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ABSTRACT 

A new formulation of electromagnetism based on linear differential commutator brackets is developed. Maxwell equa-

tions are derived, using these commutator brackets, from the vector potential A


, the scalar potential φ and the Lorentz 
gauge connecting them. With the same formalism, the continuity equation is written in terms of these new differential 
commutator brackets. 
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1. Introduction 

Maxwell equations are first order differential equations 
in space and time. They are compatible with Lorentz 
transformation which guarantees its applicability to any 
inertial frame. A symmetric space-time formulation of 
any theory will generally guarantee the universality of 
the theory. With this motivation, we adopt a differential 
commutator bracket involving first order space and time 
derivative operators to formulate the Maxwell equations 
and quantum mechanics. This is in addition to our recent 
quaternionic formulation of physical laws, where we 
have shown that many physical equations are found to 
emerge from a unified view of physical variables [1]. In 
such a formulation, we have found that Maxwell equa-
tions emerge from a single equation. Maxwell equations 
were originally written in terms of quaternions. They 
were initially written in twenty equations [a]. However, 
later on Maxwell equations are then written in terms of 
vector in the way that we are familiar today. In our pre-
sent formulation, Maxwell equations are described by a 
set of two wave equations representing the evolution of 
the electric and magnetic fields. This is instead of having 
four equations. We aim in this paper to write down (de-
rive) the physical equations by vanishing differential 
commutator brackets. We know that second order partial 
derivatives commute for space-space variables. We don’t 
assume here this property is a priori for space and time. 
To guarantee this, we eliminate the time derivative of a 
quantity that is acted by a space ( ) derivative followed 
by a time derivative, and vice-versa. In expanding the 
differential commutator bracket, we don’t commute time 
and space derivative, but rather eliminate the time de-

rivative by the space derivative, and vice versa. This dif-
ferential commutator bracket may enlighten us to quan-
tize these physical quantities. By employing the differential 

commutator brackets of the vector A


 and scalar poten-
tial φ, we have derived Maxwell equations without in-
voking any a priori physical law. Maxwell arrives at his 
theory of electromagnetism by combing the Gauss, 
Faraday and Ampere laws. For mathematical consistency, 
he modified Ampere’s law. He then came with the known 
Maxwell equations. 

2. Relativistic Prelude 

From Lorentz transformations one obtain, 

.)    ( =,=,=,)    ( =
2

x
c

v
ttzzyyvtxx      (1) 

We see that the commutator bracket 

   .,=, xtxt               (2) 

where we have taken into account in the order of multi-
plication of the space and time differences, ( tx  , ). 

This shows that the commutator is Lorentz invariant. 
This is a new invariant quantity in relativity. We, how-
ever, already knew that the square interval is Lorentz 
invariant, i.e., 22 )(=)( SS   [2]. It follows from 

Equation (1) that the differential commutator bracket 

0=, 



 

 
t

 is Lorentz invariant too, i.e., =, 



 

 
t

 





 


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',


t
. We know that the spatial second order deriva-

tives of a function, ),(= yxff  , is commutative, i.e., 
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


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= . We wonder if the commutations of space 

and time derivatives are equally valid for all physical 
quantities. Motivated by this hypothesis, we propose the 
following differential commutator brackets to formulate 
the physical laws. In particular, we apply these differential 
commutator brackets, in this work to derive the continuity 
equation, Maxwell equations. 

3. Differential Commutators Algebra 

Define the three linear differential commutator brackets 
as follows: 
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


 

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(3) 

Equation (3) is correct, since partial derivatives com-

mute, i.e., 
txxt 



 22

= . For a scalar ψ  and a 

vector G


, one defines the three brackets as follows:1 

  ,=, 

















 



ttt




          (4) 
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and 
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It follows that 
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(9) 

for any vector F


. The differential commutator brackets 
above satisfy the distribution rule  

      ,ˆˆ,ˆˆ,ˆˆ=ˆ,ˆˆ BCACBACBA          (10) 

where CBA ˆ,ˆ,ˆ  are 
t


,


. It is evident that the differential 

commutator brackets identities follow the same ordinary 
vector identities. We call the three differential commutator 
brackets in Equation (3) the grad-commutator bracket, 

the dot-commutator bracket and the cross-commutator 
bracket respectively. The prime idea here is to replace 
the time derivative of a quantity by the space derivative 



 of another quantity, and vice-versa, so that the time 
derivative of a quantity is followed by a time derivative 
with which it commutes. We assume here that space and 
time derivatives don’t commute. With this minimal 
assumption, we have shown here that all physical laws 
are determined by vanishing differential commutator 
bracket. 

4. The Continuity Equation 

Using quaternionic algebra [3], we have recently found 
that generalized continuity equations can be written as 
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t
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
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Now consider the dot-commutator of J
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Using Equations (11)-(13), one obtains  
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For arbitrary   and J


, Equation (15) yields the two 
wave equations  
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tc
             (16) 

and 

.0=
1
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22
J

t
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
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              (17) 

Equations (16) and (17) show that the charge and cur-
rent density satisfy a wave equation traveling at speed of 
light in vacuum. It is remarkable to know that these two 
equations are already obtained in [3]. Hence, the current- 
charge density wave equations are equivalent to  

.0=)(, J
t
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             (18) 
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5. Maxwell’s Equations 

Maxwell’s equations are first order differential equations 
in space and time of the electromagnetic field, viz.,  

,=
0



E


                     (19) 
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                      (22) 

These equations show that charge (  ) and current ( J


) 
densities are the sources of the electromagnetic field. 
Differentiating Equation (20) and using Equation (21), 
one obtains  
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Similarly, differentiating Equation (21) and using 
Equation (20), one obtains  
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1
= .

B
B J

c t


 


   
        (24) 

These two equations state that the electromagnetic 
field propagates with speed of light in two cases: 

1) charge and current free medium (vacuum), i.e., 
0=0,= J


 , or  

2) if the two equations  
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and  

  ,0=J
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besides the familiar continuity equation in Equation (11)  
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are satisfied. Equation (23) and (24) resemble Einstein's 
general relativity equation where space-times geometry 
is induced by the distribution of matter present. We see 
here that the electromagnetic field is produced by any 
charge and current densities distribution (in space and 
time). Now define the electromagnetic vector F


 as  

E
c

i
BF


=                 (28) 

Adding Equation (25) and Equation (26) according to 
Equation (28), one obtains  
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Applying Equations(25), (26) (see [3]) in Equation (29) 
yields  
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                  (30) 

This is a wave equation propagating with speed of light 
in vacuum ( c ). Hence, Maxwell wave equations can be 
written as a pure single wave equation of an electromag-
netic sourceless complex vector field F


. We call Equa-

tions (25)-(27) the generalized continuity equations. We 
have recently obtained these generalized continuity equa-
tions by adopting quaternionic formalism for fluid me-
chanics [3]. It is challenging to check whether any real 
fluid satisfies these equations or not. We have recently 
shown that Schrodinger, Dirac and Klein-Gordon and dif-
fusion equations are compatible with these generalized 
continuity equations [3]. Using Equations (19) and (20), 
the electric field dot-commutator bracket yields  
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(31) 

This is the familiar continuity equation. Hence, the 
continuity equation in the commutator bracket form can 
be written as  
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Similar, using Equations (21) and (22), the magnetic 
field dot-commutator bracket yields  
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The electric field cross-commutator bracket gives  
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Using Equations (20) and (21), this yields  
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This equation is nothing but Equation (24) above. 
Similarly, the magnetic field cross-commutator bracket 
gives 
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Using Equations (20) and (21) this yields,  

.0=)(
1

=, 2
0

2

2

2

2 


















 



t

J
cE

t

E

c
B

t


  

(37) 

This equation is nothing but Equation (23) above. 
Hence, Equations (35) and (37), i.e.,  
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represent the combined Maxwell equations. In terms of 

the vector F


 defined in Equation (33), the wave equation 
in Equation (35) can be written as  
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which is also evident from Equation (28). 

6. Derivation of Maxwell Equations from the 
Vector and Scalar Potentials, ,A
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The electric and magnetic fields are defined by the vector 
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 and the scalar potential   as follows  
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These are related by the Lorentz gauge as  

.0=
1

2 tc
A







               (41) 

Comparing this equation with Equation (11) reveals 
that the continuity equation is nothing but a gauge condi-
tion. This means that a new current density 'J


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found so that the equation is still intact. We have recently 
explored such a possibility which showed that it is true 

[3]. With this motivation the physicality of the gauge A


 
exhibited by Aharonov–Bohm effect is tantamount to 
that of the current density J


 [5]. The grad-commutator 
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Using Equations (40) and (41), one obtains  
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This yields the wave equation of the vector field A
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Similarly, the dot-commutator bracket of the vector A

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The cross-commutator bracket of the scalar potential    
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Using Equation (40), one finds  
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This yields the Faraday’s equation, 
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It is interesting to arrive at this result by using the 
definition in Equation (40) only. Now consider the dot- 
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Using Equations (40), (41) and the vector identities  
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Equation (51) yields  
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For arbitrary   and A


, Equation (53) yields the two 

equations  
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Equations (54) and (55) are the Gauss and Ampere 
equations. 

Similarly, the cross-commutator bracket of A

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Using Equations (40), (41) and the vector identity  
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Equation (56) yields  
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For arbitrary   and A


, Equation (58) yields the two 

equations  
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and  
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Once again, Equations (59) and (60) are the Faraday 
and Ampere equations, respectively. Hence, the four 
Maxwell equations are completed. To sum up, Maxwell 
equations are the commutator brackets  
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7. Energy Conservation Equation 

In electromagnetism, the energy conservation equation 
for electromagnetic field is written as  
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where  
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The energy conservation equation of the electromagnetic 
field can be easily obtain using the following vector 
identity  
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Let now BGFE
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=,= , so that Equation (64) be-

comes  

.)()(=)( BEEBBE


     (65) 

Employing Equations (20), (21) and (63), Eq.(65) yi
elds  

,= EJS
t
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           (66) 

which is the familiar energy conservation equation of the 
electromagnetic field [5]. 

8. Concluding Remarks 

By introducing three vanishing linear differential commu-

tator brackets for scalar and vector fields,   and A


 

and the Lorentz gauge connecting them, we have derived 
the Maxwell’s equations and the continuity equation 
without resort to any other physical equation. Using dif-
ferent vector identities, we have found that no any inde-
pendent equation can be generated from the three differ-
ential commutators brackets. 
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