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Abstract 
Fuel model mapping has followed in general two trends: 1) indirect infe-
rences, where some factors, presumably associated with fuel production, are 
related to a given fuel model; and 2) experts consulting, which has been used 
to classify and to validate other people classifications. However, reliance on 
expert judgment implies a subjective approach. Thus, I propone the integra-
tion of geostatistic techniques and the Conditional-Fuels-Loading concept 
(CFL) to define a more objective perspective in the fuel-model mapping. The 
information used in this study was collected in a forest of Chihuahua, Mexico, 
where fuels were inventoried in 554 (1000 m2) sample plots. These sample 
plots were classified using the CFL; and ordinary kriging (Gaussian, spherical 
and exponential) was used to interpolate the fuel-model values. Using the 
Akaike’s Information Criterion the spherical model performed best. The me-
thodology allowed a finer definition of spatial distribution of fuel models. 
Some advantages of the CFL are: 1) it is based on actual fuel loads, and not 
only on vegetation structure and composition; 2) it is objective and avoids the 
bias of different classifiers (experts); and 3) it avoids the need of the advice of 
experts. 
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1. Introduction 

Many strategies for fire management are based on prior knowledge of the poten-
tial fire behavior of a given forest [1] [2]. Based on this knowledge many fire be-
havior simulation systems have been developed. Among them, FARSITE [3] is 
one of the most complete and used systems. All these simulation systems require 
information of the spatial distribution of forest fuels, which in most cases is 
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represented through fuel-models (a generalized description of fuel physical cha-
racteristics [4]). Fuel-model mapping in general has followed two trends: 1) in-
direct inferences, where some factors like vegetation, species, and density, pre-
sumably associated with fuel production, are related to a given fuel-model [5] 
[6]; and 2) experts consulting, which implies a subjective approach. Regardless 
the complexity of a new technology, many fuel-model classifications are vali-
dated through the experts’ judgment [7]. 

Although an expert can classify a forest into a given number of fuel-models, 
the spatial limits between one fuel-model and another are difficult to establish 
[8] [9]. Moreover, there is no guarantee that the same area will be classified the 
same way by two or more experts [10]. To avoid these two limitations, the use of 
the Conditional Fuels Loading concept (CFL) [11] is suggested in this study. CFL 
is based on certain proportion of fuels loading that correspond to each fuel-model. 
Because fuel is the basic element in a fire behavior prediction, its direct estima-
tion avoids the use of inference methodologies, which have shown highly varia-
ble accuracy (ranging from 30% to 70% [4]). Direct fuels surveys are both costly 
and time consuming [12], so in this paper I propose the use of geostatistical tech-
niques to define more accurate estimations. Geostatistics provides a method to de-
scribe the spatial continuity of many natural phenomena [13] [14]. Moreover, geos-
tatistical techniques perform well with sparse data, thus it is possible to work with 
less data [15], reducing both the cost and time required in a fuel survey. The use 
of geographic information systems (GIS) techniques allowed the integration of 
both geostatistics capabilities and fuel inventory information to define the spatial 
distribution of fuel-models [16] [17]. 

2. Material and Methods 
2.1. Study Area 

The study area is located within a region that covers approximately 250,000 hec-
tares of primarily coniferous-oak forest, which is an important component of 
Mexico’s Sierra Madre Occidental [18]. This study was carried out using infor-
mation from a commercial forest of the ejido (rural community) “El Largo y 
Anexos”. This ejido is located within the region called Mesa del Huracán, 
northwest of the state of Chihuahua, México (Figure 1). The predominant tree 
species are Pinus durangensis, P. arizonica, P. engelmannii and Quercus side-
roxyla. Most of the topography is mountainous, with some valleys. The annual 
mean temperature ranges from 8.5˚C to 12˚C. The extreme minimum tempera-
ture registered is −26˚C. The extreme maximum temperature is 38˚C. The range 
of precipitation is between 690 and 1130 mm/year (most of the rainy season oc-
curs from July to September). Elevation ranges from 1400 up to 2400 m. Fire 
season is in summer, during the dry season (from May to June) [18]. 

2.2. Data Collection 

The information used in this study was collected based on a traditional forest  
 

DOI: 10.4236/jep.2018.92009 112 Journal of Environmental Protection 
 

https://doi.org/10.4236/jep.2018.92009


J. G. F. Garnica 
 

 
Figure 1. Location of the study area within “Mesa del Huracán”, at 270 km of Chihuahua City, Mexico (UTM Zone 12). 
 

inventory of Mexico. A total of 554 (1000 m2) sample plots were measured dis-
tributed randomly into 142 sub-stands (defined by species, density, and aspect). 
An inventory was conducted within an area of about 1200 ha. In the inventory I 
evaluated the 1 hr, 10 hr, 100 hr, and live woody forest fuels. Forest fuels evalua-
tion was based on the techniques and methodologies described by Brown et al. 
[19]. Plots center location was determined using a global positioning system (GPS) 
receiver. 

2.3. Conditional Fuels Loading Concept 

To classify the sample plots into their corresponding fuel-model class, the CFL 
concept was used [11], which considers that each fuel-model contain a characte-
ristic amount and proportion of 1-hour, 10-hour, and 100-hour fuel classes. In 
general the study area was considered within the “Timber litter” fuel complex 
(fuel-models 8, 9, and 10) [20]. Based on the characteristic fuels loading that 
corresponds to fuel-models 8, 9, 10 (Table 1), the following “conditional pro-
portions” were evaluated for each sample plot: 

1) The sum of the characteristic10-HR and 100-HR fuels loading for FM-8 is 
7.84 ton/ha. For practical purposes this value was considered as integer (=8). Thus: 
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Table 1. Fuel loads (ton/ha) corresponding to the “timber litter” fuel complex, of the 
NFFL* classification [21]. 

Fuel model Typical fuel complex 
1-hr 10-hrs 100-hrs 

 ton/ha  

FM-8 Closed timber litter 3.36 2.24 5.60 

FM-9 Hardwood litter 6.55 0.92 0.34 

FM-10 Timber (litter and understory) 6.75 4.88 11.23 

*Northern Forest Fire Laboratory [22]. 
 

if ( )10-HR 100-HR 8+ <  ⇒ FM-9.                (1) 

2) Based on a manual qualification of several sample plots, a factor of 18.8 
(approx. 19) (that corresponds to the multiplication of 1-HR fuel loading times 
the 100-HR fuel loading) has been defined to separate sample plots between FM-8 
and FM-10. Thus: 

if ( )1-HR 100-HR 19× >  ⇒ FM-10.                (2) 

3) The remaining unclassified sites corresponded to FM-8. 
4) Oak species are typical in FM-9 [20]. Therefore, once the sites are classified, 

a final filter is used. Thus, all the sites where Quercus spp occurred are reclassi-
fied as FM-9. 

2.4. Fuel Model Mapping 

After a fuel-model value was defined for each 1-hr, 10-hrs, and 100-hrs fuel 
class, ordinary kriging (OK) technique was used to interpolate the fuel-model 
values of the 554 sample plots. OK is applied when the mean of the data values is 
stationary, but unknown. OK is considered as the “best linear unbiased estima-
tor” [23] [24]: 1) Linear, because its estimates are weighted linear combinations 
of the available data; 2) Unbiased, because it tends to generate a mean square 
error equal to zero (E[Estimated(x0) − True(x0)] = 0, and λi = 0); and 3) Best, 
because it aims at minimizing the variance of the errors (E[Estimated(x0) − 
True(x0)]2 = minimum). Isaaks and Srivastava [24] describe in detail the mathe-
matical derivation of these constraints, and of the systems of equations to de-
termine interpolation weights (λi). The following formulas are used to calculate 
the OK estimates and variance respectively [23] [24]: 

( ) ( )0
1

ˆ
n

OK i i
i

Z x Z xλ
=

= ⋅∑                      (3) 

( ) ( ) ( )2
0 0 0 0

1
, ,

n

OK i i
i

x C x x C x xσ λ µ
=

= − ⋅ +∑               (4) 

where: 
( )0

ˆ
OKZ x  = ordinary kriging estimate at location x0; 

iλ  = the weight for sample point i at location xi; 
( )iZ x  = the value of the observed variable Z at location xi; 
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( )2
0OK xσ  = ordinary kriging variance at location x0; 

( )0 0,C x x  = the covariance of the point to estimate at location x0 with itself; 
( )0 0,C x x  = the covariance of the sample point at location xi and the point to 

estimate at location x0; and  
µ  = Lagrange parameter. 
The general process for ordinary kriging is illustrated in Figure 2, which starts 

with the sample data that are used to calculate an experimental variogram. Then, 
a variogram model is fitted to the experimental variogram. After that, the sample 
data and the variogram model are used as inputs of the ordinary kriging proce-
dure. Finally both, the ordinary kriging estimates and the ordinary kriging va-
riances are generated [23]. 

3. Results 
3.1. Variogram Analysis 

The results of a general proximity matrix are shown in Table 2. Although the 
maximum distance between points was more than 8.5 km, 75% of the sample 
plots have a distance lower than 3.8 km. The knowledge of the minimum dis-
tance between points (in this case 40 m) was useful to define the lag distance 
used to define the experimental variogram. 

An omnidirectional variogram for Fuel-Models (FMs) was developed under 
an isotropic approach (Figure 3). The lag distance of 20 m, and two neighbors,  

 

 
Figure 2. Diagram of the ordinary kriging process. Variogram graph illustrates three different models for spatial continuity. 
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Table 2. Characteristics of the distance matrix corresponding to the 1-hour fuels within 
the study area. 

Statistics Value 

Number of sample plots 535 

Average distance between points 2791.10 m 

Distance range 8599.28 m 

Minimum distance between points 40 m 

Quartiles 

First 

Median 

Third 

 

1435.86 m 

2522.76 m 

3896.03 m 

Maximum distance between points 8639.28 m 

 

 
Figure 3. Experimental variogram and the corresponding model for fuel-models (spheri-
cal). The variogram values (γ|h|) are half the average squared difference between the 
paired data values. 

 
showed best results in the definition of this experimental variogram. The lag to-
lerance applied was one half of the lag distance. Three positive definite models 
(Gaussian, spherical and exponential) were tested to select the best fit to the ex-
perimental variogram. The Akaike’s Information Criterion (AIC) [9] was used as 
criterion to select the best model. The AIC is a way of selecting a model from a 
set of models. The chosen model is the one that minimizes the Kullback-Leibler 
distance between the model and the truth [25]: 

( )( )AIC 2 ln likelihood 2K= − +                   (5) 

where: 
likelihood = the probability of the data given a model. 
K = the number of free parameters in the model.  
From Table 3, we see that the spherical model resulted in the lower AIC. The 

variogram that define this model reached the maximum variance (sill) at a dis-
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tance of 100 m (range). After this distance the FM variable is no longer spatially 
autocorrelated. The spherical model resulted in a very low nugget effect, which 
help to define a better fitting. 

3.2. Kriging Results 

FM estimates were produced for unsampled sites considering two neighbors 
(sampled points). OK estimations were made under a 40 × 40 m grid, which 
correspond to the minimum distance between sample plots (Table 2). The re-
sulting estimations were not discrete, therefore the following criteria were used 
to group each cell: FM-8 cell values from 8 to 8.66; FM-9 from 8.66 to 9.33: and 
FM-10 from 9.33 to 10. Figure 4 shows the spatial pattern of the three fuel mod-
els, which resulted from the ordinary kriging process. Most of the study area falls 
in the fuel models 8 and 9 (38.1% and 34.8% respectively). FM 10 has coverage 
of 15.1%. 

The standard errors associated with the estimates were also calculated. Figure 
5 shows a contour map and a surface map of the standard errors resulting from 
the estimation of FMs. This error was spatially distributed quite homogeneously.  

 
Table 3. Characteristics of the models that correspond to the experimental variogram of 
the spatial continuity of fuel-models. 

Model Nugget Sill Range AIC 

Spherical 0.0109 0.5704 100.8600 −110.68 

Gaussian 0.0148 0.5703 79.7320 −109.97 

Exponential 0.000 0.5768 57.6739 −45.6167 

AIC = Akaike’s Information Criterion. The best model is that that minimize the AIC [9]. 
 

 
Figure 4. Spatial pattern of fuel models in the study area, of the “timber litter” complex, 
resulting from ordinary kriging analysis. 
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Figure 5. Spatial distribution of the standard error resulted from the estimation of fuel-models.  

 
This could be explained by the high concentration of sample plots. The mini-
mum and the maximum values were 0.68 and 0.96 respectively. Most of the 
standard error values were higher than 0.86. 

4. Discussion 

The spatial implementation of the fuel-model concept has caused many technic-
al problems, such as the difficulty to mapping fuel-models in a given area. Fur-
thermore, fuel-models do not reflect the actual spatial variability of fuel charac-
teristics. This is so because fuel-model maps tend to qualify big areas, that are 
considered homogeneous, into the same fuel model, assuming a homogeneous 
fire behavior (for a given projection period). Therefore the fuel-model approach 
would be useful in areas where vegetation and fuels are spatially homogeneous. 
However, in practice this condition is very rare. Although current fuel-model 
mapping approaches have been useful in many cases [3] [4], its use is limited to 
support fire management strategies at large scale. Eventually, the next step would 
be to define fire behavior at a smaller scale, basically to locate risky areas. 

A FM classification of a given area has to combine two requirements: 1) a 
correct determination of a FM (classification component); and 2) an accurate 
definition of the spatial distribution of FMs (spatial component). The use of ex-
perts’ judgement could help to overcome the first requirement. However, with 
the “experts judgement” approach the definition of the FM spatial distribution 
(size, limits and location) has presented serious problems. Although, the use of 
GIS and remote tensing technology has solved the second requirement, the re-
sultant accuracy has been rather low [4]. The methodology illustrated in this 
paper overcomes these two requirements. Moreover, until now there was not 
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any objective way to validate not only the FMs classification based on inference 
procedures, but also to validate the experts’ judgements. Therefore, the present 
methodology could be used for both validation and calibration purposes. On the 
other hand, the advantages of large scale classifications (based on inference al-
ternatives (e.g. remote sensing)) and lower scale classifications (based on the present 
methodology) could be combined, through the implementation of double sam-
pling methodologies [26] [27]. 

The use of ordinary kriging, as a spatial interpolation technique, was very prac-
tical. However, the classification of the resulting continuous estimations could 
present certain level of subjectivity. Therefore, specific thresholds between one 
FM and another should be defined. Nevertheless, the consistency of the estima-
tions from using the proposed methodology makes much simpler to define such 
limits than to classify the same area based on an expert judgement.  

Because of cost and time constraints the methodology presented in this paper 
could result impractical in operative evaluations. However, the advantage of inter-
polation techniques such as kriging is that it is possible to work with sparse and 
less data [15]. This condition allows to experiment with lower amounts of sam-
ple plots, which positively affect both the time and cost required. Moreover, the 
spatial definition of the estimation error resulting from the kriging analysis can 
be used to define better sampling strategies (sampling intensity and design). On the 
other hand, ancillary data could be used, through co-kriging techniques, to enhance 
the precision of the estimations of FMs. However, very few have been done in 
the use of geostatistical alternatives to support the classification of fuel-models. 
Thus, an indirect objective of this paper was to show the potential of using krig-
ing techniques. 

5. Conclusions 

The methodology showed in this paper allows a finer definition of spatial distri-
bution of fuel models. This could support a more accurate prediction of the spa-
tial fire behavior. The application of the CFL Concept does not require previous 
experience in fuel-model classification. Moreover, working within the same area 
the implementation of the CFL concept results in the same classification of the 
sample plots. Other advantages of this classification methodology are: 1) it is 
based on actual fuel loads, and not only on vegetation structure and composi-
tion; 2) it is objective and avoids the bias of different classifiers (experts); and 3) 
it avoids the need of the advice of experts. 
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