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ABSTRACT 

Air pollution transport and dispersion in the atmospheric boundary layer are modeled by the advection-diffusion equa- 
tion, that is, essentially, a statement of conservation of the suspended material in an incompressible flow. Many models 
simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion 
equation assuming turbulence parameterization for realistic physical scenarios. We present the general time dependent 
three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric 
boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison 
with experimental data are shown.  
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1. Introduction 

The processes governing the transport and diffusion of 
pollutants present large variability and distinct forms, the 
phenomenon is of such complexity that it would be im- 
possible to describe it without the use of mathematical 
models. Such models therefore constitute an indispensa- 
ble technical instrument of air quality management. 

The theoretical approach to the problem essentially 
assumes different forms. In the K approach, diffusion is 
considered, at a fixed point in space, proportional to the 
local gradient of the concentration of the diffused mate- 
rial. Consequently, it is fundamentally Eulerian since it 
considers the motion of fluid within a spatially fixed 
system of reference. They are based on the numerical 
resolution, on a fixed spatial-temporal grid, of the equa-
tion of the mass conservation of the pollutant chemical 
species, the so-said advection-diffusion equation (ADE).  

However, in the last years, much progress has been 
made in getting an analytical solution of steady state 
ADE [1]. Recently, the literature presented analytical 
general solutions of the ADE by the GILTT approach 

(Generalized Integral Laplace Transform Technique) 
whose main feature relies on the analytical solution of 
transformed GITT (Generalized Integral Transform Tech- 
nique) solutions by the Laplace Transform technique 
[2,3]. This methodology has been largely applied in the 
topic of simulations of pollutant dispersion in the At- 
mospheric Boundary Layer (ABL) and is a general steady 
state solution for any profiles of wind and eddy diffusiv- 
ity. A new three-dimensional analytical solution is pre- 
sented in this work for the prediction of pollutant disper- 
sion in the ABL incorporating both the spatial and tem- 
poral dependence of the eddy diffusivity.  

To accomplish our objective, we solve the temporal 
dependent three-dimensional advection-diffusion equa- 
tion combining the Decomposition and GILTT ap- 
proaches. So far, applying the idea of Decomposition 
method [4,5], we reduce the ADE with temporal de- 
pendence of the eddy diffusivity into a set of recursive 
ADE’s with eddy diffusivity just depending on the spa- 
tial variable z, which is then directly solved by the 
GILTT method. We introduced an atmospheric boundary 
Layer parameterisation with a time dependent vertical 
eddy diffusivity coefficient and evaluated the performance *Corresponding author. 
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of the proposed model against an experimental data set. 

2. The Analytical Solution 

In the sequel we briefly discuss the solution derivation of 
the time-dependent, three-dimensional ADE. For such let 
us consider the problem: 

x y zK K K

c c c c
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t x y z

c c c

x x y y z z
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For t > 0, 0 < x < Lx, 0 < y < Ly and 0 < z < h, subjected 
to the following boundary and initial conditions: 
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 , , ,0 0 at 0x y zc t            (1d) 

In the case of horizontal diffusion (x,y plane), we solve 
the equation for x and y positive then, being the horizontal 
dispersion symmetric compared to the x and y axes, the 
same results are associated with x and y negative coordi- 
nates. Here it is assumed that the source term is written 
as a source condition, quoted as: 

    00, , , suc y z t Q y y z H         (1e) 

We must notice that c  denotes the mean concentra- 
tion of a passive contaminant (g/m3), u , v  and w  
are the cartesian components of the mean wind speed 
(m/s) in the directions x, y and z, and Kx, Ky and Kz are 
the eddy diffusivities (m2/s). Q is the emission rate (g/s), 
h the height of the atmospheric boundary layer (m), Hs 
the height of the source (m), Lx and Ly are the limits in the 
x and y-axis and far away from the source (m) and δ repre- 
sents the Dirac delta function 

In order to solve the problem (1) and also considering 
the well-known solution of the two-dimensional problem 
with advection in the x-direction by the GILTT method 
[6,7], we initially apply the general integral transform 
technique in the y variable. For such, we expand the pol- 
lutant concentration as: 
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where  is a set of orthogonal eigenfunctions, given 
by m mY y  with 

 mY y
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the respective set of eigenvalues. 
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M

 for 

0m    we begin recasting Equation (1) applying 
the chain rule for the diffusion terms. It turns out that: 
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Now applying the operator  to Equation 

(3) and using the definitions: 
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the Equation (3) is rewrite as: 
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Making the assumption that the reference system is 
orientated to the prevailing wind ( 0u  , 0v w  ), 
and further considering that the advection is dominant in 
the x-direction, the diffusion component Kx has been ne- 
glected. In addition, it is also considered that Ky has only 
dependence on the z-direction [8,9]. These assumptions 
clearly yield to the ensuing set of M + 1 two-dimensional 
diffusion equations:  
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  (5) 

Now, we are in position to solve Equation (5) following 
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the idea of the Decomposition method [4,5]. In fact to 
construct the solution, firstly it is considered that the 
time-dependent eddy diffusivity is written like:  

     , ,z z zK z t k z t K z             (6) 

where  zK z  is the time averaged eddy diffusivity. By 
this assumption the Equation (5) reads like: 
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According the idea of the Decomposition method, we 
consider that the solution of Equation (7) has the form:  
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Now replacing Equation (8) in Equation (7), from the 
resulting equation we are able to construct the recursive 
set of advective-diffusive equations: 
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where we have the following notation for the term :  
JS
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m J
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We must recall that this procedure is not unique. We 
justify our choice in order because this procedure allows 
us to take advantage from the fact that the resulting re- 
cursive system problem can be straightly analytically 
solved by the GILTT approach [6,7,10]. Further we have 
to notice that the time dependence of the eddy diffusivity 
in the proposed solution is governed by the source term. 
It is relevant underline that the first equation of recursive 
system problems satisfies the boundary conditions 
(Equations (1a-e)) meanwhile the remaining equations 

satisfy the homogeneous boundary condition. Once the 
set of problems (9) is solved by the GILTT method, the 
solution of Equation (1) is well determined. It is impor- 
tant to remark that we may control the accuracy of the 
results by a proper choice of the number of terms in the 
series solution summation. 

3. Model Evaluation against Experimental 
Data 

The performance of the proposed model is evaluated 
against the experimental Copenhagen [11,12] data set. In 
the Copenhagen experiment the tracer SF6 was released 
without buoyancy from a tower at a height of 115 m, and 
collected at the ground-level positions at a maximum of 
three crosswind arcs of tracer sampling units. The sam- 
pling units were positioned, at the ground level, 2 - 6 km 
from the point of release. The site was mainly residential 
with a roughness length of 0.6 m. The meteorological 
conditions during the dispersion experiments ranged 
from moderately unstable to convective. We used the 
values of the maximum concentration on every cross- 
wind arc normalized with the tracer release rate from 
[11]. Generally, the distributed data set contains hourly 
mean values of concentrations and meteorological data. 
However, in this model the validation is performed to 
show the time dependence of eddy diffusivity using data 
with a greater time resolution, kindly made available by 
Gryning and described in [13]. In particular, we used 10 
minutes averaged values for meteorological data in Ta- 
bles 1-3 while Table 4 reported hourly mean values of  
 
Table 1. Friction velocity (u* (m/s)) for different time steps. 
Each interval corresponds to 10 min. 

t/Run 1 2 3 4 5 7 8 9 

1 0.36 0.68 0.46 0.56 0.58 0.48 0.65 0.72

2 0.37 0.67 0.45 0.51 0.52 0.48 0.79 0.73

3 0.40 0.81 0.47 0.37 0.51 0.57 0.67 0.60

4 0.43 0.68 0.39 0.44 0.58 0.62 0.67 0.59

5 0.35 0.75 0.39 0.48 0.59 0.53 0.68 0.65

6 0.34 0.74 0.40 0.48 0.52 0.65 0.65 0.71

7 0.42 0.76 0.40 0.39 0.52 0.63 0.68 0.73

8 0.43 0.82 0.41 0.40 0.45 0.65 0.67 0.73

9 0.40 0.76 0.31 0.39 0.44 0.66 0.73 0.73

10 0.37 0.73 0.34 0.39 0.44 0.62 0.73 0.66

11 0.35 0.69 0.39 0.39 0.44 0.52 0.75 0.67

12 0.36 0.66 0.40 0.39 0.43 0.62 0.69 0.74
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Table 2. Convective velocity (w* (m/s)) for different time 
steps. Each interval corresponds to 10 min. 

t/Run 1 2 3 4 5 7 8 9 

1 2.07 2.04 1.21 1.32 0.93 1.93 1.99 1.35

2 2.22 1.85 1.10 1.45 1.10 1.86 2.27 1.63

3 1.56 2.02 1.40 1.29 0.90 2.37 2.35 1.77

4 2.11 2.11 1.18 1.37 0.82 2.15 2.32 1.43

5 1.81 2.15 1.09 1.15 1.05 1.57 2.42 1.31

6 1.67 1.89 1.37 1.10 1.02 2.67 2.07 1.47

7 1.98 2.39 1.29 0.89 1.02 2.37 2.49 1.51

8 2.18 2.26 1.48 0.85 0.89 2.62 2.35 1.63

9 1.56 2.25 0.92 0.77 0.76 2.87 2.24 1.74

10 2.29 1.69 1.38 0.77 0.76 2.15 2.31 1.59

11 1.88 2.28 1.18 0.77 0.76 1.45 2.54 1.82

12 2.00 1.54 1.37 0.77 0.60 2.08 2.57 2.03

 
Table 3. Monin-Obukhov length (m) for the different runs 
and time steps. Each time step corresponds to 10 min. 

t/Run 1 2 3 4 5 7 8 9 

1 −26 −178 −152 −75 −492 −71 −71 −793

2 −23 −227 −194 −42 −215 −80 −85 −471

3 −83 −311 −106 −23 −368 −64 −47 −202

4 −42 −160 −101 −32 −735 −111 −49 −366

5 −36 −203 −129 −71 −366 −177 −45 −633

6 −42 −286 −70 −80 −273 −67 −63 −588

7 −47 −155 −83 −83 −273 −87 −41 −593

8 −38 −228 −60 −101 −262 −71 −47 −471

9 −83 −184 −106 −129 −395 −56 −70 −389

10 −21 −389 −42 −129 −395 −111 −64 −375

11 −32 −133 −101 −129 −395 −215 −52 −262

12 −29 −375 −70 −129 −759 −123 −39 −252

 
Table 4. Boundary layer height for the different runs. 

Run 1 2 3 4 5 7 8 9 

h (m) 1980 1920 1120 390 820 1850 810 2090

boundary layer height. 

Boundary Layer Parameterization 

The reliability of the analytical solution of the advection- 
diffusion equation depends on the choice of the atmos- 
pheric boundary Layer parameterization. In terms of the 
convective scaling parameters the vertical eddy diffusiv- 
ity can be formulated as [14]: 

1 1
4 8

3 3

*

0.22 1 1 e 0.0003e
z z

h hzK z z

w h h h
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(11) 

The above formulation of the vertical eddy diffusivity 
varies in time through the time variation of the vertical 
convective velocity w* and the height of the ABL h. In 
Figure 1 we show the graphic displaying the vertical 
eddy diffusivity Kz as a sectional function of time for the 
Copenhagen data set. 

For the lateral diffusion we used [14]: 
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. More, k is  


the von Karman constant (k = 0.4), L is the Monin- 
Obukhov length, v  is the Eulerian standard deviation 
of the longitudinal turbulent velocity, v  is the stability 
function, 

q

  is the non-dimensional molecular dissipa- 
tion rate function,  m v

f  is the peak wavelength of the 
turbulent velocity spectra. 
 

 

Figure 1. Vertical eddy diffusivity profile (Kz) in function of 
time for the Copenhagen experimental runs. 
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The wind speed profile can be described by a power 
law expressed as follows [15]: 

1 1

n

zu z

u z

 
  
 

               (13) 

where zu  and 1u  are the mean wind speeds horizontal 
to heights z and z1 and n is an exponent that is related to 
the intensity of turbulence [16]. For the unstable condi- 
tions of the Copenhagen experiment we used n = 0.1. 

4. Results 

In order to show the performance of the present model 
and to evaluate the performance of the proposed ABL 
parameterization we have applied the model using the 
Copenhagen experimental data set [11]. 

The validation has to be considered preliminary one. 
We have checked the model with data referring to con- 
tinuous emission in variable meteorology (with time 
resolution of 10 minutes) and in receptors points far from 
the source (2 - 6 km).  

In this work we adopted the value of J = 6 for the 
number of recursive problems solved. Indeed, in the se- 
quel we report the results encountered in Table 5 report- 
ing the numerical convergence of the results, considering 
successively one to six terms in the series solutions. We 
can observe that the desired accuracy, for the problem 
solved, is attained with six terms in the series solution, 
for all distances considered. Once the number of terms in 
the series solution is known, next in Table 6, we present  
 
Table 5. Numerical convergence of the time-dependent 3D- 
GILTT model for different runs and source distances. 

Run 
Adomian  
recursion 

depth 
 , , ,c x y z t

Continued  

0 12.41 4.26 2.18 

1 16.83 5.18 2.55 

2 16.01 5.08 2.54 

3 15.72 5.07 2.54 

4 15.63 5.07 2.54 

5 15.60 5.07 2.54 

3 

6 15.61 5.07 2.54 

0 6.71   

1 11.36   

2 11.34   

3 11.34   

4 11.34   

5 11.34   

4 

6 11.34   

0 11.69 4.46 2.40 

1 17.52 5.73 2.92 

2 17.19 5.53 2.87 

3 17.15 5.48 2.87 

4 17.12 5.46 2.87 

5 16.88 5.47 2.87 

5 

6 16.17 5.47 2.87 

0 5.68 1.95 1.25 

1 6.73 2.15 1.36 

2 6.53 2.12 1.35 

3 6.51 2.12 1.35 

4 6.51 2.12 1.35 

5 6.51 2.12 1.35 

7 

6 6.51 2.12 1.35 

0 6.74 2.55 1.44 

1 8.69 3.09 1.72 

2 8.41 3.08 1.72 

3 8.38 3.08 1.72 

4 8.37 3.08 1.72 

5 8.37 3.08 1.72 

8 

6 8.37 3.08 1.72 

0 5.51 2.11 1.15 

1 6.24 2.29 1.23 

2 6.10 2.26 1.22 

3 6.09 2.26 1.22 

4 6.09 2.26 1.22 

5 6.09 2.26 1.22 

9 

6 6.09 2.26 1.22 

  (10−7 s·m−3) 

0 8.50 2.90  

1 10.19 3.26  

2 9.84 3.23  

3 9.79 3.23  

4 9.79 3.23  

5 9.79 3.23  

1 

6 9.79 3.23  

0 5.08 1.88  

1 5.80 2.05  

2 5.65 2.03  

3 5.65 2.03  

4 5.65 2.03  

5 5.65 2.03  

2 

6 5.65 2.03  
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Table 6. Observed and predicted concentrations data for 
different runs (Copenhagen experiment) at various source 
distances. The concentration is divided by the emission rate 
Q. 

Run Distance (m) 
Observed 

(10−7 s·m−3) 
Predictions 
(10−7 s·m−3) 

1 1900 10.5 9.79 

1 3700 2.14 3.23 

2 2100 9.85 5.65 

2 4200 2.83 2.03 

3 1900 16.33 15.61 

3 3700 7.95 5.07 

3 5400 3.76 2.54 

4 4000 15.71 11.34 

5 2100 12.11 16.17 

5 4200 7.24 5.47 

5 6100 4.75 2.87 

7 2000 9.48 6.51 

7 4100 2.62 2.12 

7 5300 1.15 1.35 

8 1900 9.76 8.37 

8 3600 2.64 3.08 

8 5300 0.98 1.72 

9 2100 8.52 6.09 

9 4200 2.66 2.26 

9 6000 1.98 1.22 

 
numerical comparisons of the 3D-GILTT results against 
experimental data.  

In Figure 2 the scatter diagram of model results 
against experimental data is presented and it can be ob- 
served that the present models in good agreement with 
experimental data.  

In Table 7 some well-known statistical indices of 
models performances are reported. They are suggested 
and discussed in Chang and Hanna [17] and defined in 
the following way:  

 2
NMSE o p pC C C C  o , 

 FA2 data for which 0.5 2p oC C   , 

  COR o o p p oC C C C p    , 

 FB 0.5o p o pC C C C   , 

  

 

Figure 2. Observed (Co) and predicted (Cp) scatter plot. 
Data between dotted lines correspond to  0.5,2o pC C  . 

 
Table 7. Statistical indices of model performances. 

Recursion 
depth 

NMSE COR FA2 FB FS 

0 0.30 0.90 0.95 0.36 0.35 

1 0.12 0.91 1.00 0.11 −0.03 

2 0.12 0.91 1.00 0.14 0.01 

3 0.12 0.91 1.00 0.14 0.02 

4 0.12 0.91 1.00 0.14 0.02 

5 0.12 0.91 1.00 0.15 0.03 

6 0.11 0.92 1.00 0.15 0.05 

 
where NMSE is the normalized mean square error, COR 
the correlation coefficient, FA2 is the fraction of data (%, 
normalized to 1), FB the fractional bias, FS the fractional 
standard deviations. Subscripts o and p refer to observed 
and predicted quantities, respectively,  is the standard 
deviation, C the concentration and the overbar indicates 
an averaged value. The statistical index FB says if the 
predicted quantities underestimate or overestimate the 
observed ones. FA2 is the fraction of Co values (normal- 
ized to 1) within a factor two of corresponding Cp values. 
The statistical index NMSE represents the model values 
dispersion in respect to data dispersion. The best results 
are expected to have values near zero for the indices 
NMSE, FB and FS, and near one in the indices COR and 
FA2. So far, considering the statistical indices in Table 7 
we can consider good the performance of the solution 
with the presented ABL parameterization. FS 0.5o p o p     , 
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5. Conclusions 

In recent years, it was presented in the literature, for the 
first time, a steady-state analytical solution for the advec- 
tion-diffusion equation considering a vertically inhomo- 
geneous PBL (with any restriction about the eddy diffu- 
sivity coefficients and wind speed profiles) based on the 
GILTT approach (Generalized Integral Laplace Trans- 
form Technique) [2,3]. Here we present a three-dimen- 
sional time-dependent solution with time-dependent ver- 
tical eddy diffusivity profiles that can be used in a time 
evolving turbulent boundary layer. Moreover, with the 
assumed ABL parameterization the model can be applied 
routinely using as input simple ground-level meteoro- 
logical data acquired by an automatic network. Prelimi- 
nary model performances evaluation confirms the reli- 
ability of the model results. 

We also underline the hierarchical character of this 
methodology, in the sense that the solution of the three- 
dimensional ADE problem is obtained from the solution 
of two-dimensional ones. Furthermore, this hierarchical 
character also prevails for problems with eddy diffusivity 
depending on time. In fact, for such problem the solution 
again attained from the solution of a set of problems with 
eddy diffusivity depending only on the vertical variable, 
having the main feature that the sources terms carry the 
time-dependency information of the eddy diffusivity. 
Therefore, from the previous discussion, we are confi- 
dent that we have paved the road to construct a more 
realistic analytical solution for this kind of problem by 
now assuming a time dependency on the wind field too. 
We shall focus our future attention in this direction.  
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