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ABSTRACT 

We present numerical studies on the switching characteristics of a fiber Bragg grating (FBG) with modulation in the 
third order nonlinear index of refraction along it’s length. The FBG is operating in a continuous wave regime (CW). 
This study was done taking into account the possible asymmetry brought by the non harmonic modulation of the 
nonlinearity, leading to different reflection and transmission characteristics, that depend on the direction of propagation 
along the modulated nonlinear FBG. This phenomenon may be useful for applications like an optical isolator. It was 
found that for a set of values of the modulation parameter, the FBG can exhibit multistable states. The numerical studies 
were obtained starting from the coupled-mode equations solved from the coupled-mode theory and simulated using the 
fourth-order Runge-Kutta method.  
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1. Introduction 

Fiber Bragg gratings (FBG) are used for several purposes: 
in sensor applications and optical communications, like 
optical wavelength-division-multiplexer (WDM) systems, 
dispersion compensation schemes and nonlinear switch- 
ing [1]. The presence of nonlinear effects (XPM and 
SPM) affects deeply the transmission and reflection char-
acteristics, leading to the existence of bistability [2]. 
Bistability is a fundamental phenomenon for nonlinear 
switching in nonlinear fiber Bragg gratings (NLFBG). It 
arises when there are matching conditions between the 
coupling functions, detuning from Bragg resonance and 
nonlinearity. Although the properties of uniform and non-
uniform FBG are well known, the NLFBG, as proposed 
in this paper, can be implemented in optical systems as a 
nonlinear switching device or as a filter with high effi-
ciency. Periodically modulation of a NLFBG has also 
been proposed early, but it was never been studied wide-
spread yet [3]. For dense WDM (DWDM) is necessary to 
have extreme high rejection of the non-resonant light in 
order to eliminate the crosstalk between information 
channels [4]. For applications such as add-drop filters, is 
important that the grating response to be less than –30 dB 
from the maximum reflection. Because of these require-
ments the study of nonlinear apodized gratings was in-

cluded in this paper. We also present numerical studies 
of the reflection, transmission and all-optical switching 
characteristics from the modulated nonlinear FBG’s ob-
tained from computational simulations. 

2. Theory 

2.1. Coupled-Mode Equations 

Assume a L length low loss fiber which the linear refrac- 
tive index can be written as: 

    2 0 1 0cos 2n z n n z z              (1) 

where  1on n z  and 0  is the grating propagation 
constant related with the grating modulation period by 

0 π   . Including an intensity-dependent refractive 
index term, so that the polarization density due to a sin-
gle monochromatic beam of field strength E is: 

    2 2

0 21P n z n n z E     E         (2) 

where n2(z) is the nonlinear index function. Assuming 
that the periodic variation of n2(z) along the grating can 
be written as: 

 2 0 2

2π
1 sin

N
n z n n z

L
 

      
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       (3) 
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where 0 2n n  is the nonlinear modulation amplitude, N 
is a number of harmonic signification and φ is a phase 
constant. Note that when N and φ match the symmetry 
condition, mmetry  2 1 πjsy L     where the FBG is 
symmetric from both sides of the fiber, so called uniform 
NLFBG (with j integer and πN L   is the nonlinear 
modulation wave number). Furthermore, for 0   and 
N is an odd integer, the grating is symmetric. Near the 
Bragg resonance frequency, we can write the electrical 
field as a sum of the propagating and counter-propagate- 
ing waves:   

     02
i i

E F e B e
 

02
 

  


          (4) 

where β = n0ω/c is the propagation constant, 02 z   
and  F   and  B   are the forward and backward 
waves. Using 3 - 4 in Maxwell equations, and using the 
slow varying envelope approximation [5], we find 

    2 22 2iiF k Be F B F      

     (5) 

    2 22 2iiB k Fe B F B      

     (6) 

with nonlinear coupling function explicitly written as: 

  0
0
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1 sin

N
A

L
    


  

   
   

         (7) 

where in (5) and (6) denotes the total derivative d d , 

2 2A n c  is the nonlinear parameter modulation am-
plitude 02     , is the parameter related to the 
detuning from the Bragg frequency and  
   0 1 02k n   n  is the coupling function. The boun- 

dary conditions for Equations (5) and (6) are F(0) = F0 
and B(L*) = 0, where F0 is the input electrical field in 
NLFBG.  

2.2. Bi- and Multi-Stability 

Optical bistability arises in a distributed feedback struc- 
tures with some loss or nonlinearity in it. It is well 
known that fiber Bragg gratings has a threshold for 
bistability. Optical bistability occurs when the detuning 
parameter, coupling parameter and nonlinearity function 
values matches a certain condition. This is important to 
realize nonlinear switching in FBG’s at a desired wave- 
length. The Figure 1(a) shows the parameters of the 
switching (state I) intensity in the first critical intensity 
(in the S-shape curve) and (state I ) second critical 
intensity (in the S-shape curve).  

The most important parameter is the difference be- 
tween the intensity I from first critical intensity of the 
S-shape curve and the intensity I  from second one. We 
named this delta of intensities I I   . Switching 
applications require 

 
  as bigger as possible (in order 

to provide a secure gap between switching intensity 
states) with minimal values for I   (in order to realize 
switching in low intensity regime). The dashed curve in 
Figure 1(a) is well known as an unstable region in all 
bistable devices [6]. In the observed bistability behavior, 
we refer to  bistability state, when optical intensity is 
coming from low intensities and  bistability state when 
optical intensity is coming from high intensities as pic- 
tured in Figure 1(a). We show bistability curves from 
NLFBG’s for different nonlinear modulation wave num- 
ber N in Figure 1(b). One can observe that the critical 
switching intensities (state I) and (state I), are modified 
when the N parameter is changing, in agreement with the 
modulation of nonlinear refractive index  2n z  (see 
Equation (3)). In Figure 1(b) one has N = 1, 2, 3 and the 
unmodulated NLFBG bistability curve (N = 0). The grat- 
ing transmission and reflection characteristics are given  
 

 
(a) 

 

 
(b) 

Figure 1. (a) Definition of switching states in the intensity 
curve (arbitrary units) for a nonlinear FBG k = 5 × 10−5, δβ 
= −5 × 10−5, γ = 1.6 × 10−5 (a.u.)−1; (b) Intensity curves (ar- 
bitrary units) for nonlinear FBG’s k = 5 × 10−5, δβ = −5 × 
10−5, γ = 1.6 × 10−5(a.u.)−1, A = 0.2.  
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by HT = F(L*)/F(0) and HR = B(0)/F(0). The characteris- 
tics must take into account on bistability states and carry 
a subindex representing the bistability state. Then TH  
stands for transmission characteristics in the  bistability 
state. Due the nonlinear system characteristic, the grating 
responses depends on the input intensity. Obviously for 
small input intensities the NLFBG acts like a linear grat- 
ing. Furthermore due to possible asymmetry brought by 
nonharmonic modulation of the nonlinear refractive in- 
dex, the transmission and reflection responses may be 
propagation direction dependent. Following reference [7] 
the strong grating is present when the coupling parameter 
multiplied for the normalized grating length kL* ~ 6. For 
this kind of grating, multistable states may occur. As 
shown in Figure 2.  

For strong nonlinear gratings we define the  state for 
intensities coming from lower intensities (linear regime). 
The  state stands for intensities coming from upper in- 
tensities, i.e., the most distant stable state from the  
state. For multistable gratings there is no reason in look- 
ing for   since one might have several critical inten- 
sities. 

3. Numerical Procedure 

Exact numerical solutions for Equations (5) and (6) can 
be found using a forth-order Runge-Kutta method or pre- 
dictor-corrector methods. The calculation must be done 
from final to beginning of the NLFBG, so it must be 
done a transformation of a boundary condition problem 
into an initial conditions one. Since the method requires 
initial value points at the same position  ; F(L*) = FL* 
and B(L*) = 0, [8]. Bi and multi-stability intensity curves 
in Figure 1 were made varying the transmitted intensity 
FL* and collecting initial input intensities for a fixed de- 
tuning parameter. One must be careful to provide points 
enough in the mesh to assure the effective modulation of 
    in Equations (5) and (6). Since the forth-order 

Runge-Kutta method relates the error in the end of simu-
lation proportional to h5. 

A matrix , TI J J

 

Figure 2. Arising of multistable states in an unmodulated 
NLFBG k = 15 × 10−5, γ = 2.5 × 10−5 (a.u.)−1.  
 
Lagrangian formulation of Marburger and Lam [10], one 
write FiF F e   and BiB Be   (where FiF F e   and 

BiB Be   are the fields forward and backward along the 
propagation ) and integrate the real and imaginary parts 
the Equations (5) and (6). This procedure leads to two 
conserved quantities [7]. 

2 2

*L

2
F F B               (8) 

where FL* is the output electrical field. Then reflection 
responses may be obtained dividing Equation (8) by the 
input intensity to give: 

   
2 22 2

0 01R TH F H F  
    
         (9) 

4. Results and Discussions 

All calculations were done simulating a L = 10 mm 
length grating centered in 1550 nm. The coupling func- 
tion  k   for gratings is a 5 mm full width at half 
maximum Gaussian function. First let’s see what occurs 
when a monochromatic beam propagates in nonlinear 
gratings. In Figure 3 one show reflection responses in 
both switching states for three different nonlinear pa-
rameter gratings. First thing to note is that the peak cen-
ter is dislocated from the matching condition 0   in 
the linear case. This dislocation is higher as γ increases. 

  was used to save input intensi- 
ties from the calculations. Here jδβ, is the detuning pa- 
rameter index and jT is the discrete transmitted intensities 
index. Other matrixes were used to keep both the propa- 
gating and counter-propagating complex fields. The |HT|2 
transmission and |HR|2 reflection responses curves for a 
fixed input intensity can be obtained doing an interpola- 
tion on the matrix , TI J J

Furthermore, with the increment of the nonlinear pa- 
rameter the reflection characteristic peak in  bistability 
state is reduced followed by a decrease in the grating 
bandwidth. This behavior is also presented in the in- 
crease of the  state. Furthermore, the ratio between the 
 and  state bandwidths increases with γ. 

  so that the transmission 
curves are the contour-lines of a 3D matrix plot. Here the 
transmission and reflection responses stand for absolute 
square of the grating transmission and reflection func- 
tions respectively. In addition, transmitted intensities can 
be obtained directly from bistability curves for each de- 
tuning. For harmonic generation or by the more general  

4.1. Nonlinear Modulation Amplitude 

We begin our study varying A, from a small perturbation  

Copyright © 2012 SciRes.                                                                               JEMAA 



Periodic Modulation of Nonlinearity in a Fiber Bragg Grating: A Numerical Investigation 56 

 
(a) 

 

 
(b) 

Figure 3. (a) Reflection responses in the  state of three 
nonlinear gratings in  switching state. k = 5 × 10–5; (b) 
Reflection responses in the  state of three nonlinear grat- 
ings in  switching state. k = 5 × 10−5.  
 
until A = 0.2. In Figure 4(a) one can see the critical in- 
tensity for  state versus A for several values of N. The 
curves in the studied range can be taken as linear ones in 
good approximation. For values of N > 1 the increase of 
A is leading to a decrease in the inclination of the curve. 
The solid line curve is in the regime where there is no 
periodic modulation since N < 1. In Figure 4(b) is shown 
the dependence on A of the delta of intensities for several 
values of N. The curve of the N = 1.25-grating presents 
an oscillation along A and for small values of A presents 
almost the same values of δ for N = 2.5-grating. With 
the increase of A arises an appreciable difference be- 
tween N = 1.25 and N = 2.5 curves. One can also note that 
according to Figure 1(b) the bistability curves presents 
different critical values for different values of N, 
modifying the characteristics of switching, according to 
Equation (7), where the parameter N is controlling the  

 
(a) 

 

 
(b) 

Figure 4. (a) Critical intensity I↑ versus A for different val- 
ues of N. k = 5 × 10−5, γ0 = 2.5 × 10−5 (a.u.)−1, δβ = −5 × 10−5, 
φ = 0; (b) Delta of intensities δ↑↓ versus A for different val- 
ues of N. k = 5 × 10−5, γ0 = 2.5 × 10−5 (a.u.)−1, δβ = −5 × 10−5, 
φ = 0.  

 
nonlinearity parameter of the Bragg grating. The critical 
intensity and the delta of intensities are also a function of 
the A parameter. For intermediate values, a case becomes 
interesting, when N = 1.25 is compared with the case 
where N = 0.625, (note Figure 4(a)), this can be justified 
due to the different critical intensity values shown in the 
bistability curve (see Figure 1(b)). The same happens in 
Figure 4(b), for the cases N = 1.25 and N = 2.5 delta 
values decrease as A increases, compared with N = 0.625.  

With the increase of A, an appreciable difference be- 
tween N = 1.25 and N = 2.5 curves is observed. For high 
values of N the switching parameters present a linear 
dependence with a small inclination with the increment 
of A. In every case the increment of A increases the 
switching parameters: I and δ. In despite of this linear 
dependence of switching parameters on A, the reflection 
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characteristics present appreciable difference when A is 
varied as seen in Figure 5.  

When intensity grows, the reflectivity peak  
is leading to decrease (increase) in modulated NLFBG’s 
on () bistability state compared with regular NLFBG’s 
as shown in Table 1. The bandwidth of the grating de- 
creases (increases) for modulated gratings. For reflection 
filter applications the uniformity of the reflectivity peak 
is needed to provide an unvarying filtered intensity in 
both bistability states. In that case the relation between 
|Hmax|

2/|Hmax|
2 must be close to one.  

2
max( )RH

For pulse reshape applications the relation between the 
bandwidths in both states must be as high as possible. 
Modulation amplitude γ0A increment leads to drastic de- 
crease of the bandwidth ratio between switching states, 
as seen in Figure 3. The modulation increases the grating 
 

 
(a) 

 

 
(b) 

Figure 5. (a) Reflection responses for different values of A 
in  state for an CW input intensity I = 2 a.u. k = 5 × 10−5, γ0 
= 2.5× 10−5 (a.u.)−1, N = 1, φ = 0; (b) Reflection responses for 
different values of A in  state for an CW input intensity I = 
2 a.u. k = 5 × 10−5, γ0 = 2.5 × 10−5 (a.u.)−1, N = 1, φ = 0.  

Table 1. Reflection Characteristics of a CW input signal 
through some nonlinear fiber Bragg gratings. (L = 1 cm, λB 
= 1550 nm, I0 = 2 a.u).  

k N A    max dBRH     510 FWHM    

5 × 10−5 0 0 –0.3621 (–1.6115) 12.42 (5.04) 

5 × 10−5 1 0.1 –0.3755 (–1.2249) 11.81 (5.32) 

5 × 10−5 1 0.2 –0.3905 (–1.2436) 10.98 (6.01) 

15 × 10−5 0 0 –0.0057 (–1.6007) 19.16 (8.94) 

15 × 10−5 1 0.2 –0.0095 (–3.6613) 20.93 (12.99) 

 
bandwidth in both states for strong gratings. 

4.2. Nonlinear Modulation Wave Number 

There are some different cases when the nonlinear modu- 
lation wave number variation is considered:  

1) when N < 1;  
2) when N is very large; 
3) when items above are not satisfied. 
When N is too small 1), there is no periodic modulation 

of nonlinearity, instead there is a profile of nonlinearity. 
When N is very large 2), it is expected that the periodic 
modulation looks like as a fast fluctuation around the 
unmodulated value γ0, since the sin-function average is 
zero. Under this view, we expect precisely small de- 
pendence on switching parameters for high N. When item 
3) holds, one should expect, the periodic modulation re- 
gime. There is a linear dependence on the switching pa- 
rameters of the A parameter. This can be seen from Fig- 
ures 6(a) and (b) where critical intensity I and delta of 
critical intensities respectively are plotted versus N for 
some values of A (gratings with φ = 0). In those cases the 
variation of N with different A’s presents a minimal value 
in N = 1. Figure 6(a) shows the critical intensity I ver-
sus N. There is a minimum in these curves in N = 1, as N 
increases the I value approaches the unmodulated grat-
ings value γ0. This is an indication that condition (2) is 
obtained for N values around 7. 

The Figures 7(a) and (b) shows the switching parame- 
ters dependence on nonlinear modulation wave number 
N for different φ-phased gratings. We can see from Fig- 
ure 7(a) that the variation of N implies in damped like 
oscillation of the first critical intensity. Depending on the 
nonlinear modulation phase, φ, the oscillation presents 
first minimum or maximum in the function. For high 
value of N the first critical intensity value comes near the 
unmodulated NLFBG value. This is associated to the fact 
that high N-grating behaves as an unmodulated NLFBG. 
Note that when φ equals to π/2 or 3π/2 (for low N values), 
the first critical intensity differs from unmodulated non- 
linear grating value. This is explained noting that for 
very low N the grating has a nonlinear function value  
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(a) 

 

 
(b) 

Figure 6. (a) Critical intensity I↑ versus N for different values 
of A. k = 5 × 10−5, γ0 = 2.5 × 10−5 (a.u.)−1, δβ = −5 × 10−5, φ = 
0. 6; (b). Delta of intensities δ versus N for different values 
of A. k = 5 × 10−5, γ0 = 2.5 × 10−5(a.u.)−1, δβ = −5 × 10−5, φ = 0.  
 
approximated by γ0 [1 + A sin(φ)]. The Figure 7(b) 
shows the delta of intensities dependence on N. Because 
of the irregular damped oscillation of the second critical 
intensity with N, the behavior of δ becomes irregular. It 
is important to have smaller I compared with the un- 
modulated NLFBG’s values and with bigger δ. This is 
achieved for N = 0.59, N = 2.60, N = 1.85 and N = 1.21 
for φ equals to 0, π/2, π and 3π/2-gratings, respectively. 

5. Conclusions 

In this work, numerical studies on the switching charac- 
teristics of a nonlinear fiber Bragg grating (NLFBG) with 
modulation in the third order nonlinear index of refract- 
tion along it’s length, operating in a continuous wave 
regime (CW) is presented. The dependence on the am- 
plitude of modulation (A) of the switching parameters 
was found approximately linear and the inclination of the  

 
(a) 

 

 
(b) 

Figure 7. (a) Critical intensity versus N for different values 
of φ. k = 5 × 10−5, γ0 = 2.5 × 10−5 (a.u.)−1, δβ = −5 × 10−5, A = 
0.2. 7; (b) Delta of critical intensities _"# versus N for dif-
ferent values of φ. k = 5 × 10−5, γ0 = 2.5 × 10−5 (a.u.)−1, δβ = 
−5 × 10−5, A = 0.2.  
 
curves decreases with the increment of N (nonlinear 
modulation wave number) for N > 1. The high nonlinear- 
ity modulation wave numbers N is leading to modulated 
NLFBG act like an unmodulated NLFBG. In that con- 
figuration the periodic modulation is not perceived by the 
input light. The most interesting results related to N 
variation are in the range 0 - 4. For N > 4 the switching 
properties of the grating approaches asymptotically to the 
properties of an unmodulated grating. If the grating is 
required for an efficient nonlinear switching application 
one can manufacture a grating with specific properties 
(critical intensities and δ) solely setting the modulation 
parameters (N, φ, A) at the fabrication time.  
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