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ABSTRACT 

Maxwell-Vlasov PDEs system describes the dynamics of plasma consisting of charged particles with long-range inter-
action. Their solutions can be written using some Stokes potentials. Section 1 presents the experimental devices which 
can produce a magnetic trap. Magnetic geometric dynamic provides mathematical tools for describing the magnetic 
flow (see [1-7]). Stokes representation for the solutions of PDEs as Maxwell PDEs or Maxwell-Vlasov PDEs are used 
analyzing electromagnetic energy in magnetic traps. Section 2 studies Maxwell-Vlasov PDEs system. Stokes represen-
tation of its solutions, using Maximum Principle for a multitime optimal control problem, is obtained. Section 3 dis-
cusses a method for changing a given ODEs system into a geodesic motion under a gyroscopic field of forces (geomet-
ric dynamics). Section 4 proposes a modified form for Maxwell-Vlasov PDEs, by replacing the classical gyroscopic 
force with the one appearing in geometric dynamics. Stokes representation for the solutions of modified Max-
well-Vlasov PDEs is also obtained. 
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1. Magnetic Traps 

Our theory is appropriate for the study of electromagnetic 
energy in magnetic traps. These devices are used for at-
oms or charged particles: 

1) magnetic traps, used to trap neutral atoms in a 
magnetic field gradient: 

2) Penning trap, used to trap charged particles or ions 
in a combination of electrostatic potential and uniform 
magnetic field; 

3) magneto-optical trap (or MOT), a trap using a 
magnetic gradient and laser to trap neutral atoms; 

4) magnetic tweezers, a trap using a magnetic field to 
trap micrometreseized ferromagnetic beads. 

The first magnetic trap was realized by M. Ioffe for 
plasma confination having in mind the following idea: if 
an atom is not too energetic, it can be held in a magnetic 
nonzero minimum – a region from which the strength of 
the magnetic field grows stronger in every direction [3]. 
Other modern magnetic traps, analyzed from the perspec-
tive of geometric dynamics in [6,7], are used today in 
EDM experiments or for creating an ECR source of MCI. 

The ALPHA experiment at CERN [8] seeks to trap an-
tihydrogen atoms inside a magnetic bottle consisting of a 

super-conducting octupole magnet and two mirror coils. 
We do it with superconducting magnets – mirror coils to 
create a minimum in the middle of the trap’s axis, plus an 
octupole magnet to create a minimum in the center of the 
trap’s radius. To study the energy spectra of antihydrogen 
atoms it will be necessary to keep them from blowing 
themselves up for much longer than a few thousandths of 
a second currently possible – then will have to be de-
tained for at least a few seconds. Luckily, even neutral 
atoms have a small magnetic moment; they can be con-
fined by a magnetic field of the right shape and strength. 
The current ALPHA plan uses magnetic fields specially 
shaped by an octupole magnet as part of the trap. The 
design of ALPHA magnetic trap was developed and re-
fined at Berkeley Lab by a large team of Berkeley Lab 
and UC Berkeley scientists, visitors and students. 

2. Stokes Representations for the Solutions of 
Maxwell-Vlasov PDEs System 

The ideas of this paper start from the papers [1-20] and 
from the conversations with D. Wang about the Vlasov- 
Maxwell-Boltzmann PDEs, carried at Siam Conference 
on Analysis of Partial Differential Equations, December 
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7-10, 2009, Miami, Florida. 
We consider the case of collisionless plasma, i.e., the 

case of a single species of particles with mass m and 
charge e. 

Let 
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where         , ,  , ,  , ,  , ,  , ,p t x q t x α t x β t x γ t x v  are 
Stokes potentials. 
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.

The optimal control problem (5), with constraints (1), 
becomes 
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subject to modified Maxwell-Vlasov PDE’s (7), where 

    
1,3i i

E x E x


  is the electric  control vector 

function, 

1C

    
1,3i i

B x B x


  and   1,3i i
v v


 are  

state vector functions, 

1C

 B x 0 0B ,  f fBB x  , 

,  0 0v x v  f fv x v . 
Analogous with the proof of Theorem 1, necessary op-

timal conditions are equivalent with 

1 2 3
1 2 3

2 1 3 2
1 2 2 3

1 3
3 1

curl grad grad 0,

curl grad 0,

grad , grad ,grad 0,

0,  0,  0,

0,  0,

0,

v

x v

e E
E p L

m x
B p

e
v f

m

E E E
v v v

E E E E
v v v v

E E
v v

 



 

  

   

 


    


   

 

  
  

  

   
   

   

 
 

 

 

satisfying the boundary conditions 

   

   

   

   

   

   

 
   

 

, , ,0 0

, , ,0 0

, , ,0 0

, , ,0 0

, , ,0 0

, , ,0 0

, , ,0 0

4
1

5
2

6
3

4 5
2 1

5 6
3 2

0,

0,  

,

0,

0,

0,

0,

x v x vf f

x v x vf f

x v x vf f

x v x vf f

x v x vf f

x v x vf f

x v x vf f

e E
N p N L N

m x

N q N

e f
v N N

m x

E Ln

E Ln

E Ln

L E n E n

L E n E n

 
































   



  


 









 



 

 



   

0,

 
   

, , ,0 0

, , ,0 0

6 4
1 3

0,

0,

x v x vf f

x v x vf f

L E n E n







 

 

where  ,n N N    is the normal unit vector of the 
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 . 

Since grad 0v    and 
   , , ,0 0

0
x v x vf f

    from the 

hypotheses, it results Stokes representation (8), (9), for 
the solutions of Maxwell-Vlasov modified PDEs (7) to-
gether with the boundary conditions (10). 

5. Conclusions 

The present paper studies the electro-magnetic dynamic 
systems from the perspective of optimal control theory 
(see also [5,11,18]). Multi-time optimal control problems 
when the functional is represented by the density of the 
electromagnetic energy, subject to Maxwell PDE’s or 
modified Maxwell-Vlasov PDE’s (classical gyroscopic 
force 1E c v B   from Maxwell-Vlasov PDE’s is re-
placed with the gyroscopic force i j i

jF v  f  from 
geometric dynamics, for the vectorial field X = E and 
Riemannian metric ij ijg  ) reliefy electromagnetic 
evolutions from Stokes representations. The study of 
electromagnetic energy in magnetic traps justify our re-
search. 
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