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ABSTRACT 

An electromagnetic wave is a complex vortex and a potential process. This allows us to omit the Lorentz gauge, formu- 
late a mathematically precise theory, and avoid physics discordances. The mechanism of distribution of complex waves 
in dielectric and electrical conductive environments was described. 
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1. Introduction 

The theory of electrodynamics was formulated in the end 
of the 19th century due to work of Maxwell, Lorentz, 
Heaviside, and Hertz. It allowed inventing modern radio 
and television communication devices. Nevertheless, there 
is still the question whether this theory covers entire com- 
plex of electromagnetic effects. There definitely is the 
ground for this question. First of all, modern electrody- 
namics based on the Maxwell’s equations does not meet 
completely the main requirements of the field theory, 
particularly the Helmholtz theorem [1]. The main discor- 
dance is the absence of a potential component of mag- 
netic field. It is usually associated with the lack of mono- 
poles. It is believed that this problem will be solved once 
such objects are found.  

It is also known that there are some issues with des- 
cribing the electromagnetic wave process. These are pri- 
mary discordances met in the modern theory of electro- 
dynamics. 

1) Energy density function of a single-frequency elec- 
tromagnetic wave changes spontaneously from zero to 
maximum. 

2) The discordance mentioned above is the result of the 
change in electric and magnetic components occurring in 
the same phase. Based on the physical conceptions, the 
independent variables E  and H  should be shifted for 

2 . However, mathematic conceptions described in the 
next paragraph do not allow it. 

3) Inputting the phase-shifted laws of electrical and 
magnetic components in the Maxwell’s equations breaks 
equality. This is the main reason why first two discor- 
dances are generally ignored. 

4) The previous statement makes us to suppose that 
expressions in the left-hand side and right-hand side of 
the equal sign in the Maxwell’s equations refer to one 
point, and the processes described by these expressions 
occur at the same time. This approach excludes com- 
pletely the possibility of diffusion of electromagnetic 
process in the space and time because the cause and the 
effect (which are processes presented in the equations) 
are not separated; hence, the essence of a dynamic proc- 
ess is ignored.  

5) In order to eliminate the fourth discordance, they 
input different arguments in the left and right side of the 
d’Alembert wave equations (which are derived from the 
Maxwell’s equations). In other words, the causes and 
effects are separated spatially and in time. The outputs of 
the wave equations are written taking into consideration 
the lag. However, it is not recommended to use these 
solutions as inputs in initial Maxwell’s equations because 
the third discordance reveals. 

Consequently, the modern theory of electrodynamics 
has to put up with conceptual discordances, which con- 
tradict physical conceptions, in order to satisfy mathe- 
matic conceptions. 

We offer in this work the theory, which combines vor- 
tex and potential electromagnetic processes and allows 
eliminating of physical discordances while meeting all 
the mathematic requirements. 

The main goal of this research is creating of a consis- 
tent theory of the electromagnetic field. We offer to con- 
sider both vortex and potential electrodynamic processes 
when describing an electromagnetic wave. Such an ap- 
proach allows eliminating of physical discordances. At 
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the same time, arbitrary mathematical limitations as gau- 
ges are not applied. 

We point out in closing that now there are enough ex- 
perimental and theoretical facts, which require revising 
the existing theory of electromagnetic waves. The elec- 
troscalar waves, as they are called, were detected in the 
experiments by C. Monstein, J. P. Wesley [2], K. Meil 
[3], B. Sacco, A. Tomilin [4]. The theoretical grounds 
can be found in the works of K. J. van Vlaenderen [5], D. 
A. Woodside [6], I. A. Arbab, Z. A. Satti [7], D. V. 
Podgainy, O. A. Zaimidoroga [8]. 

2. Theoretical Analysis 

When expounding the electrodynamics, people usually do 
the deductive reasoning: a top-down approach. First, they 
consider well-known phenomena and laws of electro- 
magnetism, and then use them as a basis to derive the 
Maxwell’s equations, which are assumed to be the peak 
of the electromagnetic theory. The wave equations are 
then derived from the Maxwell’s equations. At the same 
time, the vector potential А  is introduced. No physical 
meaning is actually given to it. Its properties are limited 
by the Lorentz gauge, which does not have any physical 
explanation. 

Let us use the bottom-up strategy now. We write the 
wave equations for four-dimensional vector potential 
 ,A : 

2

0 0 02t
          


AA j ,        (1) 

2

0 0 2
0t

     
 

    


,         (2) 

where 0   and 0   are permittivity and permeability, 
respectively,  and j   are current and charge densit- 
ies, respectively.  

Note that the arguments of field sources  , j  and 
field characteristics  , A  are different in the Equa- 
tions (1) and (2), therefore their solutions are written as 
lagging potentials. 

Let us try to omit the Lorentz gauge and accept the 
equation that is more general: 

 *
0 0, , ,B x y z t

t

        


A ,      (3) 

where  is a scalar function, which has the 
dimension of a magnetic field. 

* , , ,B x y z t 



In this case, giving the full description of a magnetic 
field requires the use of a four-dimensional vector 

. The magnetic field has potential-vortex nature. 
Thus, omitting the gauges allows taking into account both 
the vortex and potential components of the vector 

 *, BB

А . It 
corresponds to a classical field theory. Let us formulate 
the Helmholtz theorem [1] for the vector А : if the di- 

vergence and the curl of the field, which vanishes at in- 
finity, are defined for each point  of the certain area, 
then the vector field 

r
А  can be represented uniquely (up 

to a vector constant) as the sum of a potential and a sole- 
noidal fields everywhere in this area: 

  A A A  .              (4) 

We analyze properties of the vector А  when the 
gauge is omitted. Apply the gradient transformation (6) to 
the well-known equations: 

,
t


    


AВ A E          (5) 

,
t

     A A ,         (6)   


where   is an arbitrary scalar time-coordinate function. 
At the same time, characteristics of a vortex magnetic 
field , В H  and a vortex electric field Е , D  are 
invariant regarding the transformation (6). Based on this, 
we conclude that an electromagnetic field is invariant. It 
is a basis for introducing a gauge. No physical meaning is 
usually given to the transformation (6). 

We will try to explain the physical meaning of this gra- 
dient transformation. Note that because of adding   
to the vector potential its potential component changes. 
Changing the potential component of a vector field with- 
out changing its vortex component is possible when tran- 
sitioning from a conventionally fixed reference frame К 
to a steadily moving reference frame К  . At the same 
time, it is obvious that the potential component of the 
electric field should change towards the direction of a 
reference frame К  . In the moving (mobile) frame of 
reference, the electric field of a point charge is not 
spherically symmetric, but appears as a Heaviside-ellip- 
soid [9]. In order to compensate this deformation, the 
negative additive  

t




 

is input to the Equation (6). However, the deformation of 
the electric field during transitioning to the moving (mo- 
bile) reference frame is taken into account in the equa- 
tion:  

d

dt
    

AE .              (7) 

The prime symbol here means that calculation of the 
derivative happens in the moving (mobile) reference 
frame К  . In order to describe transformation of the 
electric field during transitioning from К and K   (the 
gradient transformation), it is enough to introduce a 
curl-free vector potential . 

There are two possible types of the vector field 
A

А  
transformation: gradient and vortex. The gradient trans- 
formation, as it was mentioned before, corresponds to the 
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transition between translational reference frames (one of 
them can be considered relatively fixed. During the vor- 
tex transformation, the transition from a translational (or 
relatively fixed) frame of reference to a rotating one takes 
place. 

It can be shown rigorously [10] that potential charac- 
teristics of an electromagnetic field  chan- 
ge during gradient transformation, whereas vortex char- 
acteristics  are invariant. During vortex 
transformation, on the contrary, vortex components of an 
electromagnetic field change and potential ones are in- 
variant. It corresponds to the relative nature of a magnetic 
field (it depends on a choice of a reference frame) and to 
its main characteristic, which is vector 

 *, ,В A Е

 , , A Е В

А . 
Let us make a conclusion: the ratio of a solenoidal 

component to a potential component of a vector potential 
А  depends on a frame of reference chosen, but this ratio 

can be defined uniquely in the certain reference frame. 
The note made in the Helmholtz theorem in brackets 
shows the relative nature of movement (stability) of any 
reference frame. If a relatively fixed frame is chosen, it is 
convenient to set this vector constant to zero. In this case, 
the indeterminacy in choosing the potentials А  and   
disappears, so there is no need to introduce made-up 
gauges. The theory built up on this basis is called the 
generalized electrodynamics [10-12]. 

It is not difficult to derive equations of the generalized 
geodynamics (the modified Maxwell’s equations) [10-12] 
from the wave Equations (1) and (2) using Equations (3) 
and (5): 

*H
t


   


DH j ,         (8) 

*

0 .
B

t
      


D           (9) 

As the result of omitting the Lorentz gauge, the poten- 
tial (scalar) component of the magnetic field  

* *
0B H   

is kept. We will call it “the scalar magnetic field” (SMF). 
Two non-stationary processes 

t



D

 

and  
*

0

B

t
  


 

are taken into account in the equations of the generalized 
electrodynamics (8), (9). The first one is called “dis- 
placement current”. The second one can be named “dis- 
placement charge”. The presence of the “displacement 
charge” explains the phenomenon of electromagnetic in- 
duction, which is confirmed experimentally [10]. The 

core of this phenomenon is that a potential electric field 
is induced in the area of a non-stationary SMF. It can be 
also said that quasi-charges have been appearing.  

Two other electrodynamic equations stay the same in 
the generalized theory: 

t


  


BE ,               (10)  

0. B                   (11) 

The Equations (8)-(11) and the functions contained in 
them describe some electromagnetic phenomena. Never- 
theless, in order to describe the electrodynamic process 
fully, it is necessary to use the wave Equations (1) and (2) 
and the main characteristic of an electromagnetic field, 
which is the four-dimensional vector potential  ,А , 
taking into account its vortex and potential properties.  

3. Electromagnetic Waves in Dielectrics 

Let us analyze the process of distribution of electromag- 
netic waves in the fixed (not moving) homogeneous di- 
electric uncharged environment: 

const, const, 0, 0        . 

The wave equation for the vector E  splits into two 
equations for a vortex and a potential component, respec- 
tively: 

2

0 0 2
0

t
    


  

EE  .        (12) 

2

0 0 2
0

t
    


  

EE  .        (13) 

Let us also write the d’Alembert equations for the vec- 
tor H  and the scalar function *H : 

2

0 0 2
0

t
      


HH  .         (14) 

2 *
*

0 0 2
0

H
H

t
      


 .         (15) 

Thus, an electromagnetic wave has four characteristics. 
Conventionally, we can distinguish the transverse com- 
ponent of a wave, which is determined by the vortex 
vectors E  and H , and longitudinal (electroscalar) 
one, which is characterized by the potential vector E  
and the scalar function *H . 

We can see from the wave equations that velocities of 
transverse and longitudinal electromagnetic waves are the 
same. It means that both components of an electromag- 
netic process are linked indissolubly, and it is impossible 
to consider them separately in a general case. However, 
there are some particular cases when differential equa- 
tions describing these processes are undependable. More- 
over, transverse electromagnetic waves, which distribute 
in the physical (material) environment, generate longitu- 
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dinal waves at each point, and vice versa.  
We assume that some dipole (oscillator) located in the 

center О creates an electromagnetic wave, which distrib- 
utes in the dielectric uncharged environment and is ana- 
lyzed at the long distance from the radiation source. Let 
us analyze the process close to the point М(x,y), which 
lays in the coordinate system Oxy. There are both com- 
ponents of the wave at this point: transverse and longitu- 
dinal one. Each of them is almost plane, i.e. the distribu- 
tion front of each wave coincides with the plane, which is 
perpendicular to the direction of distribution. We assume 
that the transverse electromagnetic wave distributes along 
the x-axis and the longitudinal one moves along the y- 
axis. 

We will be guided by physical conceptions when de- 
scribing the electromagnetic wave process. Within one 
wave period, four consecutive stages can be distingui- 
shed: 

1) generating the vortex magnetic field  H  at the 
point M(x,y) during the time 0 4t T  ; 

2) generating the vortex electric field  E  at the 
point M1(x1,y1) during the time 1

3) generating the SMF 
4 2T t T 


; 

 *H  at the point M2(x2,y2) 
during the time 2

4) generating the potential electric field 
2 3 4T t T 


; 

 E  at the 
point M3(x3,y3) during the time 33 4T t T  . 

We will suppose that the points M(x,y), M1(x1,y1), 
M2(x2,y2), and M3(x3,y3) lay consecutively on the line 
laying in the plane Oxy. Because the velocities of both 
wave components are the same, the line where these 
points lay is a bisector of a right angle. 

The distance between adjacent points should be taken 
equal to a quarter of a wavelength  4  . Each next 
stage occurs with lagging for a quarter of a wave period. 
Based on the physical conceptions of a wave process, 
solutions for the differential Equations (12)-(15) should 
be found in the following: 

     , expzx t x i tH H ,          (16) 

     1 1 1 1 1 1, exp , , .
4 4y

T
x t x i t x x t t

     E E (17)  

     * *
2 2 2 2 2, exp , .    (18) 

2

T
H y t H y i t t t  

     3 3 3 3 3 2 3

3
, exp , ,

4y

T
y t y i t y y t t .

4

   E E    

(19) 

here   is a circular (angular) frequency. A subscript y 
or z means the axis where the certain vector is projected. 
Using (16) in (14) gives us the regular differential equa- 
tion: 

   
2

2
2

d
0

d
z

z

x
k x

x 
H

H

Where 

0 0k         

is a wavenumber of a transverse electromagnetic wave. 
We solve the Equation (20) and get: 

     0 0, exp expz zt i t k x i t k  
0    H r H H x r  

(21) 

where 0
zH  is an amplitude of a magnitude (strength) of 

a vortex magnetic field,  is a position (radius) vector, 
which defines the position of the point М(x,y),  is a 
unit vector of the x-axis. 

r
0x

We solve (18) taking into account (23) and get: 

   
 

0
1 1 1 1

0
1 1

, exp

exp ,

y

y

t i t k x

i t k





  

 

 
0  

E r E

E x r
     (22) 

where 0
yE  is an amplitude of a magnitude of a vortex 

electric field, 1  is a radius vector defining the position 
of the point M1(x1,y1). 

r

We solve (15) taking into account (18) and get: 

   
 

* *0
2 2 2 || 2

*0 0
2 || 2

, exp

exp ,

H t H i t k y

H i t k





 

 

r

y r
     (23) 

where *0H  is an amplitude of a magnitude of a SMF, 

2  is a radius vector defining the position of the point 
M2(x2,y2), 
r

|| 0 0k        

is a wavenumber of a longitudinal electromagnetic wave.  
Finally, using (13) and (19) we get: 

   
 

0
3 3 3 || 3

0
3 || 3

, exp

exp ,

y

y

t i t k y

i t k





 



 

 

E r E
0 E y r

        (24) 

where 0
yE  is an amplitude of a magnitude of a poten- 

tial electric field, 3  is a radius vector defining the posi- 
tion of the point M3(x3,y3). 

r

For the vortex electric field: . If we input 
(22) in this equation, we get: 

0  E

 0 0ik       E x E , 

consequently 0
 E x . 

Based on the solution (21), we have the same results 
for the magnitude vector of the vortex magnetic field: 

 0 0ik     H x H , 

which means 0H x . 
Thus, the vortex vectors E  and H  are perpendi- 

cular to the direction of the wave distribution in case this 
wave is plane. 

Let us input (21) and (22) in the Equation (10). As the 
result of transforming the argument of the vector E  

 ,        (20) 
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according to (17) we get:  

1 1t k x t k x     . 

This means that both left and right sides of the equation 
(10) have the same periodic functions. They cancel each 
other out, so we get: 

0 0 0 0 0
0 , or 0y z yk E           zz H k E H . 

We can see that the vectors E  and H  are perpen- 
dicular to each other. This conclusion matches the well- 
known conclusion of the conventional electrodynamics.  

Let us input the solutions (23) and (24) in (9) when 
0  . After transforming the arguments according to 

(19) we get:  

3 || 3 2 || 2t k y t k y    . 

In this case, we get the same periodic functions in the left 
and right sides. Considering this, we have: 

* 00

0

H
 
 


 


E y .          (25) 

Consequently, the potential vector E  is located along 
the y-axis at any point of the front of a plane wave gener-
ated by E . This indicates that the term “longitudinal 
electromagnetic wave” can be used appropriately for the 
types of the waves studied.  

If we input (21) and (22) in (10), and (23) and (24) in 
(9) , we get two equations:  0  

0 0 *0
0 0 0 0, 0

z y yH E H              E

2

y



. (26) 

As the result, we get the equation of the energy balance 
between the magnetic and electric components: 

       2 2 20 *0 0 0
0 0z yH H E E     
         

. ( 27) 

The longitudinal electromagnetic waves transport the 
energy, as well as transverse waves do. This process is 
characterized by the vector, which is written like this (in 
case of plane waves): 

*
|| H      p p p E H E .      (28) 

The direction of the resulting vector  coincides 
with the radius vector  drawn from the center О to the 
point where the field is defined. There are no issues con- 
cerning the energy because the function of an electro- 
magnetic energy density looks like this: 

p
r

 * *1

2
w H B         E D H B E D  .   (29) 

The first two terms in this formula characterize the en- 
ergy of a transverse wave, and the two last terms de- 
scribes a longitudinal wave. If we input the solutions 
(21)-(24) in (29), then according to the (27) we will get a 
constant at any time t: 

   

   

2 20 00

2 20 *00

2

const.
2

y y

z

w E E

H H

 

 

 

     
      

    (30) 

This means that the w function cannot change sponta- 
neously, whereas it happens in the conventional theory. 
The electric field energy transforms into the magnetic 
field energy and vice versa. Change of the full energy of 
an electromagnetic field is only possible because of re- 
leasing the heat and transporting the energy according to 
the well-known law of conversation of energy. 

4. Electromagnetic Waves in Electrical  
Conductive Environment  

We will analyze the process of electromagnetic wave dis- 
tribution in a fixed homogeneous unbounded electrical 
conductive environment: 

const 0, const, const, 0         . 

We rewrite the Equations (8)-(10) like this: 

   *
0H

t
    

 

 
    


E E

H E E ,  (31) 

0 t
 

  

HE ,            (32) 

*

0

H

t
 

  


E .            (33) 

We look for the solutions in the same way as (21)- 
(24): 

  0, expzt i t    H r H K r ,       (34) 

   0
1 1 1 1 1 1, exp , ,

4 4y

T
t i t x x t t

        E r E K r , 

(35) 

   * *0
2 2 2 || 2 2, exp ,

2

T
H t H i t t t    r K r ,  (36) 

   0
3 3 3 || 3

3 2 3

, exp

3
,

4 4

yt i t

T
y y t t




   

   

E r E K r
,     (37) 

where  
0K K x , 0

|| ||KK y  

are wave vectors, which characterize a complex electro- 
magnetic wave in the electrical conductive environment. 

When we input (34)-(37) in the Equations (12)-(15), 
the results are: 

  *
|| 0 ,i i H i           K H K E E E E    

(38) 
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*
|| 0i i   K E *H ,             (39) 

0i i     K E
*

H .            (40) 

If we extract H  and H  from the Equations (39) 
and (40), and input them in (38), we get the complex 
equation: 

 
22
|| 2

0
0 0

KK

i

  
    

 
 

        

EE E E , 

from which we can extract the vortex and potential com- 
ponents easily: 

2 2
0 0K i

    


  
 


 ,        (41) 

2 2
|| 0 0K i

    


  
 

 

i

.        (42) 

 
It can be seen that the lengths of the wave vectors in 

the transverse and longitudinal directions are equal. In a 
case of an electrical conductive environment, the wave 
vectors are complex: 

|| || ||,i     K k s K k s ,        (43) 

where  
0

0    s x , . 0
|| 0   s y

If we input (43) in (41) and (41) in (42), we get two 
biquadratic equations for each type of the waves: 

 2

04 2 2
0 0 0

4
k k

  
     


    ,      (44) 

 2

04 2 2
0 0 0

4
s s

  
     


    ,      (45) 

 2

04 2 2
|| 0 0 || 0

4
k k

  
    


    ,      (46) 

 2

04 2 2
|| 0 0 0

4
s s

  
     


    .      (47) 

In the conventional theory, when solving the Equations 
(44) and (45) the real roots corresponding to the physical 
meaning of the problem are taken into account. The posi- 
tive real roots correspond to the transverse wave distrib- 
uting along the x-axis in the positive direction: 

2

0 0

0

1
2

k
    

  

           

1 ,       (48) 

2

0 0

0

1
2

s
    

  

           

whereas we have the following for the longitudinal elec- 
tromagnetic waves:  

    0, exp expzt i   t    H r H s r k r     (50) 

    0
1 1 1 1 1, exp expyt i     t     E r E s r k r  (51) 

It can be seen that the longitudinal electromagnetic 
waves damp in the electrical conductive environment. 
This is also confirmed practically. 

As it was mentioned previously, the longitudinal elec- 
tromagnetic waves have completely different properties, 
and it should be obviously seen in the theory. The solu- 
tions of the Equations (46) and (47) have two pairs of 
roots: two real and two complex (imaginary) ones. When 
the real roots are chosen, the properties of the longitudi- 
nal waves will not differ from the properties of the trans- 
verse waves. It does not correspond to the well-known 
facts. Therefore, we will analyze the case of complex 
roots. The positive complex roots correspond to the wave 
distributing along the y-axis in the positive direction: 

2

0 0
|| ||

0

1 1 ,  i.e.
2

k i k ik
    

   

           

  (52) 

2

0 0
|| ||

0

1 1 ,  i.e.
2

s i s
    

  
is

           

 . (53) 

 
Taking into account these solutions for the longitudinal 

electromagnetic wave, which distributes in the electrical 
conductive environment along the y-axis in the positive 
direction, gives us: 

   
   

* *0
2 2 2 || 2

*0
2 2

, exp

exp exp ,

H t H i t

2H k y i t s y



 

  

 

r K r
   (54) 

   
  

0
3 3 3 || 3

0
3 3

, exp

exp exp .

y

y

t i t

k y i t s y




 

  

  

 

E r E K r

E 3

   (55) 

Here, the real values k  and s  are used. It should be 
noted that the values k  and s  are equal. Conse- 
quently, the amplitude of the longitudinal wave grows in 
proportion to the damping of the transverse wave. This 
means that the energy of the transverse wave converts 
into the energy of the longitudinal wave completely.  

For example, such a process takes place in a receiving 
antenna: due to transverse electromagnetic waves that 
reach a conductor, a Е-wave is generated in it. Thus, 
transverse electromagnetic waves damp in an electrical 
conductor and transmit their energy to a longitudinal 
wave. A periodic electrical field E  directed along a 
conductor generates current impulses.  

1 .       (49) 

Copyright © 2013 SciRes.                                                                               JEMAA 



The Potential-Vortex Theory of Electromagnetic Waves 

Copyright © 2013 SciRes.                                                                               JEMAA 

353



5. Conclusions 

Let us formulate the results of the research in a general 
way. 

The main characteristic of a macroscopic electromag- 
netic field is a four-dimensional vector  ,A . The 
vector А has both vortex and potential components. A 
magnetic field is convective change of the four-dimen- 
sional vector  , A  in a chosen frame of reference. In 
a general case, a magnetic field is determined by the four- 
dimensional potential-vortex vector . In any en- 
vironment, an electromagnetic wave is described by the 
four wave equations. At the same time, vortex and poten- 
tial electromagnetic processes are taken into account. 
Such a theory gives the accurate energy ratios of electric 
and magnetic components of a field. 

 *, BB 

The generalized theory of electromagnetic waves pro- 
vides new opportunities for developing the telecommuni- 
cation technologies. 
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