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ABSTRACT

Maxwell-Viasov PDEs system describes the dynamics of plasma consisting of charged particles with long-range inter-
action. Their solutions can be written using some Stokes potentials. Section 1 presents the experimental devices which
can produce a magnetic trap. Magnetic geometric dynamic provides mathematical tools for describing the magnetic
flow (see [1-7]). Stokes representation for the solutions of PDEs as Maxwell PDEs or Maxwell-Vilasov PDEs are used
analyzing electromagnetic energy in magnetic traps. Section 2 studies Maxwell-Vlasov PDEs system. Stokes represen-
tation of its solutions, using Maximum Principle for a multitime optimal control problem, is obtained. Section 3 dis-
cusses a method for changing a given ODEs system into a geodesic motion under a gyroscopic field of forces (geomet-
ric dynamics). Section 4 proposes a modified form for Maxwell-Vlasov PDEs, by replacing the classical gyroscopic
force with the one appearing in geometric dynamics. Stokes representation for the solutions of modified Max-

well-Viasov PDEs is also obtained.
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1. Magnetic Traps

Our theory is appropriate for the study of electromagnetic
energy in magnetic traps. These devices are used for at-
oms or charged particles:

1) magnetic traps, used to trap neutral atoms in a
magnetic field gradient:

2) Penning trap, used to trap charged particles or ions
in a combination of electrostatic potential and uniform
magnetic field;

3) magneto-optical trap (or MOT), a trap using a
magnetic gradient and laser to trap neutral atoms;

4) magnetic tweezers, a trap using a magnetic field to
trap micrometreseized ferromagnetic beads.

The first magnetic trap was realized by M. loffe for
plasma confination having in mind the following idea: if
an atom is not too energetic, it can be held in a magnetic
nonzero minimum — a region from which the strength of
the magnetic field grows stronger in every direction [3].
Other modern magnetic traps, analyzed from the perspec-
tive of geometric dynamics in [6,7], are used today in
EDM experiments or for creating an ECR source of MCI.

The ALPHA experiment at CERN [8] seeks to trap an-
tihydrogen atoms inside a magnetic bottle consisting of a
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super-conducting octupole magnet and two mirror coils.
We do it with superconducting magnets — mirror coils to
create a minimum in the middle of the trap’s axis, plus an
octupole magnet to create a minimum in the center of the
trap’s radius. To study the energy spectra of antihydrogen
atoms it will be necessary to keep them from blowing
themselves up for much longer than a few thousandths of
a second currently possible — then will have to be de-
tained for at least a few seconds. Luckily, even neutral
atoms have a small magnetic moment; they can be con-
fined by a magnetic field of the right shape and strength.
The current ALPHA plan uses magnetic fields specially
shaped by an octupole magnet as part of the trap. The
design of ALPHA magnetic trap was developed and re-
fined at Berkeley Lab by a large team of Berkeley Lab
and UC Berkeley scientists, visitors and students.

2. Stokes Representations for the Solutions of
Maxwell-Vlasov PDEs System

The ideas of this paper start from the papers [1-20] and
from the conversations with D. Wang about the Vlasov-
Maxwell-Boltzmann PDEs, carried at Siam Conference
on Analysis of Partial Differential Equations, December
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7-10, 2009, Miami, Florida.

We consider the case of collisionless plasma, i.e., the
case of a single species of particles with mass m and
charge e.

Let

1 2
(to,xo),(tf,xf) Q(vo,vf)
be a hyperparallelipiped in R’ determined by the oppo-
site diagonal points (to,xo,vo) and (t,,x/, f).

If E(t,x) represents a C' electric field, B(t x)
represents a C' magnetic field and L(z,x,v) is C'

plasma particle number density per phase space (v =x
being the velocity), Maxwell-Vlasov PDEs system is

a—L+<v,aL> e<E+lva a—L>=O,

(to X0 5V ),(tf,xf ,vf) -

ot ox/ m c ov
198 enp, Y _ams-ti
c ot ¢ Ot c

divE =p, divB=0,
where c is the speed of light, j is the current defined by L,
j(t,)c):ejQz L(t,x,v)vdv
(vo v
and p is the charge density,

p(t,x) = eIQZ
(v0.4/)

L(t,x,v)dv

Theorem 1. Let Q be the parallelepi-

(to,xo,vo),(tf‘x/,v/)
ped fixed by two diagonal points (to,xo,vo) and
(tf,xf,v/») and

(t X, v)=(1§7(t X, v) ]V(t xv) n7(t X, v)) be the unit

normal vector of the boundary 0 (e 5p7)” The
05%0 Y0

solutions of Maxwell - Vlasov PDEs é 1)a mit the Stokes

representation

E(t,x)=curl p(z,x) —l%— grada(1,x)
c

—iL(t,x,v) grad, y(,x,v)
m

2
B(t,x) = curlq(t,x) —l%— gradﬂ(t,x)
c
e
-—L sy d ) 5
- (t,x v)(gra (e x v)xv)
together with the condition
%—I—(gradxy,v)
3)

—£<E+lv>< B, grad, y(t,x,v)> =0
m c

and the boundary conditions
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m

1
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ﬁ(t,x)N(t,x,v)+q(t,x)xN(t,x,v)

+£y(t,x,v)L(t,x,v)]\_/(t,x,v) 4)
m

1 —
- s Ny L s Ny N
+mcy(txv) (txv)(vx )

1
+Zp(t,x)n7 (tax’v)‘ag(tho’vo) (tf’xf’ f)ZO’

iy(t,)c,v)<E+lv><B,]V>
m c
+ey(t,x,v)n, (t,x,v)‘@Q(to,xo,vo ),(t_/ X,V ) =0,
where p(t,x), q(t,x), oc(t,x), ﬁ(t,x),
Stokes potentials.

Proof. We consider the following multitime optimal
control problem

y(t,x,v) are

max I = ——j
E(+) (0 xO,vo)‘(t

£ror) (5)
("E t,x " +||B t,x " +||v||2)dxdvdt,

constrained by Maxwell-Vlasov PDE system (1), where

the C' electric field E (t,x) is a control vector func-

tion and the C' magnetic field B(#,x) and the veloc-
ity v are state vector functions,

B(ty.x,) =By, B(t;.x,)=B,

Let p(t,x)=(pl.(t,x))i:3 s q(t x) (q(t,x))l13 R
a(t,x), B(tx), 7/(t,x,v3 be C' functions, consid-

ered as co-state variables (Lagrange multipliers) and the
Lagrange function

L (t,x,v,E, B, p,q,a, 8,7)

1
— e 1B <)
+ <p(t’x)’%aa_lj+ curl E(t,x)>

+<q(l,x),%aa—f—curlB(t,x)+%j(t,x)>

)) + ﬁ(t,x)diVB(t,x)
oL oL oL

+y(t,x,v) 8—L+v1 — Vv, — Vv —
ot ox, 0x, Ox;

+£<E+lev,a—L>j.
m c ov

+ a(t,x)(diVE(t,x)—p(t,x
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The optimal control problem (5), with constraints (1),
becomes

max/(E(--))=

pax 1 (£())=] o) 57)

L(t,x, v,E,B, p, q,a,ﬂ,}/)dxdvdt, (6)
B(ty.%,)=B,, B(t;.x,)=B,.

Supposing that optimal problem (5), with constraints
(1) admits an interior optimal solution E(¢,x), we con-
sider the variation E(t,x,6)= E(t,x)+06h(t,x), where
0>0 and h(t,x) is a C arbitrary vector function.
We define B(z,x,6) and L(t,x,v,0) the correspon-
dent state vector function, respectively the plasma parti-
cle number density for the variation E(z,x,6). For
|6| <6, , we construct the Lagrangian /(t,x,v,0) by
the formula

L(E(t,x,H),B(t,x,6’),L(t,x,v,l9),p(t,x),
q(t,x),a(t,x),ﬁ(t,x),y(t,x,v))

1
=S (E@Exo) +|Bex o) + )
1 0B
+<p(t,x),;§(t,x,e)+cur1E(t,x,e)>
10E 1,
+<q(t,x),;§(t, x,H)—curlB(t,x,9)+Zj(t,x)>
a (t,x)(diVE(t, x,0)— p(t,x)) +B(t,x)divB(t,x,0)

+ y(t,x,v)[g—[;(t,x,v,ﬁ)—i-vl STL(t,x,v,H)

1

+v, STL(t,x, v,9)+ Vv STL(t,x, V,H)
2 3

+%<E(t,x,¢9)+lB(t,x,6)x v%(t,x,v,6)>j.

C

and the integral function

1(6)=] 1, (t,x,v,0) dxdvdt
Ptg.s090). (1757

It is necessary for 7(6) to satisfy the condition

I( ~)§_( (V)|t9|<t9h. If n(t,x,v):(ni(t,x,v))i:ﬁ
(NN ) then

1(0)= | _p 9% O 104, Oa
Q(I(] X010 (1/ xf \f) ! a)% axz C at axl

e ]hl{_Ez_%_%_l%_@_a
ov, m

_za_ujhz +(_E3 o o 951 Oa
m ov,
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e 1 6 ;| OL
+| —y| E;+—(B,v, —v,B "+ — |do.
(mV( 3 c( MV 1))” cyn j59:|

To impose the condition /'(0)=0, for any vector
function A(t,x), we need a definition for the Lagrangian
multipliers via certain PDEs ([9-10]). We obtain the
Stokes representation (2), the condition (3) and the
boundary conditions (4).

3. Geodesic Motion in a Gyroscopic Field of
Forces

Let (M,g) be a Riemannian manifold and X be a
vector field on M. We consider the flow

dx
—=X(x
5 =X )

In order to change this dynamical system into a geode-
zic motion under a gyroscopic field of forces on a double
dimension space, we build the quadratic Hamiltonian
[11-12]

H(xy) =3 - 7(+)

where || y||2 =g(y.,y) represents the Riemannian kinetic
energy and

£(0) =3 e (¥ ()X (1) =X (o)

is the Riemannian energy density of the vector field X.
The Hamiltonian H is conserved along the trajecto-
ries of the dynamics induced by the flow dx/dr = X (x)
in the sense of the following two rules:
1) if V is Levy-Civita connection of the Riemannian
manidold (M,g) with the components G, , then we

differentiate the first order differential equation
dx/dt = X (x) with respect to # and obtain
S dx' _ d*x' o dx! di
dt dt  di* 7 dr dt
2) on the other hand, the right hand member becomes
S - dx’ - dx’ ;
—X'=(VX')—=F —+V'
dt ( ! ) de 7 dt s

where F/ =V X'-g"g V,X" is the external distin-
guished tensor field that characterizes the helicity of the
vector field X, and V'f=g"g, (Vth)X/ are the
contravariant components of the conservative force

V.
We obtain a single-time geometric dynamics [11-12]
d’x' . dx! dxt - dx’ ;
—+G, ——=F —+V'
O Ty Y

The gyroscopic force F; dx’ [dt+V'f consists in the
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gyroscopic term F; dx’ /dt and the conservative term
Vif.

Theorem 2. Every solution of second order ODEs
system is a horizontal geodesic of the Riemannian-La-
grangian manifold

(RxM, 1+g, N,

i~ Gj'ky ‘ _Fji )
4. Stokes Representation for the Solutions of
Modified Maxwell-Vlasov PDEs System

We consider next that electric field £ and magnetic field
B do not depend explicitly on the variable time ¢. Re-
placing the classical gyroscopic force E+1/cvxB from
Maxwell-Vlasov PDE’s (1) with the gyroscopic force
Fj" v +V'f from geometric dynamics, for the vectorial
field X =F and Riemannian metric g, =9, , and be-
cause curl E) = 0, we obtain the modified Maxwell-
Vlasov PDEs

oL oL oL

VWV, — v, —

ox, 0ox, Ox, o

+z[zz+11+zzjzo,

m\ Ox, Ov, Ox, Ov, Ox; Ov,

where fis density of electric energy, f =1/ 2||E ||2 .
Theorem 3. Let Q(XO ) (1797) be the parallelepiped

defined by diagonal points (xo,vo) and (xf,vf) and
n =(N,N) be the normal unit vector of the boundary

aQ(f"ovVo)v ("“f’vf) ’ [f p(x) - (pi (x))i ’ q(x) = (qi (x))i ’
a(x), B(x), 7(x) are Stokes potentials, with grad, y =0

and y

0 (s7.57) =0, then the solutions of modified

Maxwell-Vlasov PDEs (7) admit Stokes representation
E:curl(p(x))—grad(a(x)) (8)
B:curl(q(x))—grad(,b’(x)) ©

with condition <gradv 7, v> =0, and boundary conditions

a]\7+px]\7+£7La—E]Vq =0,
m ox

B g0 (517)

BN +gxN =0, (10)

(x0-+0) {x7-7)
o\ e of =
,N)+——N

7/<V > m Ox ‘ag(xo)vo)’(x/”)

oQ

=0.

Proof. We consider the following optimal control
problem

max [ (E(-)) = _%J.Q(m.vo),

B (12T +1BC )t

(xrr)
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subject to modified Maxwell-Vlasov PDE’s (7), where
E(x)=(E(x))_ s the electric C' control vector
function, B(x)= (Bl. (x))l_:r3 and v=(y, )i:fa
state vector functions, B(x,)=38, , B(xf):Bf ,
v(x,) =y v(x_/. ) =v,.

Analogous with the proof of Theorem 1, necessary op-
timal conditions are equivalent with

are C'

—E+curl p—grada -fr grad, ya—E =0,
m ox

—B+curl p—grad =0,

<gradx 7, v> —£<gradv v, grad f> =0,
m

ET 0 5% o 5,

o, ov, ov,
EX g 0 g g,

v, ov, ov, v,

E g9,

ov, ov,

satisfying the boundary conditions

) i OF —
aN+pxN+ZyL=N| =0,
P (s00). (77
ﬂN+q><N o, o :O’
(x0-v0)- ("_/ 'Vf)
-\ e df =
VZWN)+——N =0
7/< > m Ox ‘BQ(.xo.vo)- (xrvr)
EvL 4 N = Oa
1}/ n Oﬂ(xﬂ,vﬂ)v [-“f"’f)
E27Ln5 o0 =0,
2gm0) (v7v7)
E.yLn® =0,
VR oo (xr7)
4 5
7L(E2n +E1n ) DQ(XO,VO),(va"f) - 0,
7L(E3n5 + E2n6) aQ(xo,vo).(\‘f,v/) =0,
7L(E1n6 + E3n4) L’Q(Xo,vo)v (X/’J‘/) = O’

where n:(ﬁ,ﬁ ) is the normal unit vector of the

boundary oQ (or)? ]V:(ni)l ., Nz(nj) .

i=4,5 j=13

Since grad y =0 and y|. =0 from the

) (.37

hypotheses, it results Stokes representation (8), (9), for
the solutions of Maxwell-Vlasov modified PDEs (7) to-
gether with the boundary conditions (10).
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5. Conclusions

The present paper studies the electro-magnetic dynamic
systems from the perspective of optimal control theory
(see also [5,11,18]). Multi-time optimal control problems
when the functional is represented by the density of the
electromagnetic energy, subject to Maxwell PDE’s or
modified Maxwell-Vlasov PDE’s (classical gyroscopic
force E+1/cvxB from Maxwell-Vlasov PDE’s is re-
placed with the gyroscopic force Fjv/+V'f from
geometric dynamics, for the vectorial field X = E and
Riemannian metric g, =&, ) reliefy electromagnetic
evolutions from Stokes representations. The study of
electromagnetic energy in magnetic traps justify our re-
search.
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