concern. 

In bank regulation, the effectiveness of capital requirements in preventing funding shortfall rests upon the es-
timation accuracy of market risk measures. Market risk is one of the four types of risk that financial institutions 
can expose them to. It is considered the most significant one since it represents potential economic loss caused 
by the reduction in the market value of a portfolio. The existence of market risk and recent financial disasters 
has raised the need for the development of practical risk management tools for financial institutions. This need 
had been reinforced by the Basel Committee of Banking Supervision (1996) which called for the use of internal 
market risk management to capital requirement by financial institutions such as banks and investment firms.1 
The Basel II Accord is designed to monitor and encourage sensible risk-taking using appropriate models to cal-
culate VaR and daily capital changes. For a financial institution, measuring the market risk it faces is an essen-
tial task. Specifically, a possible method of measurement is the evaluation of losses likely to be incurred when 
the price of the portfolio’s assets declines. 

Value-at-Risk has become the standard tool used by financial analysts to measure market risk. VaR is defined 
as a certain amount lost on a portfolio of financial assets with a given probability over a fixed number of days. 
The confidence level represents “extreme market conditions” with a probability that is usually taken to be 99% 
or 95%. This implies that only 1% (5%) of the cases will lose more than the reported VaR of a specific portfolio. 
VaR is widely used because of its simplicity. Essentially, the VaR provides a single number that represents 
market risk and therefore it is easily understood.2 

Although the VaR is conceptually a simple measure of market risk, there exists a controversy with respect to 
the suitability of the alternative existing techniques employed to estimate the VaR. Indeed, the measurement of 
VaR is a very interesting statistical problem. Artzner et al. (1997, 1999) have derived a set of axioms that speci-
fy a coherent risk measure. Thus, a risk measure must possess the following characteristics. First, it should not 
exceed the maximum possible loss which can occur. Second, the proposed risk measure should be greater than 
the mean loss, implying capital adequacy to cover losses. Third, in the event that there is a proportional change 
in the loss, then we require the risk measure to change proportionally as well. Finally, it must satisfy the proper-
ty of superadditivity, implying that the risk measure calculated for two separate losses should be equal to the risk 
measure calculated on the sum of the two portfolios. As Boyle et al. (2005), Alexander et al. (2006) and Longin 
(2001) among others emphasized, the VaR methodology had certain limitations since it did not satisfy the prop-
erties of subadditivity and excess of the mean loss. Given these reservations regarding the use of the VaR as a 
measure for market risk, several researchers have developed alternative risk measures.3 

Calculating the VaR requires accurate knowledge of the distribution of extreme events. This is a difficult task 
since the distribution of portfolio returns is not constant over time and, given that VaR is nothing more than a 
specific quantile of future portfolio values subject to current information, we must find an appropriate model for 

 

 

1For a detailed analysis see the Basel Committee on Banking Supervision’s (1996), “Amendment to the Capital Accord to Incorporate Mar-
ket Risks”. Duffie & Pan (1997), Alexander (2005) and Drzik (2005) provide a comprehensive overview of value at risk measures. 
2See also Bank for International Settlements (1988, 1999a,b,c, 2001). Jimenez-Martin (2009) and McAleer et al. (2013) provide a more re-
cent evaluation of managing value-at-risk under the provisions of the Basle II accord. 
3CVaR is an alternative risk measure that satisfies the coherency criteria by Artzner et al. (1997, 1999). Its advantage over VaR measures is 
that it focuses on both the frequency and the size of extreme events. 
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time varying conditional quantiles. This crucial issue is coupled with the need for providing accurate estimates 
of the chosen distribution of portfolio returns. 

During the last two decades a large number of alternative models have been developed to estimate VaR. 
These alternative methodologies have mainly focused on modeling the entire distribution of returns and are 
based on the strict assumptions of normality or i.i.d. returns. However, as Engle & Manganelli (2004) argue, if 
we do not correctly estimate the underlying market risk then this can lead to an allocation of capital below 
first-best and that can affect the profitability and/or the financial stability of the corresponding bank or invest-
ment firm. Engle & Manganelli (2004) have proposed an alternative approach that models not the entire distri-
bution but rather focuses on the regression quantile which does not require the above mentioned strict assump-
tions. This methodology, which is called Conditional Autoregressive Value at Risk (CAViaR), uses an autore-
gressive process in order to model the evolution of the regression quantile over time. The estimation of the un-
known parameters is done with the use of the framework suggested by Koenker & Bassett (1978). Furthermore, 
Engle & Manganelli (2004) prove that these estimators are asymptotically efficient and consistent. Finally, they 
develop the Dynamic Quantile test which is used to examine the quality of the CAViaR results.4 

The main objective of this paper is to investigate the predictive performance of various types of the CAViaR 
specifications for stock market returns during tranquil and turbulent periods. The choice of this particular semi-
parametric method is motivated by the fact that CAViaR does not require any assumption on the distribution of 
a time series and computes the VaR directly by quantile regression, implying that the model allows the time se-
ries to switch from one stochastic process to another. We estimate and perform an evaluation of the predictive 
performance of two of the four alternative CAViaR specifications, namely, Symmetric Absolute Value and 
Asymmetric Slope. Furthermore, given the recent financial crisis we are further interested in evaluating the pre-
dictive performance of the alternative specifications for three out-of-sample evaluation periods (before-crisis, 
crisis and after-crisis). Within this framework we consider the issue of model stability. It is well documented 
that the model parameters are estimated from real data, which are often subject to structural changes due to re-
gime shifts or events such as financial crises. 

Recently, Huang et al. (2009) developed an improved CAViaR specification to account for some shortcom-
ings of the original specification. Specifically, they argue that the asymmetric specification of Engle & Manga-
nelli (2004) which is used to investigate the different effects of positive and negative returns on the VaR predic-
tion requires the estimation of four parameters in the optimization procedure. This complicated model may lead 
to more estimation errors leading to an unstable or unrobust model. Therefore, this extension of the con-
stant-parameter CAViaR allows us to examine whether the parameters of an individual risky asset are driven by 
the market index return. This extended model allows the tails of a financial series to follow different stochastic 
process and it allows VaR to be influenced by the volatility level of the driving index. 

The main objective of this paper is to investigate the predictive performance of various types of the condi-
tional autoregressive value-at-risk (CAViaR) specification during tranquil and turbulence periods. To this end 
we employ daily returns for six stock markets indices, namely S & P500, FTSE100, NIKKEI225, DAX30, 
CAC40 and Athens Exchange General Index for the period January 2, 1995 to August 23, 2013. We compare 
the predictive performance of the alternative specifications for three subperiods: before, during and after the re-
cent 2007-2009 financial crisis. 

The main findings of the present analysis is that the CAViaR quantile regression models and the I-CAViaR 
model have shown significant success in predicting the VaR measure for various periods although this perfor-
mance varies over the three periods before, during and after the 2007-2009 financial crisis. 

The remainder of the paper is organized as follows. Section 2 presents some of the most widely used VaR 
models. In section 3 we discuss the CAViaR methodology and its proposed alternative specifications. In Section 
4 we report our empirical results, and finally section 5 provides our concluding remarks. 

2. Value-at-Risk-Models and Methods 
During the 1990s several alternative modeling methodologies for the estimation of the VaR were advanced. The 
purpose of these models was to provide risk managers with a comprehensive and intuitively easily understood 
measure of the VaR. The motivation for the development of the VaR models relies on the stylized characteristics 
of financial data which were first documented by Mandelbrot (1963) and Fama (1965). To recapitulate, these 

 

 

4Chernozhukov (1999) has derived independently the same dynamic quantile test. 
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characteristics imply that the returns of financial assets have leptokurtic distributions, that their distributions are 
negatively skewed and finally that they exhibit volatility clustering. As Manganelli & Engle (2004) and Engle & 
Manganelli (2004) point out, these alternative methodologies adopted a common general structure: (a) Mark- 
to-market the portfolio on a daily basis; (b) Estimation of the distribution of returns; and (c) Computation of the 
portfolio’s VaR. The main difference among the alternative methodologies is linked to the estimation of the ap-
propriate distribution of the portfolio returns. We can briefly discuss the advantages and disadvantages of the 
alternative VaR models using the following broad classification.5 

The first class of models is fully parametric and includes applications such as J.P. Morgan’s Riskmetrics 
(1996) and GARCH models. These methodologies combine an econometric model with the assumption of con-
ditional normality for the returns series. Specifically, these models rely on the specification of the variance equ-
ation of the portfolio returns and the assumption that the standardized errors are i.i.d. Additionally, when the 
GARCH methodology is applied we are also required to specify the distribution of the errors, which is usually 
taken to be the normal one, while it is assumed that the negative returns follow the same process as the rests of 
portfolio returns (Bams et al., 2005; Burns, 2005; Angelidis et al., 2004; Alexander et al., 2006; Pojarlev & Po-
lasek, 2000; Polasek & Pojarlev, 2005; Kuester et al., 2006; Haas et al., 2006; Guidolin & Timmerman, 2006; 
Chen et al., 2013) are among the numerous applications employing alternative GARCH specifications. McAleer 
et al. (2008) develop a new Portfolio Spillover GARCH model and they examine its forecasting performance 
relative to that of the VARMA-GARCH with spillover effects and the CCC model with no spillovers. They find 
that spillovers effects are statistically significant. 

The application of the parametric methodologies has been criticized since they tend to give coefficients which 
underestimate the VaR, mainly due to their failure to take into account the characteristic that the distribution of 
the portfolio returns has heavy tails. This underestimation of the VaR, as well as possible misspecifications with 
respect to the variance equation along with the distribution of errors, can be corrected by allowing alternative 
distributions of the errors such as the Gaussian, Student’s-t and Generalized Error Distribution. However, it is 
further shown that the GARCH-type models provide satisfactory estimates of the quantile only when a bad event 
has already occurred. 

The second approach for the estimation of the distribution of profits and losses is the non-parametric histori-
cal simulation. This methodology makes no assumption about the distribution of the portfolio returns and is 
based on the concept of rolling windows. The idea is to select a window which is usually taken to be anywhere 
between 6 months to 2 years and assume that any portfolio return has the same likelihood to occur. Moreover, a 
return which falls outside the chosen window has probability equal to zero to occur. This methodology has sev-
eral deficiencies. It is inappropriate to provide extreme quantiles since we cannot extrapolate beyond past ob-
servations. The proposed solution to this problem is the increase of the sample of observations, but this will lead 
to estimates of the VaR which are biased downwards (or upwards) since we have a mixture of periods with low 
volatility with periods of high volatility. 

Within this group of VaR models falls the hybrid approach developed by Boudoukh et al. (1998), which com-
bines the historical simulation and Riskmetrics. This methodology applies weights to the portfolio returns that 
decline exponentially. Although this approach improves on the previously discussed methodologies, it also has 
problems since the selection of the parameters as well the calculation of the VaR does not depend on sound sta-
tistical theory but is rather ad hoc. 

The final group for the estimation of the VaR is the semiparametric models. The first approach in this catego-
ry is the Extreme Value Theory proposed by Danielsson et al. (1998) and Danielsson & de Vries (2000). The 
advantage of this approach is that it is based on sound statistical theory which offers a parametric form for the 
tail of a distribution. This approach focuses on the asymptotic form of the tail, rather than modeling the com-
plete distribution of portfolio returns and therefore we are able to obtain more efficient forecasts of the risk as-
sociated with a particular market position. Although this methodology is very appealing it does have two short-
comings. First, as Danielsson & de Vries (2000) argue, this approach performs well at very low quantiles but 
fails to provide accurate estimations of the VaR at levels which are not considered very extreme. Second, this 
methodology is also based on the assumption of i.i.d. standardized errors which is, as we have already discussed, 
an important limitation. Despite its limitations this approach has found substantial applications recently (Longin, 
2000; McNeil & Saladin, 2000; McNeil & Frey, 2000; Naftci, 2000; Bekiros & Georgoutsos, 2005a,b; Brooks et 

 

 

5Jorion (2000) and Kuester et al. (2006) provide a complete analysis of the VaR methodology and alternative estimation methodologies. 
Romero et al. (2013) gives an updated survey of alternative VaR methodologies. 
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al., 2005; Schaumburg, 2012). 
Engle & Manganelli (2004) proposed an alternative semiparametric method to estimate VaR, namely Condi-

tional Autoregressive Value at Risk (CAViaR). This approach is based on the simple intuition that it is better to 
model the quantile directly as it evolves through time instead of attempting to model and estimate the entire dis-
tribution of portfolio returns. Modelling the quantile instead of the entire distribution has the main advantage 
that we are not required to adopt the set of extreme assumptions which are invoked by alternative methodologies, 
among them normality or that returns are i.i.d. In addition, CAViaR takes into consideration volatility clustering 
of portfolio returns that leads to the understanding that the corresponding distributions are autocorrelated. As a 
consequence the VaR must also follow a similar pattern since it is directly linked with the standard deviation of 
the distribution. Therefore, Engle & Manganelli (2004) developed CAViaR in order to take into account of the 
particular characteristic of the VaR. Furthermore, Manganelli & Engle (2004) demonstrate that the CAViaR 
model outperforms most of the indirect-VAR methodologies. This outcome is reached through Monte Carlo si-
mulations. They simulated 1000 samples of 2000 observations for seven different processes. 

There are several papers that have extended and applied the CAViaR approach in a number of different ways. 
In an early study, Kouretas & Zarangas (2005) employ the CAViaR model to measure the market risk of five 
major equity markets, six blue chip stocks from the Athens Exchange, and six major company stocks listed on 
the New York Stock Exchange (NYSE). They compare four alternative CAViaR specifications with mixed re-
sults. Giacomini & Komunnjer (2005) find that CAViaR is most accurate at the 1% quantile level, but the 
GARCH model with Gaussian distributed errors is better than CAViaR at the 5% quantile level. Bao et al. (2006) 
compare the performance of CAViaR and other VaR measures for five East and Southeast Asian markets before, 
during and after the financial crisis of 1997-1998. They conclude that CAViaR models are quite satisfactory in a 
stable period but their performance in less satisfactory during turbulent periods. Kuester et al. (2006) compare 
CAViaR and alternative approaches for univariate VaR forecasts using daily return data on the NASDAQ 
Composite Index and alternative evaluation criteria. They conclude that CAViaR specifications performs well 
overall using unconditional and conditional tests for the predictive performance of VaR, although its forecasting 
performance is less accurate during periods of crisis and very high volatility. 

Gourieroux & Jasiak (2008) argue that a drawback of the dynamic quantile models is the lack of an internal 
mechanism that would ensure that the conditional quantiles evaluated at different probability levels do not cross. 
They develop the Dynamic Additive Quantile model, which ensures the monotonicity of conditional quantile 
functions and using data for the Toronto Stock Exchange market index and it is shown the DAQ model provides 
better asymptotically efficient estimations. Huang et al. (2009) develop an extension of the CAViaR model (a) 
with a proposition of a new asymmetric CAViaR specification and (b) a mixed data regression model for multi- 
period VaR prediction. Using market data on WTI daily spot oil prices the improved CAViaR specifications 
performed well in a battery of evaluation criteria. Huang et al. (2010) introduce a time-varying CAViaR model 
and using data to construct size weighted portfolios from the NYSE, AMEX and NASDAQ they show that the 
time-varying model provides better VaR forecasts than the constant parameter CAViaR when there are spillover 
effects from one market segment to other markets or market segments. Yu et al. (2010) extend the CAViaR spe-
cifications using two approaches, namely the threshold and mixture type indirect-GARCH CAViaR models. 
Gerlach et al. (2011) also propose a nonlinear CAViaR model. Chen et al. (2012) adopt the Threshold CAViaR 
and the indirect CAViaR model and using data from major stock market indices they provide clear evidence that 
the CAViaR class of models outperform in forecasting VaR performance other competing parametric, semipa-
rametric and nonparametric models. Jeon & Taylor (2013) proposed a model of CAViaR with implied volatility 
and they find that the implied volatility has more explanatory power that the standard VaR models. Finally, Ru-
bia et al. (2013) analyze tail-predictability in the returns of several representative portfolios on the US stock ex-
change. They show that the CAViaR models are very suitable in accurate VaR forecasts when different variables 
which are related to market-wide measures of trading activity and liquidity. 

3. CAViaR 
3.1. General Framework 
Engle & Manganelli (2004) and Manganelli & Engle (2001) consider a vector of portfolio returns that is ob- 
servable, defined as { } 1

T
t t

y
=

. Let θ  be the probability tied to VaR, tx  be a vector of observable variables at 
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time t, and θβ  be a vector of unknown parameters. They also define ( ) ( )1,t tf f x θβ β−≡  as the θ -quantile  
of the distribution of the portfolio returns at time t which has been formed at time 1t − .6 Therefore, a general 
formulation of CAViaR can be written as follows: 

( ) ( ) ( )0
1 1

q p

t i t i j t j
i i

f f l xβ β β β β− −
= =

= + +∑ ∑                              (1) 

where 1p q r= + +  is the dimension of β  and l is a function of a finite number of lagged values of obser-
vables. Moreover, in order for the quantile to have a smooth transition they use the autoregressive terms 

( ) , 1, ,i t if i qβ β− =  . Finally, they use the term ( )t jl x −  to provide a relationship between the θ -quantile
( )tf β  and the observable variables which are included in the information set. As Engle & Manganelli (2004) 

point out, we can consider the lagged portfolio returns as the best choice for 1tx − . This implies that as 1ty −  be-
comes negative, then one should expect the VaR to increase, while the VaR tends to decline in good days. 
Therefore, we expect that changes in 1ty −  will symmetrically affect the VaR. 

The purpose is to develop alternative specifications for the function l and then estimate the different models. 
Engle & Manganelli (2004) propose four alternative CAViaR specifications which we will estimate in our case. 

3.2. Adaptive Specification 
The first specification is called Adaptive and takes the following formulation: 

( ) ( ) ( )( ){ }1

1 1 1 1 1 1 11 expt t t tf f G y fβ β β β θ
−

− − −
 = + + − −                     (2) 

where G is some positive finite number and we that as G →∞ , the last term of equation (1) converges to 
( )( )1 1 1 1t tI y fβ β θ− − ≤ −  , where ( ).I  is the indicator function. The intuition behind the adaptive specifica-

tion tells us that in those cases where the VaR has been exceeded, then we should increase its value, whereas in 
those cases that we do not exceed it, then we should reduce its value by a small magnitude. Such a strategy will 
lead in a reduction in the probability of observing a sequence of hits while at the same time it is highly unlikely 
that we will have zero number of hits. Engle & Manganelli (2004) also point out that this CAViaR specification 
has a unit coefficient on the lagged VaR. 

3.3. Symmetric Absolute Value Specification 
A second specification is called Symmetric Absolute Value (SAV) and its mathematical formulation is given by: 

( ) ( )1 2 1 3 1t t tf f yβ β β β β− −= + +                              (3) 

This model responds symmetrically to past portfolio returns and it is mean reverting since the coefficient of 
the lagged VaR is not constrained to equal one. Furthermore, we could properly specify this quantile specifica-
tion using a GARCH model with the standard deviation (and not the variance), which is considered to follow a 
symmetric distribution with i.i.d. errors.7 

3.4. Asymmetric Slope Specification 
The Asymmetric Slope (AS) is the third commonly used specification to estimate the l function. It is written as 
follows: 

( ) ( ) ( ) ( )1 2 1 3 1 4 1t t t tf f y yβ β β β β β+ −
− − −= + + +                             (4) 

The Asymmetric Slope model allows for an asymmetric response to positive and negative past portfolio re-
turns.8 Again this model is mean reverting. As with the SAV model we can correctly specify this specification 
by fitting a GARCH process with the standard deviation, following this time an asymmetric distribution with 
i.i.d. errors. 

 

 

6For simplicity we have eliminated the subscript θ from the vector of unknown parameters. 
7See also Taylor (1986), Schwert (1988) and Engle (2002). 
8 ( ) ( ) ( ) ( )max ,0 ,  min ,0x x x x+ −

= = −  
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3.5. Indirect GARCH(1,1) 
The final specification is called Indirect GARCH (1,1) which is also mean reverting and as with the SAV speci-
fication, it responds symmetrically to past returns. This specification can be correctly modeled under the as-
sumption that the underlying data process follows a true GARCH(1,1) with an i.i.d. error distribution.9 The al-
gebraic expression of this specification is as follows: 

( ) ( )( )1 22 2
1 2 1 3 1t t tf f yβ β β β β− −= + +                              (5) 

Thenext step to the analysis is the estimation of the parameters of the alternative CAViaR models. They are 
estimated using linear and non-linear quantile techniques. These techniques were first introduced by Koenker & 
Basett (1978) who provide a thorough analysis of how to apply the concept of sample quantile to a linear regres-
sion model. We consider the following model proposed by Engle & Manganelli (2004): 

( )0 , 0t t t t ty x Quant xθ θ θβ ε ε′= + =                               (6) 

where tx  is a p-vector of regressors and ( )t tQuant xθ θε  is, as we have already defined, the θ -quantile of 
tθε  conditional on tx . White (1994) has shown that if we minimize the regression quantile objective function 

that was developed by Koenker & Basett (1978) we can obtain consistent estimates under certain assumptions. 
This minimization can be considered as follows: We define ( )t tf xβ β≡ . Then any β̂  that solves the follow-
ing problem: 

( )( ) ( )1min t t t tI y f y f
Tβ

θ β β − < −                                   (7) 

defines the thθ  regression quantile. 
Within this framework, Engle & Manganelli (2004) show that the only assumption required is the appropriate 

specification of the quantile process and, more specifically, we do not have to specify the entire distribution of 
the error terms. Furthermore, even if we erroneously specify the regression quantile process, Engle & Manga-
nelli (2004) argue that we can still obtain a minimization of Equation (5) that satisfies the Kullback-Leibler In-
formation Criterion (which measures the deviation between the true specification and the actual model). 

3.6. Improved CAViaR 
As we already discussed Huang et al. (2009) argue that in practice CAViaR may face some implementation 
challenges. Thus, in case we investigate the different effects of positive and negative returns on the prediction 
from a VaR model then we may use the asymmetric CAViaR specification. This requires estimating four para-
meters in the optimization framework which may lead to more estimation errors and this could result to an un-
stable or unrobust model. Based on the exponentially weighted moving average volatility prediction idea in 
Riskmetrics (1996), Hull & White (1998), and Huang et al. (2009) they propose an improved asymmetric CA-
ViaR model: 

( ) ( ) ( ) ( ) ( )0 1 0 1 1 1
1 1

1 / 0 / 0
1t t t t tq q y y y uν νθ α β θ β

β β− − − −

 
= + + − > + < − − 

       (8) 

where ( )22
1 11ν β β= + − , ( )10 1β< <  and u is the sample mean. This CAViaR specification allows the VaR  

prediction to respond asymmetrically to positive and negative returns. Thus, if we consider that 1 0.5β < , nega-
tive returns have a larger influence on the VaR prediction. In addition, in contrast to the asymmetric specifica-
tion (4) this improved asymmetric specification has only three parameters to be estimated. Furthermore, Huang 
et al. (2009) argue that the Improved CAViaR model embodies two important characteristics. First, it can cap-
ture skewness in the stock market indices returns. Second, the model is consistent with the leverage effect. That 
is, changes in volatility are negatively correlated with changes in prices and this is a feature that is directly ap-
plied to the VaR prediction procedure. 

Engle & Manganelli (2004) consider the case where β̂  is a non-linear regression quantile estimator and they 

 

 

9It is worth noting that the CAViaR specifications are more general than the fitted GARCH models. They can allow for a wide range of as-
sumptions with respect to the error distribution and they can also handle distributions with non-i.i.d. errors. 
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prove that this estimator is consistent and asymptotically normal. Furthermore, they show that there is a consis-
tent estimator of the variance-covariance matrix. Engle & Manganelli (2004) then go on to derive the asymptotic 
distribution of the estimator. This allows us to conduct hypothesis tests of the quantile models.10 

3.7. Evaluation Performance Tests 
Engle & Manganelli (2004) also propose a new test for the evaluation of the alternative specifications which has 
better power properties than other existing tests. This test allows for the inclusion of a variety of alternative spe-
cifications. They define: 

( ) ( )( )0 0
t t tHit f y fβ β θ≡ < −                               (8) 

where the function ( )0
tHit β  is assumed to take a value ( )1 θ−  every time ty  falls below the quantile, and 

it takes the value θ−  in all other cases. Equation (8) implies that the expectation of ( )0
tHit β  is zero. Fur-

thermore, based on the definition of the quantile given in equation (1), we also assume that the conditional ex-
pectation of ( )0

tHit β , given a set of information at period 1t − , is zero. This implies that ( )0
tHit β  must be 

uncorrelated with its own lagged values as well as with ( )0
tf β  and its expected value should equal zero. If 

these assumptions hold for ( )0
tHit β  then we are certain that we have no misspecification error introduced, 

there is no autocorrelation in the hits, and we will obtain the correct fraction of exceptions. Based on definition 
(8), Engle & Manganelli (2004) derive two test statistics. First, they construct an in-sample Dynamic Quantile 
test. This test is a specification test which is used to select among alternative model specifications of a particular 
CAViaR process. Second, they construct an out-of-sample Dynamic Quantile test. This test is useful to the mar-
ket regulators and/or the risk managers, since they can examine whether the VaR estimates for a particular fi-
nancial institution satisfy certain properties such as that they are unbiased, they provide independent hits and 
they give quantile estimates which are independent. Moreover, it is argued that this second test has some nice 
features since it is simple in its application and it does not depend on the procedure used for the estimation. We 
obtain the results from this test simply by using a series of VaR values and the respective value of the portfo-
lio.11 

An important issue when we compare alternative models in terms of predictive performance using the same 
data, is the need to take into account the dependence among the models. White (2000) developed a test of supe-
rior unconditional predictive ability among multiple models accounting for specification search. Furthermore, 
we note that when we apply backtesting procedure we may be interested not only to the behaviour of hit se-
quence (i.e. whether an exceedance occurs) but also in the magnitude of the exceedance. In general, a backtest 
could be based on a function of the observed return series and the corresponding VaR predictions. This would 
imply the construction of a general loss function which could be evaluated using past data on returns and the 
reported VaR series. Following Bao et al. (2006) and Huang et al. (2009) define the loss function as 

( ) ( ) ( )t t t tQ H r qθ θ θ θ= − +                                   (9) 

The null hypothesis is that the empirical value of ( )tQ θ  for one model is less than or equal to a competing 
one, which implies that the competing model cannot outperform the first model. To compute the p-value of the 
hypothesis, we adopt the statistics developed by White (2000), corresponding to the empirical loss ( )Q θ  and 
the reality check statistic where ( )tH θ  denotes the previous value of ( )0

tHit β .12 

 

 

10Following the seminal paper by Koenker & Bassett (1978), a number of alternative regression quantile models have been developed over 
the last twenty years that take into account alternative assumptions about the errors. Among others, Koenker & Bassett (1982) allow for the 
case of heteroskedastic errors, whereas Portnoy (1991) considers the case of non-stationary dependent errors. Furthermore, we have exten-
sions that cover the cases of time series models, simultaneous equations and censored regression models and recently we also have exten-
sions that deal with the case of autoregressive quantiles (Koenker & Zhao, 1996). See Engle & Manganelli (2004) for the relevant literature. 
All these models differ from the Engle & Manganelli (2004) CAViaR models since they are linear in the parameters. 
11The complete derivation of the two tests is given in Engle & Manganelli (2004: pp. 370-371). Granger et al. (1989) and Christoffersen 
(1998) are among other studies which have developed test statistics for the validity of the forecast model, but as Engle & Manganell (2004) 
point out, they have low power against misspecification introduced by the presence of serial correlation in the conditional probabilities 
leading to a quantile measurement error. 
12Aloui et al. (2014) provide further analysis of forecasting measures whereas Sener et al. (2012) analyze the ranking of predictive perfor-
mance of value-at-risk estimations methods. 
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4. Empirical Results 
We apply the alternative CAViaR model specifications on daily data for the period March 3, 1995 to August 28, 
2013 for the following general stock indices: S & P500, FTSE100, NIKKEI225, DAX30, CAC40 and the 
Athens Exchange General Index. The data was taken from Datastream. Given our earlier discussion that finan-
cial returns exhibit certain properties which imply that it is unreasonable to assume that stock return series fol-
low a certain stochastic process. This evidence motivates this study to consider the CAViaR model by accom-
modating different processes into the prediction horizon. Table 1 reports summary statistics for each stock mar-
ket daily returns. The significant negative skewness and kurtosis show that the return process deviates from the 
normal distribution. The daily returns are computed as 100 times the difference of the log of the prices. Finally 
in order to implement our analysis we construct historical series of portfolio for each case and we choose a spe-
cification of the functional form of the quantile. 

Our analysis begins with estimation of the Symmetric, Asymmetric and the Indirect GARCH (1,1) CAViaR 
specifications due to Engle & Manganelli (2004) and the Improved Asymmetric CAViaR due to Huang et al. 
(2009) described in Section 3. For the estimation of the models we used the first 4364 observations and the last 
500 to conduct the out-of-sample testing performance. 

We estimate 1% and 5% one day Value-at-Risk.13 As Engle & Manganelli (2004) proved, all the models are 
both continuous and continuously differentiable in β .14 Given that the model parameters are estimated from 
data, which in many cases are subject to structural breaks we estimate the four alternative CAViaR specifica-
tions for three subsamples. The first subsample covers the pre-crisis period 3 January 1995 to 14 September 
2007, the second subsample covers the crisis period 17 September to 31 August 2009 and the final subsample 
refers to the post-crisis period 1 September 2009 to 23 August 2013. 

Our results are summarized in Tables 1-6. Each table reports the value of the estimated parameters, the re-
spective standard errors and the one-sided p-values. Furthermore, each table shows the value of the regression 
objective function given by equation (3) above. Finally, we report the percentage of times the VaR is exceeded 
and the in-and out-of-sample p-value of the Dynamic Quantile test. The computation of the VaR series with the 
CAViaR models has been done with the initialization of ( )1f β  to the empirical θ -quantile of the first 500 
observations. With respect to the computation of the DQ test we used a constant, the VaR forecast and the first 
four lagged hits as instrumental variables. In contrast, to avoid the presence of collinearity in the matrix of the 
first and higher order derivatives, we did not include the constant and the VaR forecast.15 Following Engle & 
Manganelli (2004) we compute the standard errors and the variance covariance matrix of the in-sample DQ test 
and the calculation of the statistics ˆ

TD  and ˆ
TM  was done with the use of the k-nearest neighbor estimators, 

with 40k =  for the 1% VaR and 60k =  for the 5% VaR.16 
The results obtained for the pre-crisis period are reported in Table 1 and Table 2. The first important obser-

vation we make in both tables is that the coefficient 2β  is very significant and this implies that volatility clus-
tering is verified for the stock price returns of the six general indices. More specifically, this carries over to the 
tails of the distribution. Second, we note the accuracy of the alternative models. This is measured by the percen-
tage of in-sample hits. Consider the results of the 1% VaR. We observe that for either the case of the mature 
market or the emerging market, or even the case of the general stock indices the Symmetric Absolute Value, the 
Asymmetric Slope and the Indirect GARCH models provide estimates which are extremely close to the value of 
1, which is taken as evidence that they describe the evolution of the tail for most of the cases. Specifically, the 
results are particularly good for the stock returns of the S & P 500, FTSE100 and DAX30. In these cases we 
further observe that the out-of-sample hits are exactly equal to one or about 1.2%. For the stock returns of 
CAC40, NIKKEI225 and ASE the accuracy of the in-sample hits is fairly good, but the out-of sample hits are 
substantially below the value of 1. Furthermore, we see that the Symmetric Absolute Value, the Asymmetric 
Slope and the Indirect GARCH models provide accurate in-sample estimations, whereas the I-CAViaR specifi- 

 

 

13To estimate the Adaptive model we set G = 10, in all cases where G entered the definition of the Adaptive model in section 3. 
14All assumptions which these models need to satisfy are given in Appendix A of Engle & Manganelli (2004); and they refer to asymptotic 
results but are difficult to verify in finite samples. 
15As Engle & Manganelli (2004) point out, the lagged hit variables contain the indicator function. Given that the indicator function is Lip-
schitz continuous it satisfies condition, DQ3 of theorem 4 (Engle & Manganelli, 2004). 
16The calculation of the two statistics is described in Engle and Manganelli, theorems 3 and 4. Furthermore, for the optimization procedures 
we adopt the strategy explained in Engle & Manganelli (2004). The computations were made in Matlab 6.1 using the functions fminsearch 
and fminunc as the optimization algorithms while the loops to compute the recursive quantile functions were coded in C and have been de-
veloped by Manganelli. 
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Table 1. Estimates and Relevant Statistics for the four Conditional Autoregressive Value at Risk Models-Pre Crisis period 
(03/01/1995-14/9/2007).                                                                                       

1% VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Improved Asymmetric 

 CAC40 DAX30 ASE CAC40 DAX30 ASE CAC40 DAX30 ASE CAC40 DAX30 ASE 

Beta 1 0.1078 0.1574 −0.0013 0.1318 0.1502 0.0595 0.2109 0.4298 −0.0001 0.9742 0.1167 0.9398 

Standard Errors 0.0740 0.0597 0.0053 0.0428 0.0692 0.2812 0.1213 0.1705 0.0658 0.0664 0.0074 0.2005 

p values 0.0725 0.0042 0.0039 0.0010 0.0151 0.0172 0.0410 0.0058 0.4962 0.0000 0.0000 0.0006 

Beta 2 0.9134 0.8785 0.9791 0.9062 0.8659 0.6712 0.9311 0.8657 0.9582 0 0 0 

Standard Errors 0.0412 0.0309 0.0050 0.0309 0.0541 0.0790 0.0136 0.0156 0.0091 0 0 0 

p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 

Beta 3 0.1746 0.2687 0.0980 0.0945 0.1988 0.2805 0.3008 0.6503 0.3166 0 0 0 

Standard Errors 0.0672 0.0757 0.0200 0.0846 0.1150 0.1978 0.1616 0.9265 0.5419 0 0 0 

p values 0.0047 0.0001 0.0000 0.1319 0.0419 0.0781 0.0313 0.2404 0.2795 0 0 0 

Beta 4 0 0 0 0.2410 0.3958 0.9530 0 0 0 0 0 0 

Standard Errors 0 0 0 0.0557 0.1882 0.0918 0 0 0 0 0 0 

p values 0 0 0 0.0000 0.0181 0.0000 0 0 0 0 0 0 

RQ 108.54 120.88 140.18 106.78 119.73 140.40 107.77 121.55 140.26 120.71 135.93 150.87 

Hits in-sample (%) 0.9950 0.9950 1.0305 0.9950 1.0305 1.0305 0.9594 0.9950 0.9950 0.9239 0.9950 0.9594 

Hits out-of-sample (%) 0.4000 0.4000 1.7999 0.4000 0.8000 0.6000 0.4000 0.4000 1.6000 1.4000 1.4000 1.6000 
DQ in-sample  

(p values) 0.0436 0.0411 0.0001 0.0337 0.4633 0.0969 0.3498 0.6532 0.0083 0.0064 0.0218 0.0000 

DQ out-of-sample  
(p values) 0.9272 0.9234 0.0000 0.9354 0.9851 0.9895 0.9204 0.9252 0.0564 0.2279 0.0001 0.0000 

5%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Improved Asymmetric 

 CAC40 DAX30 ASE CAC40 DAX30 ASE CAC40 DAX30 ASE CAC40 DAX30 ASE 

Beta 1 0.0187 0.0275 0.0182 0.0250 0.0364 0.2374 0.0241 0.0353 0.0458 0.6445 0.5753 0.7951 

Standard Errors 0.01466 0.0155 0.0902 0.00075 0.0164 0.0802 0.0281 0.0303 0.0220 0.0559 0.0651 0.0779 

p values 0.1007 0.0388 0.0213 0.0000 0.0134 0.0015 0.1947 0.1218 0.0191 0.0000 0.0000 0.0000 

Beta 2 0.9055 0.9177 0.9242 0.9281 0.9300 0.6963 0.9090 0.9129 0.8834 0 0 0 

Standard Errors 0.0176 0.0214 0.0116 0.02159 0.0201 0.0445 0.0113 0.0076 0.0086 0 0 0 

p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 

Beta 3 0.1819 0.1515 0.1516 0.0458 0.0281 0.1561 0.2462 0.2361 0.3126 0 0 0 

Standard Errors 0.0259 0.0362 0.0217 0.0542 0.0366 0.0530 0.1774 0.4049 0.1016 0 0 0 

p values 0.0000 0.0000 0.0000 0.1988 0.2211 0.0163 0.0862 0.2798 0.0104 0 0 0 

Beta 4 0 0 0 0.2111 0.2066 0.6947 0 0 0 0 0 0 

Standard Errors 0 0 0 0.0470 0.0487 0.0510 0 0 0 0 0 0 

p values 0 0 0 0.0000 0.0000 0.0000 0 0 0 0 0 0 

RQ 403.02 442.77 477.18 397.67 434.41 460.61 401.72 442.04 475.46 412.62 454.35 486.40 

Hits in-sample (%) 5.0103 5.0104 5.0106 5.0106 5.0106 4.9751 5.0106 5.0106 5.0461 4.6197 4.8685 4.7974 

Hits out-of-sample (%) 5.4000 4.4000 4.0000 5.8000 5.2000 4.4000 5.4000 4.2000 4.0000 5.4000 5.0000 4.8000 
DQ in-sample  

(p values) 0.8046 0.0709 0.0000 0.8864 0.2294 0.1515 0.7047 0.0405 0.0000 0.6884 0.9833 0.0036 

DQ out-of-sample  
(p values) 0.8359 0.7356 0.1345 0.9849 0.2010 0.7573 0.8217 0.6531 0.1208 0.8451 0.4071 0.0167 

Note: Significant coefficients at 5% level of significance are given in bold; shaded boxes denote rejection from the DQ test at 1% significance level. 
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Table 2. Estimates and Relevant Statistics for the four Conditional Autoregressive Value at Risk Models-Pre Crisis period 
(03/01/1995-14/9/2007).                                                                                              

1% VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Improved Asymmetric 

 FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI FTSE100 S & P5000 NIKKEI 

Beta 1 0.0771 0.2116 0.0417 0.0571 0.1142 0.1190 0.1271 0.5825 0.0781 0.8313 0.0029 0.8032 

Standard Errors 0.0317 0.1274 0.0225 0.0192 0.0546 0.0344 0,0923 0.4197 0.0362 0.1505 0.1102 0.1937 

p values 0.0074 0.0484 0.0323 0.0015 0.0183 0.0002 0.0844 0.0825 0.0154 0.0000 0.4942 0.0006 

Beta 2 0.8774 0.8467 0.9419 0.9162 0.8923 0.9148 0.8728 0.8662 0.9424 0 0 0 

Standard Errors 0.0296 0.0543 0.0202 0.0269 0.0305 0.0353 0.0149 0.0431 0.0681 0 0 0 

p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 

Beta 3 0.2995 0.2979 0.1357 0.0735 0.1649 −0.0829 0.6919 0.5298 0.2738 0 0 0 

Standard Errors 0.1027 0.0877 0.0500 0.1195 0.0509 0.0522 1.4580 0.1836 0.3740 0 0 0 

p values 0.0017 0.0004 0.0033 0.2691 0.0006 0.0563 0.3175 0.0019 0.2320 0 0 0 

Beta 4 0 0 0 0.3049 0.3321 0.3333 0 0 0 0 0 0 

Standard Errors 0 0 0 0.0601 0.0889 0.1949 0 0 0 0 0 0 

p values 0 0 0 0.0000 0.0436 0.0000 0 0 0 0 0 0 

RQ 84.68 119.32 97.44 82.53 116.98 94.39 84.82 119.10 97.06 92.19 134.12 100.70 

Hits in-sample(%) 0.9502 0.9502 0.9503 1.0305 1.0305 1.0305 1.0305 0.9509 0.9502 0.9503 0.7871 0.9594 

Hits out-of-sample(%) 1.4000 1.0000 1.2000 1.4000 1.0000 0.8000 1.6000 1.0000 1.2000 1.0000 0.9000 1.2000 
DQ in-sample  

(p values) 0.9256 0.2271 0.5227 0.8979 0.9173 0.0398 0.9073 0.6495 0.6423 0.3766 0.5360 0.6310 

DQ out-of-sample  
(p values) 0.4816 0.5094 0.9955 0.2668 0.4067 0.9853 0.7568 0.4826 0.1535 0.9652 0.8716 0.8726 

5%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Improved Asymmetric 

 FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI 

Beta 1 0.0083 0.0399 0.0108 0.0245 0.0417 0.0303 0.0183 0.1439 0.0102 0.0655 0.2736 0.3166 

Standard Errors 0.0142 0.0312 0.0076 0.0092 0.0025 0.0074 0.0176 0.0896 0.0080 0.0501 0.0564 0.0433 

p values 0.2770 0.1005 0.0783 0.0004 0.0500 0.0000 0.1483 0.0054 0.1011 0.0000 0.0000 0.0000 

Beta 2 0.9157 0.9278 0.0965 0.9211 0.9351 0.9593 0.9023 0.8972 0.9504 0 0 0 

Standard Errors 0.0200 0.0205 0.0082 0.0141 0.0267 0.0094 0.0110 0.0164 0.0039 0 0 0 

p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 

Beta 3 0.1753 0.1225 0.0596 0.0319 0.0438 −0.1942 0.2719 0.2316 0.0755 0 0 0 

Standard Errors 0.0282 0.0382 0.0109 0.0337 0.0485 0.0185 0.1314 0.2068 0.1467 0 0 0 

p values 0.0000 0.0000 0.0000 0.1719 0.1832 0.1473 0.1926 0.1313 0.3032 0 0 0 

Beta 4 0 0 0 0.2616 0.1651 0.1193 0 0 0 0 0 0 

Standard Errors 0 0 0 0.0364 0.0736 0.0209 0 0 0 0 0 0 

p values 0 0 0 0.0000 0.0124 0.0000 0 0 0 0 0 0 

RQ 314.29 427.85 325.08 308.06 424.61 316.97 312.69 427.65 326.09 317.00 434.12 322.50 

Hits in-sample (%) 5.0103 5.0105 4.9751 5.0103 4.9751 5.0102 5.0102 5.0102 5.0106 4.7619 5.0023 4.9951 
Hits out-of-sample 

(%) 5.2000 5.0000 5.4000 5.6000 5.2000 4.0000 5.2000 4.6000 5.0000 5.2000 5.0000 5.2000 

DQ in-sample  
(p values) 0.0563 0.6356 0.0004 0.8472 0.7184 0.0085 0.2569 0.8704 0.0089 0.1741 0.0096 0.0031 

DQ out-of-sample  
(p values) 0.7984 0.0052 0.0523 0.9607 0.0550 0.0217 0.7945 0.0079 0.6462 0.5476 0.0039 0.7869 

Note: Significant coefficients at 5% level of significance are given in bold; shaded boxes denote rejection from the DQ test at 1% significance level. 
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Table 3. Estimates and Relevant Statistics for the four Conditional Autoregressive Value at Risk Models-Crisis period 
(17/09/2007-31/08/2009).                                                                                              

1% VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Improved Asymmetric 

 CAC40 DAX30 ASE CAC40 DAX30 ASE CAC40 DAX30 ASE CAC40 DAX30 ASE 

Beta 1 0.6502 0.5381 0.4167 0.3279 0.1942 0.2485 0.3999 3.481 1.8874 0.6788 0.7119 0.5981 

Standard Errors 0.3348 0.2744 0.4141 0.1609 0.1355 0.0822 0.4188 1.3093 0.9342 0.4077 0.3300 0.2623 

p values 0.0266 0.0249 0.1570 0.0208 0.0758 0.0012 0.1698 0.0039 0.0216 0.0523 0.4999 0.0122 

Beta 2 0.7646 0.8191 0.8575 0.7854 0.8503 0.8224 0.9198 0.7856 0.8181 0 0 0 

Standard Errors 0.1136 0.0927 0.1314 0.1685 0.0961 0.0656 0.0317 0.0417 0.0580 0 0 0 

p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 

Beta 3 0.3632 0.2549 0.2730 0.2388 0.1933 0.1297 0.3270 0.5141 0.7821 0 0 0 

Standard Errors 0.2234 0.1612 0.2324 0.4098 0.3126 0.1840 0.9344 1.3942 1.7329 0 0 0 

p values 0.0052 0.0568 0.1200 0.2800 0.2683 0.2404 0.3631 0.3562 0.3258 0 0 0 

Beta 4 0 0 0 0.6574 0.4570 0.6590 0 0 0 0 0 0 

Standard Errors 0 0 0 0.8213 0.1996 0.2801 0 0 0 0 0 0 

p values 0 0 0 0.2116 0.0110 0.0093 0 0 0 0 0 0 

RQ 261.58 254.60 241.20 256.42 249.58 224.76 264.52 261.83 239.45 318.20 295.96 308.57 

Hits in-sample (%) 0.9732 1.2165 0.9732 1.2162 0.7299 0.9723 0.9732 1.2165 0.9732 0.9912 1.0022 0.7299 

Hits out-of-sample (%) 0.0000 0.0000 0.0000 1.4000 2.000 2.0000 0.0000 0.6000 0.0000 1.0000 0.9000 1.2000 
DQ in-sample  

(p values) 0.9974 0.0355 0.9977 0.9908 0.9972 0.9979 0.1113 0.9975 0.0005 0.9995 0.9823 0.9783 

DQ out-of-sample 
(p values) 0.0000 1.0000 0.0000 0.0372 0.1133 0.0102 1.0000 1.0000 0.9884 0.9987 0.9286 0.9887 

5%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Improved Asymmetric 

 CAC40 DAX30 ASE CAC40 DAX30 ASE CAC40 DAX30 ASE CAC40 DAX30 ASE 

Beta 1 0.0941 0.0962 0.1872 0.0719 0.0809 0.1241 0.3466 0.3161 0.5474 1.0359 0.9205 1.2622 

Standard Errors 0.0822 0.0763 0.0972 0.0811 0.0505 0.06613 0.2743 0.2200 0.3831 0.1394 0.2182 0.1128 

p values 0.1263 0.1037 0.0300 0.1877 0.0546 0.0302 0.1032 0.0754 0.0765 0.0000 0.0000 0.0000 

Beta 2 0.8604 0.8729 0.7858 0.9070 0.9172 0.8449 0.8753 0.8361 0.7890 0 0 0 

Standard Errors 0.0632 0.1033 0.0946 0.0608 0.0473 0.0693 0.0285 0.0346 0.0292 0 0 0 

p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 

Beta 3 0.2741 0.2379 0.4056 0.0871 −0.0199 0.1277 0.3031 0.4524 0.6012 0 0 0 

Standard Errors 0.1386 0.2354 0.2383 0.1830 0.1401 0.1435 1.1754 0.7757 1.2347 0 0 0 

p values 0.0239 0.1561 0.0443 0.3170 0.4433 0.1868 0.3982 0.2798 0.3131 0 0 0 

Beta 4 0 0 0 0.2511 0.2763 0.4124 0 0 0 0 0 0 

Standard Errors 0 0 0 0.0747 0.0753 0.1576 0 0 0 0 0 0 

p values 0 0 0 0.0000 0.0000 0.0000 0 0 0 0 0 0 

RQ 91.00 88.65 89.61 89.58 85.70 87.16 90.08 87.35 89.46 94.63 92.81 97.11 

Hits in-sample (%) 4.8661 4.9921 5.1009 5.0000 4.8861 4.9721 5.0332 4.9443 5.0332 5.0028 5.3527 4.8996 

Hits out-of-sample (%) 3.4000 4.0000 4.0000 7.4000 7.0000 4.0000 5.0000 4.0000 4.0000 5.4000 5.2000 4.9000 

DQ in-sample  
(p values) 0.2065 0.1812 0.1548 0.4886 0.5083 0.4914 0.3417 0.1441 0.5200 0.1248 0.3272 0.9379 

DQ out-of-sample  
(p values) 0.8921 0.7963 0.0085 0.9610 0.4468 0.1733 0.9908 0.7236 0.1644 0.8056 0.90049 0.1987 

Note: Significant coefficients at 5% level of significance are given in bold; shaded boxes denote rejection from the DQ test at 1% significance level. 
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Table 4. Estimates and Relevant Statistics for the four Conditional Autoregressive Value at Risk Models-Crisis period (17/09/2007- 
31/08/2009).                                                                                                        

1% VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Improved Asymmetric 

 FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI 

Beta 1 0.2868 0.7739 0.1298 0.3517 0.6669 0.1312 0.2294 0.2393 0.4768 0.8891 0.8624 −0.4942 

Standard Errors 0.3114 0.3811 0.0922 0.3444 0.3788 0.09592 0.6142 1.5304. 0.3544 0.1665 0.5814 0.0889 

p values 0.1785 0.0211 0.0795 0.1535 0.0391 0.0855 0.3543 0.0588 0.0892 0.0000 0.0000 0.0000 

Beta 2 0.8244 0.7134 0.9147 0.8751 0.7470 0.9134 0.9229 0.7833 0.9192 0 0 0 

Standard Errors 0.1594 0.1088 0.0346 0.1192 0.1197 0.0408 0.0386 0.0456 0.0191 0 0 0 

p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 

Beta 3 0.4664 0.6023 0.1950 −0.0553 0.3265 0.2025 0.5525 0.9251 0.3574 0 0 0 

Standard Errors 0.4665 0.2439 0.0621 0.1509 0.3387 0.1795 1.5523 2.4195 3.0159 0 0 0 

p values 0.1583 0.0067 0.0008 0.3570 0.1674 0.1295 0.3609 0.3511 0.4582 0 0 0 

Beta 4 0 0 0 0.3918 0.7023 0.1939 0 0 0 0 0 0 

Standard Errors 0 0 0 0.2489 0.2802 0.0649 0 0 0 0 0 0 

p values 0 0 0 0.0577 0.0061 0.0014 0 0 0 0 0 0 

RQ 25.33 27.88 25.42 23.41 26.25 25.42 25.46 27.14 25.33 31.67 42.85 35.71 

Hits in-sample (%) 0.9732 0.9732 0.9732 0.9732 1.2165. 0.9732 0.9732 0.7299 0.7299 0.7299 0.7299 0.8661 
Hits out-of-sample 

(%) 0.0000 0.0000 1.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

DQ in-sample  
(p values) 0.9972 0.0004 0.9972 0.9966 0.9910 0.9974 0.9980 0.9972 0.9982 0.3550 0.9554 0.9999 

DQ out-of-sample  
(p values) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.9601 0.9073 0.7836 

5%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Improved Asymmetric 

 FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI 

Beta 1 0.1237 0.1161 0.2030 0.0751 0.0597 0.1155 0.3908 0.3288 0.6780 0.7424 0.1201 0.9932 

Standard Errors 0.0990 0.1005 0.1660 0.0864 0.0433 0.0851 0.2890 0.5494 0.4233 0.2206 0.1360 0.1719 

p values 0.1057 0.1240 0.1107 0.1925 0.0840 0.0874 0.0881 0.2747 0.0546 0.0000 0.0000 0.0000 

Beta 2 0.8807 0.8537 0.8705 0.9218 0.9401 0.9276 0.8785 0.8471 0.8451 0 0 0 

Standard Errors 0.0624 0.0929 0.0911 0.0664 0.0325 0.0472 0.0382 0.0266 0.0556 0 0 0 

p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 

Beta 3 0.1928 0.2957 0.1840 0.0205 −0.0852 −0.0172 0.2485 0.5331 0.3501 0 0 0 
Standard Errors 0.0934 0.2615 0.1284 0.1709 0.0716 0.0964 0.4282 1.8901 1.0478 0 0 0 

p values 0.0195 0.1290 0.0758 0.4522 0.1169 0.4289 0.2808 0.3889 0.3691 0 0 0 

Beta 4 0 0 0 0.2318 0.2698 0.1878 0 0 0 0 0 0 
Standard Errors 0 0 0 0.1075 0.1063 0.0730 0 0 0 0 0 0 

p values 0 0 0 0.0155 0.0056 0.0051 0 0 0 0 0 0 

RQ 88.71 109.58 97.62 87.66 104.28 95.88 88.52 104.97 96.27 91.53 108.34 95.39 

Hits in-sample (%) 4.6228 5.1094 4.8661 4.6228 4.3795 5.1094 4.8661 5.1094 5.3527 5.1094 5.3525 5.1094 
Hits out-of-sample 

(%) 3.0000 2.0000 3.0000 4.0000 7.0000 4.0000 3.0000 3.0000 3.0000 2.0000 3.0000 3.0000 

DQ in-sample 
(p values) 0.5261 0.0786 0.3170 0.6396 0.6416 0.2993 0.3909 0.0936 0.8336 0.6592 0.0923 0.5858 

DQ out-of-sample  
(p values) 0.8829 0.8388 0.9855 0.9798 0.1688 0.9907 0.9599 0.7738 0.9842 0.9336 0.7797 0.9630 

Note: Significant coefficients at 5% level of significance are given in bold; shaded boxes denote rejection from the DQ test at 1% significance level. 
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Table 5. Estimates and Relevant Statistics for the four Conditional Autoregressive Value at Risk Models-Post Crisis period 
(01/09/2009-23/08/2013).                                                                                       

1% VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Improved Asymmetric 

 CAC40 DAX30 ASE CAC40 DAX30 ASE CAC40 DAX30 ASE CAC40 DAX30 ASE 

Beta 1 0.1557 0.1507 −0.0346 0.1229 0.1649 −0.0346 0.7035 0.3601 0.4845 1.1375 1.0992 −0.1855 

Standard Errors 0.0819 0.0755 0.0299 0.0649 0.0844 0.0293 0.3130 0.2535 0.7815 0.1839 0.2230 0.0862 

p values 0.0286 0.0639 0.1238 0.0227 0.0253 0.1187 0.0123 0.0777 0.2676 0.0000 0.0000 0.0156 

Beta 2 0.8440 0.8580 0.9870 0.8440 0.8393 0.9866 0.8008 0.8422 0.9647 0 0 0 

Standard Errors 0.0488 0.0456 0.0075 0.0445 0.0699 0.0076 0.0304 0.0419 0.0232 0 0 0 

p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 

Beta 3 0.3532 0.3372 0.0660 0.2015 0.1594 0.0000 0.0000 0.0000 0.0000 0 0 0 

Standard Errors 0.0963 0.0714 0.0213 0.2624 0.1594 0.0368 0.5401 0.7061 03636 0 0 0 

p values 0.0001 0.0000 0.0000 0.0221 0.0834 0.0206 0.0512 0.1360 0.0333 0 0 0 

Beta 4 0 0 0 0.5125 0.5614 0.0603 0 0 0 0 0 0 

Standard Errors 0 0 0 0.2167 0.2765 0.0222 0 0 0 0 0 0 

p values 0 0 0 0.0090 0.0211 0.0031 0 0 0 0 0 0 

RQ 32.52 30.83 53.73 32.07 29.43 53.69 33.08 31.34 54.46 36.66  194.03 

Hits in-sample (%) 0.9535 1.0727 1.0727 0.9535 0.9535 0.9535 0.9535 1.1918 0.9535 0.8343 1.1918 0.7151 

Hits out-of-sample (%) 1.5000 1.5000 1.0000 2.0000 1.5000 1.0000 1.0000 1.5000 0.5000 1.0000 1.0000 0.0000 
DQ in-sample  

(p values) 0.9927 0.9812 0.9852 0.9912 0.9960 0.9923 0.9931 0.9777 0.9939 0.0000 0.0000 0.9992 

DQ out-of-sample  
(p values) 0.8752 0.9369 0.9996 0.2383 0.9171 0.9987 0.9961 0.7984 0.9245 0.4323 0.3978 1.0000 

5%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Improved Asymmetric 

 CAC40 DAX30 ASE CAC40 DAX30 ASE CAC40 DAX30 ASE CAC40 DAX30 ASE 

Beta 1 0.0903 0.1515 0.1956 0.0712 0.1352 0.2172 0.4273 0.4060 0.3369 1.0679 0.9270 0.5362 

Standard Errors 0.0754 0.0768 0.1250 0.0450 0.0511 0.1119 0.3500 0.2322 0.4501 0.1367 0.1063 0.1202 

p values 0.1155 0.0243 0.0589 0.0566 0.0041 0.0261 0.1110 0.0402 0.0227 0.0000 0.0000 0.0000 

Beta 2 0.8218 0.7964 0.8538 0.8939 0.8575 0.8543 0.7197 0.7711 0.8884 0 0 0 

Standard Errors 0.0688 0.0683 0.0543 0.0421 0.0532 0.0429 0.0688 0.0505 0.0440 0 0 0 

p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 

Beta 3 0.3425 0.3412 0.2004 0.0124 0.0640 0.1334 0.7669 0.5404 0.2314 0 0 0 

Standard Errors 0.1696 0.1332 0.0822 0.1040 0.1511 0.0548 0.6963 1.4738 0.1234 0 0 0 

p values 0.0217 0.0052 0.0074 0.4522 0.3357 0.0075 0.1353 0.3569 0.0303 0 0 0 

Beta 4 0 0 0 0.3351 0.3450 0.2095 0 0 0 0 0 0 

Standard Errors 0 0 0 0.0772 0.0910 0.0629 0 0 0 0 0 0 

p values 0 0 0 0.0000 0.0000 0.0000 0 0 0 0 0 0 

RQ 132.85 125.47 196.17 128.13 121.83 195.93 134.51 126.91 195.65 140.38 132.21 204.10 

Hits in-sample (%) 5.0059 5.2443 5.0059 4.8867 5.1251 5.0059 5.0059 5.0059 5.0059 4.6483 4.8867 4.7675 

Hits out-of-sample (%) 3.5000 2.5000 6.5000 4.0000 3.5000 7.0000 3.0000 2.5000 6.5000 4.5000 4.5000 5.0000 
DQ in-sample  

(p values) 0.9101 0.4057 0.4940 0.4034 0.7877 0.7199 0.9703 0.6512 0.8859 0.3060 0.5515 0.2326 

DQ out-of-sample  
(p values) 0.7546 0.8325 0.0307 0.6341 0.8023 0.0956 0.8411 0.8224 0.0799 0.3787 0.5855 0.2147 

Note: Significant coefficients at 5% level of significance are given in bold; shaded boxes denote rejection from the DQ test at 1% significance level. 
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Table 6. Estimates and Relevant Statistics for the four Conditional Autoregressive Value at Risk Models-Post Crisis period 
(01/09/2009-23/08/2013).                                                                                              

1%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Improved Asymmetric 

 FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI FTSE100 S & 500 NIKKEI 

Beta 1 0.1054 0.7418 0.1507 0.0590 0.2325 0.2454 0.3603 4.6942 0.5913 1.3272 0.0000 0.9730 

Standard Errors 0.0646 0.4360 0.0813 0.0470 0.0701 0.1123 0.1982 2.5886 0.4690 0.2890 0.3152 0.1493 

p values 0.0513 00444 0.0319 0.1049 0.0000 0.0144 0.0345 0.0348 0.1037 0.0000 0.5000 0.0000 

Beta 2 0.8083 0.4668 0.8883 0.9090 0.8172 0.8576 0.7551 0.2913 0.7389 0 0 0 

Standard Errors 0.7913 0.1466 0.0536 0.0627 0.0363 0.0703 0.0354 0.2387 0.0495 0 0 0 

p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1111 0.0000 0 0 0 

Beta 3 0.5129 1.2763 0.2207 0.0737 −0.1721 −0.1511 1.3745 2.8171 1.7650 0 0 0 

Standard Errors 0.2492 0.1433 0.1168 0.1936 0.1218 0.1177 1.2085 0.4882 7.1408 0 0 0 

p values 0.0197 0.0000 0.0293 0.3515 0.0788 0.0996 0.1276 0.0000 0.4023 0 0 0 

Beta 4 0 0 0 0.3672 0.9914 0.6778 0 0 0 0 0 0 

Standard Errors 0 0 0 0.1639 0.0776 0.2708 0 0 0 0 0 0 

p values 0 0 0 0.0125 0.0000 0.0061 0 0 0 0 0 0 

RQ 24.92 35.21 30.17 24.40 31.83 28.16 25.71 32.89 29.21 28.23 39.98 34.49 

Hits in-sample (%) 1.0727 1.0727 1.0727 0.9535 1.0727 0.9535 0.9535 0.9535 0.9535 0.8343 0.5959 0.9535 
Hits out-of-sample 

(%) 1.0000 1.5000 0.0000 2.5000 5.0000 0.5000 1.0000 2.0000 0.5000 1.5000 3.5000 1.0000 

DQ in-sample  
(p values) 0.9852 0.0444 0.0431 0.9925 0.0446 0.0299 0.0168 0.9918 0.0244 0.0088 0.0003 0.0000 

DQ out-of-sample  
(p values) 0.9998 0.9858 1.0000 0.0000 0.0000 0.9963 0.9975 0.8029 0.9975 0.8150 0.0000 0.7612 

5%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Improved Asymmetric 

 FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI FTSE100 S & P500 NIKKEI 

Beta 1 0.1235 0.1362 0.0620 0.0653 0.1513 0.0792 0.2682 1.9670 0.1131 0.7709 0.5021 0.9710 

Standard Errors 0.0618 0.1456 0.0442 0.0391 0.0718 0.0294 0.1207 1.7496 0.0721 0.0900 0.1040 0.0620 

p values 0.0229 0.1748 0.0804 0.0477 0.0175 0.0035 0.0131 0.1304 0.0583 0.0000 0.0000 0.0000 

Beta 2 0.8346 0.8729 0.8718 0.9300 0.8852 0.8749 0.8152 0.3104 0.8462 0 0 0 

Standard Errors 0.0485 0.1003 0.0322 0.0397 0.0647 0.0386 0.0338 0.4300 0.0274 0 0 0 

p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2351 0.0000 0 0 0 

Beta 3 0.2449 0.1255 0.2242 −0.0836 −0.0598 0.0109 0.3423 0.6348 0.3750 0 0 0 

Standard Errors 0.0711 0.0812 0.0478 0.0778 0.0733 0.1156 0.3180 0.3063 0.4523 0 0 0 

p values 0.0002 0.0612 0.0000 0.1411 0.2073 0.4623 0.1408 0.0191 0.2035 0 0 0 

Beta 4 0 0 0 0.2509 0.2190 0.3856 0 0 0 0 0 0 

Standard Errors 0 0 0 0.1121 0.1323 0.1503 0 0 0 0 0 0 

p values 0 0 0 0.0125 0.0489 0.0052 0 0 0 0 0 0 

RQ 100.46 117.82 108.60 97.71 114.60 106.80 101.03 116.66 109.28 105.47 118.72 111.07 

Hits in-sample (%) 4.8867 5.1251 5.1251 5.2443 5.1251 5.0059 5.0059 5.0059 5.1251 4.8867 4.6483 4.8867 
Hits out-of-sample 

(%) 3.5000 6.5000 3.0000 3.5000 4.8000 3.5000 4.0000 7.5000 3.0000 5.0000 7.0000 4.0000 

DQ in-sample 
(p values) 0.8704 0.5473 0.3859 0.3517 0.3995 0.3023 0.8221 0.5189 0.4050 0.5467 0.5702 0.0752 

DQ out-of-sample  
(p values) 0.7867 0.0961 0.5864 0.7419 0.0089 0.7737 0.8776 0.2265 0.5344 0.3512 0.0000 0.3686 

Note: Significant coefficients at 5% level of significance are given in bold; shaded boxes denote rejection from the DQ test at 1% significance level. 
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cation provides the best estimates at the 1% benchmark. Furthermore, the Symmetric Absolute Value, the 
Asymmetric Slope and the Indirect GARCH provide in-sample hits near the value of 1, but the out-of sample 
hits are some distance from this value. This is less problematic for the case of the I-CAViaR specification. 

We then turn to the results for the 5% VaR. We first discuss the results for the CAC40, the DAX30 and the 
ASE stock indices. The in-sample hits range from 4.9% to 5.1% for the Symmetric Absolute Value, the Asym-
metric Slope and the Indirect GARCH models, while the I-CAViaR specification is on target in most cases as 
well. The out-of sample forecasts are very accurate for the case of DAX40 when we apply any of these three 
models, and also for the case of CAC40 when we apply the Indirect GARCH specification. When we turn to the 
case of the FTSE100, S & P500 and NIKKEI225 indices note that we obtain estimates which are extremely 
close to the value of 5%, which is taken as evidence that they describe the evolution of the tail for all cases un-
der consideration. Looking into the out-of-sample forecasts, the performance is similar to the one obtained in the 
first set of market indices. Finally, a similar pattern emerges for all three specifications as well the I-CAViaR 
model when we examine the five stock indices. 

A final comment we make is that in most cases the estimation of the Asymmetric Slope model gives coeffi-
cient estimates for the negative lagged returns which are always statistically significant while the estimates as-
sociated with the positive returns are not significantly different from zero. Therefore, we may argue there are 
possible strong asymmetric influences on VaR measures of lagged returns. This finding is further reinforced by 
the estimates of the I-CAViaR model. 

The overall results from the present analysis show that the DQ test statistics select different CAViaR specifi-
cations for different confidence internals which may lead to the argument that the process guiding the tail beha-
viour changes over time. 

With respect to the empirical loss function results we observe that the values of the ( )Q θ  I-CAViaR model 
are always less that of the three specifications due to Engle & Managanelli (2004). 

5. Summary and Concluding Remarks 
The recent financial crisis of 2007-2009 has brought in surface the need for more accurate measurement of the 
downside risk of financial institutions. A significant contribution to this increased volatility has been the sub-
stantial rise of capital flows from mature markets towards the emerging markets of Southeast Asia and the 
economies of transition. The 1997-1998 financial crisis as well as the bankruptcy of several financial institutions 
during the 1990s had shown quite convincingly how important the development is for the stability of the global 
financial system and adoption of the appropriate mechanisms for measuring market risk. However, the recent 
financial turbulence and the reversal of capital flows in an effort of the hedge funds to liquidate their investment 
in emerging markets have once again led to increase volatility in the global financial markets. 

The Riskemetrics methodology by Morgan Stanley (1996) provided the first econometric methodology for the 
measurement of market risk based on the concept of VaR which was introduced in Banking Supervision’s (1996) 
“Amendment to the Capital Accord to Incorporate Market Risks”. This led to a fast growing literature on the 
development of alternative methodologies to measure VaR. The present paper utilized the CAViaR modeling 
procedure, which had been proposed by Engle & Manganelli (2004). This is a semiparametric method which 
shifts the analysis of developing a good measure of the VaR from the distribution of the portfolio returns direct-
ly to the behavior of the quantile. This methodology is considered to have several advantages over competing 
VaR methodologies like the GARCH models and the Extreme Value Theory. 

We applied this methodology to estimate the VaR using daily observations for the period January 3, 1995 to 
August 28, 2013. We studied the behaviour of alternative CAViaR specifications for six stock market indices, 
namely the S & P 500, FTSE 100, DAX30, CAC40, NIKKE225 and the Athens Exchange General Index. 

Our overall results led to the conclusion that this methodology provided very accurate measurement of the 
VaR for all stock price indices. This evidence is based on a battery in-sample and out-of-sample forecasting 
performance. Furthermore, our findings show that the CAViaR quantile regression models and the I-CAViaR 
model have shown significant success in predicting the VaR measure for various periods although this perfor-
mance varies over the three periods before, during and after the 2007-2009 financial crisis. These findings may 
be of interest to portfolio managers, private and institutional investors as well as hedge funds that are active in 
mature and emerging stock markets. 
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