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Abstract 
Fuzzy regression analysis is an important regression analysis method to pre-
dict uncertain information in the real world. In this paper, the input data are 
crisp with randomness; the output data are trapezoid fuzzy number, and 
three different risk preferences and chaos optimization algorithm are intro-
duced to establish fuzzy regression model. On the basis of the principle of the 
minimum total spread between the observed and the estimated values, 
risk-neutral, risk-averse, and risk-seeking fuzzy regression model are devel-
oped to obtain the parameters of fuzzy linear regression model. Chaos opti-
mization algorithm is used to determine the digital characteristic of random 
variables. The mean absolute percentage error and variance of errors are 
adopted to compare the modeling results. A stock rating case is used to eva-
luate the fuzzy regression models. The comparisons with five existing me-
thods show that our proposed method has satisfactory performance. 
 

Keywords 
Probabilistic Fuzzy Regression, Chaos Optimization Algorithm, Risk  
Preferences Models, Mean Absolute Percentage Error, Variance of Errors 

 

1. Introduction 

Fuzzy set theory was introduced by Zedah in 1964. On the basis, fuzzy set theory 
has been developed rapidly and applied in many fields, such as control system, 
artificial intelligence, and pattern recognition, etc. In the field of fuzzy regression 
analysis, two main methods are proposed by Tanaka and Diamond. The first 
approach; Tanaka [1] first proposed the fuzzy linear regression model in 1982; 
established the first fuzzy regression analysis model. Another, Diamond [2] 
proposed the fuzzy square method to determine the fuzzy parameters in 1988. 

The latter scholars have developed new studies based on the two mentioned 

How to cite this paper: Gao, N.N. and Lu, 
Q.J. (2018) Probabilistic Fuzzy Regression 
Approach from the Point of View Risk. 
Journal of Data Analysis and Information 
Processing, 6, 156-167. 
https://doi.org/10.4236/jdaip.2018.64010 
 
Received: August 31, 2018 
Accepted: November 9, 2018 
Published: November 12, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jdaip
https://doi.org/10.4236/jdaip.2018.64010
http://www.scirp.org
https://doi.org/10.4236/jdaip.2018.64010
http://creativecommons.org/licenses/by/4.0/


N. N. Gao, Q. J. Lu 
 

 

DOI: 10.4236/jdaip.2018.64010 157 Journal of Data Analysis and Information Processing 
 

above. Tanaka and Watada [3] introduced possibility measure into fuzzy linear 
regression. Savic and Pedrycz [4] proposed that the use of fuzzy linear regression 
is highly influenced by its purpose and the nature of the practical application. 
Kim and Bishu [5] studied fuzzy regression models by comparing membership 
functions. Modarres and Nasrabadi [6] proposed an fuzzy linear regression 
analysis from the point of view risk. Kwong and Chen [7] introduced fuzzy least 
squares regression approach to modelling relationships in Quality function 
deployment. Zhang [8] proposed an fuzzy linear regression analysis model based 
on the centroid method. Li and Zeng [9] introduced an fuzzy regression models 
based on least absolute deviation. 

The previous models were studied to solve fuzziness, but some data not only 
have fuzziness but also have randomness. Only few previous studies have 
examined both fuzziness and randomness in empirical research. In this paper, 
according to the actual meaning of the random variables, the appropriate 
numerical characteristics are selected. Introduced chaos optimization algorithm 
(COA) determines the numerical characteristics of the random variable. Three 
mathematical programming models are proposed, called risk-neutral, risk-averse 
and risk-seeking. Based on this, the fuzzy regression coefficient of different risk 
models can be obtained, and model are determined. 

2. Mathematical Preliminaries 

Definition 2.1 [10] let A  be a mapping of domain x to [ ]0,1 , that is 
[ ] ( ): 0,1 ,A X x xµ→

 , A  is called fuzzy set of x. ( )A xµ  is called the 
membership function of x in the fuzzy set A . 

Definition 2.2 [10] Fuzzy set A  is called fuzzy number in the real number 
field R, if ( ]0,1α∀ ∈ , Aα  is finite closed interval, R  is a set of all fuzzy 
numbers. 

Definition 2.3 [5] when a fuzzy number ( ), , LRA aα β=  has a membership 
function ( )A xµ  is defined as 

( )
, 0

, 0
A

a xL x a
x

x aR x a

α
α

µ
β

β

 −  ≤ >   = 
 − > >   

 

where a R∈  is the center of the function, ,α β  are the left and right spread of 
the function, respectively. This fuzzy number is referred to as L R−  fuzzy 
number. The shape of function satisfies 1) ( ) ( )L x L x= − , ( ) ( )R x R x= − , 2) 
( )0 1L = , ( )0 1R = , and 3) ( )R x  are non-increasing on [ )0,∞ . 

LRR  is a set of all L R−  fuzzy numbers, L R−  fuzzy number A  has the 
left and right spreads from a real number whose membership is 1. The spreads 
represent the fuzziness of the fuzzy number could be symmetric or 
non-symmetric. If the spreads are null, there is no fuzziness of the number, and 
it is a real number. The choice of the L and R functions is dependent upon the 
subjective judgement. 
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Proposition 2.1 ( ) ( ), , , , , ,LRLRa b R k Rα β γ δ ∈ ∈ . 
1) ( ) ( ) ( ), , , , , ,LR LR LRa b a bα β γ δ α γ β δ+ = + + +  

2) ( )
( )
( )

, , , 0
, ,

, , , 0
LR

LR
RL

k ka k k
k a

k ka k k

α β
α β

β α

≥⋅ = 
− − <

 

( ) ( ), , , ,LR RLa aα β β α− = − , especially. 
Definition 2.4  A R∈  , if the membership function of A  is defined as 

( )

,

1,

,

0, else

A

x a l a l x a
l

a x b
x

b r x b x b r
r

µ

− + − ≤ ≤


≤ ≤=  + − ≤ ≤ +




 

( ), , , TA l a b r=  is trapezoidal fuzzy number. If the fuzzy number is symmetric 
fuzzy numbers, l r= . The fuzzy number is triangular fuzzy number when a = b. 

The set of trapezoid fuzzy numbers is denoted by TR , and T LRR R R⊆ ⊆   . 
Proposition 2.2 ( ) ( )1 1 1 1 2 2 2 2, , , , , , , ,Tl a b r l a b r R k R∈ ∈ , then 

1) ( ) ( ) ( )1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2, , , , , , , , ,T T Tl a b r l a b r l l a a b b r r+ = + + + +  

2) ( )
( )
( )

1 1 1 1
1 1 1 1

1 1 1 1

, , , , 0
, , ,

, , , , 0
T

T
T

kl ka kb kr k
k l a b r

kr kb ka kl k

≥⋅ = 
− − <

 

3. Probablistic Fuzzy Regression 

The fuzzy linear regression model can be state as 

0 1 1 , 1, ,i i k ik iY A A x A x Ax i n= + + + = =   

            (1) 

where ( ), , ,
i i i ii y y y y T

Y l a b r=  is fuzzy output value of the ith observation, ijx  is 
crisp value of the jth independent variable in the ith observation, 1, ,j k=  , k is 
the number of independent variables; and 0 1ix = . ( ), , ,j j j j jA l a b r=  is the 
fuzzy coefficients. iY  is the observed value. 

3.1. Introduction of Chaos Optimization Algorithm 

As the characteristics of the sample directly reflect the overall population, the 
sample's numerical characteristics can be used to evaluate the overall population. 
The common numerical characteristics are expectation, variance, etc. Select the 
corresponding numerical characteristics according to the actual needs, 
determine the numerical characteristics to be determined using COA. 

The chaos optimization algorithm proposed by Li [11], chaos is introduced 
into the design variable of the optimization problem using a similar carrier 
method, and the ergodic range of the chaotic motion is extented to the range of 
value of the design variables. Then, search by chaotic variables. COA employs 
chaotic dynamics to solve optimization problems and it has been applied 
successfully in various areas such as function optimization and supply chain 
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optimization [12]. Compared with conventional optimization methods, COA 
has faster convergence and can search for better solutions [13]. This algorithm 
also has an improved capacity to seek for the global optimal solution of an 
optimization problem and can escape from a local minimum. The characteristic 
of randomness ensures the capability for a large-scale search. Ergodicity allows 
COA to traverse all possible states without repetition and overcome the 
limitations caused by ergodic searching in general random methods. COA uses 
the carrier wave method to linearly map the selected chaos variables onto the 
space of optimization variables and then searches for the optimal solutions based 
on the ergodicity of the chaos variables. 

3.2. Determination of Numerical Characteristic 

The processes of applying COA in this study are described as follows. 
First, the number of iterations of COA is defined. Each chaos variable 

represents numerical characteristics to be estimated, and the number of elements 
in a chaos variable is equal to the number of parameters to be determined. The 
chaos variable is initialized in which the values are selected randomly in the 
range [ ]0,1 . The ranges of parameters [ ],a b  are initialized, in which a and b 
are the lower and upper limits of the optimization variable, respectively. 

Second, the iteration number is set as 1m = . Based on the initialized chaos 
variable, the logistic model used in COA in Equation (2), and logistic mapping 
can generate chaos variables through iteration. 

( ) ( )1 1 11m m m mc f c c cµ− − −= = −                    (2) 

where µ  is control parameter; [ ]0,1mc ∈  is the mth iterations value of the 
chaos variable c; and 0c  is the initialized chaos variable. 

The linear mapping for converting chaos variables into optimization variables 
is formulated as follows: 

( )m mq a b a c= + −                        (3) 

where mq  is the optimization variable and the value of mq  is the parameter 
settings to be determined. Based on the iteration, the chaos variable traverse 
between [ ]0,1 , and the corresponding optimization variables traverse in the 
corresponding range [ ],a b . In this case, the optimal solution can be identified 
in the area of feasible solutions. Based on the values of mq , the numerical 
characteristics can be obtained. The model can be developed based on numerical 
characteristics and fuzzy coefficients by which the predicted output of 

( ), , ,
i i i ii y y y yY l a b r=  can be obtained. The predicted crisp output of iY  is 

denoted as ˆiy , which is the centroid of iY . 
Third, the mean absolute percentage error (MAPE) is defined as the average 

of percentage errors, which is scale-independent and is a popular measure for 
evaluating accuracy [8]. Thus, MAPE was adopted in this study as the fitness 
function in COA, which is defined as follows: 
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1

ˆ1 100
n

i i

i i

y y
MAPE

n y=

−
= ⋅∑                   (4) 

where ˆiy  is the centroid of iY , iy  is the centroid of iY . The value of MAPE 
and mq  in the first iteration are recorded as the best fitness value *

1fv MAPE=  
and the best solution *

1q q= , respectively. 
Fourth, the iteration continues by 1m m+ → . The chaos variable and 

optimization variable are updated by Equation (2) and Equation (3), respectively. 
The MAPE in the 1m +  iteration, 1mMAPE +  is obtained using Equation (4). 
The process is as follows: 

* * *
1 1

* *

,

, else
m m

m m

fv MAPE q q MAPE fv

fv MAPE q q
+ + = = ≤


= =

              (5) 

3.3. Mathematical-Programming Model 

Considering the random variable, the model in Equation (1) can be rewritten as 
follows:  

( ) ( ) ( ) ( )0 0 0 0 1 1 1 1 1, , , , , , , , , , , ,y y y y i k k k k iki i i i
l a b r l a b r l a b r x l a b r x′ ′= + + +    (6) 

( )
0, 0 1, 0

i
ij ij

k k

y j ij j ij
j x j x

a a x b x
= ≥ = <

′ ′= + −∑ ∑                   (7) 

( )
0, 0 1, 0

i
ij ij

k k

y j ij j ij
j x j x

b b x a x
= ≥ = <

′ ′= + −∑ ∑                   (8) 

( )
0, 0 1, 0

i
ij ij

k k

y j ij j ij
j x j x

l l x r x
= ≥ = <

′ ′= + −∑ ∑                    (9) 

( )
0, 0 1, 0

i
ij ij

k k

y j ij j ij
j x j x

r r x l x
= ≥ = <

′ ′= + −∑ ∑                    (10) 

where ijx′  is a certain numerical characteristic of ijx , 1, , ; 1, ,i n j k= =  . 

4. Risk in Model 

In this section, three different risk preference are introduced, called risk-neutral, 
risk-averse and risk-seeking problems, to determine the fuzzy regression model. 

4.1. Degree of Fitness from the Point of View Risk 

Dobois and Prade [10] proposed the following equality indices to compare two 
fuzzy numbers. 

( ) ( ) ( ){ }{ }sup min ,x RPos A B A x B x∈= =             (11) 

( ) ( ) ( ){ }{ }inf max 1 ,x RNes A B A x B x∈⊆ = −           (12) 

where Pos and Nes are short for Possibility and Necessity. Observe that index 
Equation (11) means the degree of possibility that A  is equal to B  and index 
Equation (12) means the degree of necessity that A  includes B . Let iY  and 

iY  represent the estimate value and the observed value, respectively. The degree 
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of fitness of the risk-neutral, risk-averse, risk-seeking denoted by RN
if , RA

if , 
RS

if , respectively and defined as, ( )RN
i i if Pos Y Y= =  , ( )RA

i i if Nes Y Y= ⊆  , 

( )RS
i i if Nes Y Y= ⊇  . By considering 1 2, , , mY Y Y  

 , the risk-neutral,risk-averse 
and risk-seeking degree of fitness the estimate model, denoted by , ,RN RA RSf f f , 
respectively, are defined by { }minRN RN

i if f= , { }minRA RA
i if f= , 

{ }minRS RS
i if f= . From the properties of the two indices Equation (11) and 

Equation (12), RNf h≥ , RAf h≥  and RSf h≥  can be transformed to the 
usual inequalities for some fixed [ ]0,1h∈ . 

Proposition 4.1 [6] 1) RNf h≥  if and only if 

( ) ( ) ( ) ( ), , , ,, , 1, ,i L ii R i R ii LY h Y h Y h Y h i n≤ ≥ = 

 

  

2) RNf h≥  if and only if 

( ) ( ) ( ) ( ), , , ,1 , 1 , 1, ,i L i R i R i LY h Y h Y h Y h i n≤ − ≥ − = 

 

  

3) RSf h≥  if and only if 

( ) ( ) ( ) ( ), , , ,1 , 1 , 1, ,i L i R i R i LY h Y h Y h Y h i n− ≤ − ≥ = 

 

  

where ( ) ( ) ( ) ( ), , , ,, , ,i L i R i L i RY h Y h Y h Y h 

   are the left and right end point of fuzzy 
estimated output and observed output in the h level, respectively. Proposition 
4.1 can be understood as 

1) RNf h≥  if and only if 

( ) ( ) , 1, ,i iY h Y h i n≠ ∅ =



   

2) RAf h≥  if and only if 

( ) ( )1 , 1, ,i iY h Y h i n− ⊆ =



  

3) RSf h≥  if and only if 

( ) ( )1 , 1, ,i iY h Y h i n− ⊆ =



  

Corollary 4.1 If { }max ,RA RSf f h≥ , 1 1
2

h≤ ≤ , then RNf h≥ . 

4.2. Parameter Estimation of the Model 

The objective function of the model is to minimize the difference between the 
total spread of observed and estimated values it is given by 

( ) ( )( ) ( ) ( )( )2 2

, , , ,
1

0 0 0 0
n

i R i R i L i L
i

J Y Y Y Y
=

 = − + − 
 

∑  

             (13) 

Considering the above assumption, the problem is to obtain fuzzy parameters 
of risk-neutral, risk-averse and risk-seeking model in order to minimize J in 
Equation (13) subject to RNf h≥ , RAf h≥  and RSf h≥ , respectively. 
Consequently, the mathematical models lead to the following three quadratic 
programming problems: 

RNP(h) (Risk—neutral problem) 

( ) ( )( ) ( ) ( )( )2 2

, , , ,
1

min : 0 0 0 0
n

i R i R i L i L
i

J Y Y Y Y
=

 = − + − 
 

∑  

         (14) 
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( ) ( ) ( ) ( )
( ) ( )

, , , ,

, ,

s.t. ,

0 0 0, 1, ,
i L i R i R i L

i R i L

Y h Y h Y h Y h

Y Y i n

≤ ≥

− ≥ =

 

 

 



              (15) 

RNP(h) (Risk—averse problem) 

( ) ( )( ) ( ) ( )( )2 2

, , , ,
1

min : 0 0 0 0
n

i R i R i L i L
i

J Y Y Y Y
=

 = − + − 
 

∑  

          (16) 

( ) ( ) ( ) ( )
( ) ( )

, , , ,

, ,

s.t. 1 , 1

0 0 0, 1, ,
i L i R i R i R

i R i L

Y h Y h Y h Y h

Y Y i n

≤ − ≥ −

− ≥ =

 

 

 



            (17) 

RNP(h) (Risk—seeking problem) 

( ) ( )( ) ( ) ( )( )2 2

, , , ,
1

min : 0 0 0 0
n

i R ii R i L ii L
i

J Y Y Y Y
=

 = − + − 
 

∑  

          (18) 

( ) ( ) ( ) ( )
( ) ( )

, , , ,

, ,

s.t. 1 ,

0 0 0, 1, ,
i R i R i L i L

i R i L

Y h Y h Y h Y h

Y Y i n

− ≤ ≥

− ≥ =

 

 

 



              (19) 

4.3. Algorithm of Model 

The algorithm of the proposed model is summarized below. 
Step 1: The parameters are initialized, including the number of iterations, 

initial value of numerical characteristics, initialized chaos variables, and ranges 
of parameters. 

Step 2: The structure of the proposed model is generated using Equation (8). 
The number of terms in the model is 1 k+ , where k is the number of 
independent variables. 

Step 3: The iteration begins from 1m = . The chaos variables mc  are 
generated based on the logistic model in Equation (2) and transformed into 
optimization variables mq  using Equation (3). 

Step 4: The interval of a random variable is defined based on the experimental 
data, and the corresponding numerical characteristics is selected. The numerical 
characteristic value of random variables are then generated based on the values 
of mq . The random variables are substituted by their corresponding numerical 
characteristics, and the probabilistic terms of the proposed models are 
generated. 

Step 5: The fuzzy coefficient of each term of the proposed model is 
determined by solving the quadratic programming problems shown in 
Equations (14) to (19). 

Step 6: Predicted output ˆiy  is calculated with the developed proposed 
models. MAPE between estimate value ˆiy  and actual value iy  for all data sets 
can then be obtained using Equation (4) as the fitness value of the iteration m. 

Step 7: The iteration is continued by 1m m+ →  and stops after the number 
of iterations reaches the predefined value. The values of MAPE are obtained for 
each iteration and compared. The solution with the smallest fitness value is 
selected based on step 3 in Section 3.2. A model with the smallest error is then 
generated. 
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5. Empirical Studies 

A stocking rating case was conducted to evaluate the effectiveness of the 
proposed approach. Securities analysts collect data to study macro economy and 
company, then forecast the earning and stocking value of the company being 
tracked. And provide five investment rating, which are buying, increasing, 
neutral, reducing, and selling for investors. Stock rating coefficient: 1.00 - 1.09 
buying; 1.10 - 2.09 increasing; 2.10 - 3.09 neutral; 3.10 - 4.09 decreasing; 4.10 - 
5.00 selling. Introducing fuzzy number to deal with the interval of different 
ratings. Therefore, the stock rating can be expressed as trapezoid fuzzy number 
as follows: 

( )buying 0.00,1.00,1.09,0.01 T=“ ”  

( )increasing 0.01,1.10,2.09,0.01 T=“ ”  

( )neutral 0.01,2.10,3.09,0.01 T=“ ”  

( )decreasing 0.01,3.10,4.09,0.01 T=“ ”  

( )selling 0.01,4.10,5.00,0.00 T=“ ”  

There are many factors that affect stock rating. However, based on the three 
principles of comprehensiveness, comparability and feasibility, we choose the 
following indicators to form an evaluation index system: profitability (x1), 
operational capacity (x2), short-term debt paying ability (x3) and volatility of the 
stock (x4). 

This case study the relationship between stock rating (y) and profitability (x1), 
operational capacity(x2), short-term debt paying ability (x3) and volatility of the 
stock (x4). In the stock rating forecast, the input is the crisp value and the output 
is the trapezoid fuzzy number. The value of stock price volatility is the standard 
deviation of the closing price of the stock from Sep 18th, 2017 to Oct 18th. 

The sample date collected are shown in Table 1, Table 2, especially, the x4 in 
Table 1 is the standard deviation of the sample. Then the confidence interval of 
volatility of the stock is calculated by MATLAB shown in Table 3. 

The Construction of the Model 

After the data collection, based on the initialized stock volatility, fuzzy 
coefficient of different risks can be obtained by Equations (14) to (19). 
Generating new stock volatility by COA, Equation (4) are considered as the 
objective function. In the end, stock volatility based on different risks are shown 
in Table 4 and Table 5. The results of the proposed models were compared with 
those of statistical regression(SR), Tanaka et al. [14] (denoted by TH), Diamond 
[1] (denoted by DM), Chiang Kao et al. [15] (denoted by KC) and Junhong Li et 
al. [9] (denoted by JL) to evaluate the proposed method effectiveness. MAPE and 
the variance of error (VoE) defined in Equations (4) and (20), respectively, were 
adopted to compare the modeling results of these approaches. 
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Table 1. The financial data of the stock. 

ID x1 x2 x3 x4 ID x1 x2 x3 x4 

1 29.98 0.98 0.37 0.12 14 43.12 0.84 2.21 0.08 

2 22.88 1.01 0.86 0.08 15 37.49 2.22 1.50 1.03 

3 48.57 1.50 0.49 0.54 16 1.50 0.63 2.12 1.19 

4 26.20 2.53 0.22 0.95 17 10.05 0.73 1.89 0.03 

5 149.13 1.07 0.64 0.11 18 40.87 0.65 3.32 0.24 

6 99.59 1.75 0.96 1.15 19 9.63 0.35 3.20 0.13 

7 76.79 0.91 1.22 0.56 20 3.08 0.43 0.72 0.04 

8 1.72 2.02 0.06 0.07 21 23.10 1.35 1.78 1.31 

9 6.46 0.56 0.23 0.12 22 20.97 1.25 1.43 0.39 

10 65.67 0.17 0.11 0.60 23 21.99 1.07 0.67 0.11 

11 58.65 0.91 0.09 0.19 24 19.87 2.54 0.23 0.22 

12 197.61 2.64 0.43 0.25 25 35.34 2.22 1.37 0.32 

13 95.72 1.33 0.79 0.33      

 
Table 2. Stocking rating. 

ID Rating ID Rating ID Rating 

1 (0.00 1.00 1.09 0.01) 10 (0.00 1.00 1.09 0.01) 19 (0.01 3.10 4.09 0.01) 

2 (0.01 2.10 3.09 0.01) 11 (0.00 1.00 1.09 0.01) 20 (0.01 3.10 4.09 0.01) 

3 (0.00 1.00 1.09 0.01) 12 (0.00 1.00 1.09 0.01) 21 (0.01 3.10 4.09 0.01) 

4 (0.00 1.00 1.09 0.01) 13 (0.01 1.10 2.09 0.01) 22 (0.01 2.10 3.09 0.01) 

5 (0.00 1.00 1.09 0.01) 14 (0.01 1.10 2.09 0.01) 23 (0.01 3.10 4.09 0.01) 

6 (0.01 1.10 2.09 0.01) 15 (0.00 1.00 1.09 0.01) 24 (0.01 1.10 2.02 0.01) 

7 (0.01 1.10 2.09 0.01) 16 (0.01 3.10 4.09 0.01) 25 (0.01 3.10 4.09 0.01) 

8 (0.00 1.00 1.09 0.01) 17 (0.01 2.10 3.09 0.01)   

 
2

1

ˆ1
1

n
i i

i i

y y
VoE MAPE

n y=

 −
= − 

−  
∑                  (20) 

The same survey data was utilized to develop models based on SR, TH, DM, 
KC, JL. For SR, the centroid of fuzzy number are considered as fuzzy number. 
The models are produced by different methods as follows in Table 6. 

Table 7 shows that the values of MAPE and VoE based on different 
approaches, it shows that RNP outperforms the other approaches in modeling in 
terms of the MAPE and VoE. 

6. Conclusion 

In this paper, we developed three mathematical programming models, called 
risk-neutral, risk-averse, and risk-seeking, to studied fuzzy linear regression  
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Table 3. 95% confidence interval of stock volatility. 

ID Confidence Interval ID Confidence Interval ID Confidence Interval 

1 [0.0940 0.2010] 10 [0.4539 0.9276] 19 [0.0734 0.1034] 

2 [0.0577 0.1179] 11 [0.1431 0.2925] 20 [0.0276 0.0564] 

3 [0.4031 0.8238] 12 [0.1924 0.3932] 21 [0.9000 1.8391] 

4 [0.7527 1.4829] 13 [0.2474 0.5057] 22 [0.2895 0.5916] 

5 [0.0758 0.1548] 14 [0.0651 0.1330] 23 [0.0865 0.1767] 

6 [0.8851 1.8087] 15 [0.6015 1.2292] 24 [0.1550 0.3167] 

7 [0.4293 0.8772] 16 [0.9011 1.8414] 25 [0.2229 0.4555] 

8 [0.0553 0.1131] 17 [0.0293 0.0294]   

9 [0.0825 0.1686] 18 [0.1644 0.2844]   

 

Table 4. Stock volatility obtained by COA (RNP). 

ID Variance ID Variance ID Variance ID Variance 

1 0.1737 8 0.0603 15 0.7842 22 0.5819 

2 0.0996 9 0.1086 16 0.9935 23 0.1307 

3 0.6695 10 0.8233 17 0.0293 24 0.2934 

4 0.9967 11 0.1974 18 0.1844 25 0.2609 

5 0.0813 12 0.2061 19 0.0934   

6 1.3950 13 0.4853 20 0.0292   

7 0.6433 14 0.0799 21 1.2637   

 
Table 5. Stock volatility obtained by COA (RAP). 

ID Variance ID Variance ID Variance ID Variance 

1 0.1977 8 0.1024 15 0.7519 22 0.3215 

2 0.1045 9 0.1090 16 1.5833 23 0.1449 

3 0.4042 10 0.5274 17 0.0293 24 0.2303 

4 1.1250 11 0.1826 18 0.1844 25 0.3179 

5 0.1009 12 0.2223 19 0.0934   

6 1.1709 13 0.2794 20 0.0347   

7 0.8414 14 0.1223 21 1.4748   

 
analysis, and meanwhile considered the randomness caused by independent 
variables in the modeling. In the proposed approach, the numerical 
characteristics of random variables is decided by COA. Fuzzy regression analysis 
is then conducted to determine the fuzzy coefficients for all the terms of the  
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Table 6. Results from different appraoches1. 

Approaches Developed models 

SR SR 1 2 3 41.8487 0.0062 0.0557 0.5399 0.0385y x x x x= − − + −  

TH 

( )
( )
( )
( )

8 9
TH

8 8
1

8 9
2

8 9
3

8

1.9286 10 , 0.0417,1.0065,6.5089 10

2.0434 10 , 0.0254,1.0415,2.1557 10

1.8247 10 , 0.1749,0.8416,9.7891 10

1.9099 10 ,0.0139,0.9926,6.8315 10

2.4991 10 ,0.3568,0.6446,4.3585 1

y

x

x

x

− −

− −

− −

− −

−

= × − ×

+ × − ×

+ × − ×

+ × ×

+ × ×



( )8
40 x−

 

DM 

( )
( )
( )
( )
( )

DM

5 5
1

2

6 6
3

4

0.0044,1.8221,2.3881,0.0083

1.3791 10 ,0.0063,0.0068,1.0424 10

0.0010,0.0064,0.0069,0.0006

1.9002 10 , 0.420391, 0.420390,1.9229 10

0.0016, 0.0632, 0.0148,0.0012

y

x

x

x

x

− −

− −

=

+ × ×

+

+ × − − ×

+ − −



 

KC2 ( )
KC 1 2 3 40.6673 0.1242 0.1517 0.8083 0.5304

0.2784,0.2852,0.9872,0.9972
y x x x x= − + + +

+



 

JL 

( )
( )
( )
( )
( )

JL

6 6
1

2

3

4

0.00016,0.9514,0.9537,0.0016

3.4895 10 , 0.0474, 0.0471,3.4895 10

0.0001,0.5746,0.5760,0.0001

0.0001,0.2136,0.2155,0.0001

0.0004,0.7414,0.7454,0.0001

y

x

x

x

x

− −

=

+ × − − ×

+

+

+



 

RNP 

( )
( )
( )
( )

RNP

10 10
1

2

7 7
3

8

0.3066,1.6750,2.1384,1.0213

6.8889 10 , 0.007399967, 0.007399966,6.8890 10

0.0106, 0.1169, 0.1067,0.0106

2.7728 10 ,0.3528503,0.3528505,2.6929 10

6.6698 10 , 0.30650488, 0.3065048

y

x

x

x

− −

− −

−

=

+ × − − ×

+ − −

+ × ×

+ × − −



( )8
41,6.7342 10 x−×

 

RAP 

( )
( )
( )
( )
( )

7
RAP

9 8
1

7
2

7
3

6 6

4.0794 10 ,1.2521,1.9009,2.0041

9.8956 10 , 0.01046018, 0.01046014,3.4631 10

3.1431 10 ,0.0188,0.1190,0.1158

3.5577 10 ,0.2115,0.2508,0.0335

1.1538 10 , 0.76236, 0.76235,2.4335 10

y

x

x

x

−

− −

−

−

− −

= ×

+ × − − ×

+ ×

+ ×

+ × − − ×



4x

 

 
Table 7. Means and variance of the validation errors. 

Validation error SR TH DM KC JL RNP RAP RSP 

MAPE 35 1623 73 40 135 32 37 *3 

VoE 121 1,845,500 5223 1669 18,542 1120 1369 * 

 
proposed models. The generated model can address the fuzziness caused by 
human subjective judgement and the randomness caused by independent 

 

 

1h = 0 for all approaches. 
2In the KC model, (0:2784; 0:2852; 0:9872; 0:9972) is all coordinate points. 
3RSP is infeasible for each 0 ≤ h ≤1. 
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variables. The results from the stock rating case indicates that the proposed 
models have better performance than the others methods. 
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