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Abstract 
Latent Semantic Analysis involves natural language processing techniques for analyzing relation- 
ships between a set of documents and the terms they contain, by producing a set of concepts (re-
lated to the documents and terms) called semantic topics. These semantic topics assist search en-
gine users by providing leads to the more relevant document. We develope a novel algorithm 
called Latent Semantic Manifold (LSM) that can identify the semantic topics in the high-dimen- 
sional web data. The LSM algorithm is established upon the concepts of topology and probability. 
Asearch tool is also developed using the LSM algorithm. This search tool is deployed for two years 
at two sites in Taiwan: 1) Taipei Medical University Library, Taipei, and 2) Biomedical Engineering 
Laboratory, Institute of Biomedical Engineering, National Taiwan University, Taipei. We evaluate 
the effectiveness and efficiency of the LSM algorithm by comparing with other contemporary algo-
rithms. The results show that the LSM algorithm outperforms compared with others. This algo-
rithm can be used to enhance the functionality of currently available search engines. 
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1. Introduction 
In the traditional approach to data gathering, we collect data on a few well-chosen variables, and then manually 
perform various tasks, such as finding relevant information, analyzing them, making decisions, and so on [1]. 
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However, in this high-tech era, the high volumes of data are generated with high velocity from a variety of re- 
sources (also known as 3 V—Volume, Velocity, and Variety) [2] [3]. The modern Information and Communica- 
tion Technology (ICT) infrastructure, the advent of cloud computing, the cheaper availability of storage device, 
and the low cost computing power have made people capable of recording and storing an enormous amount of 
data [4]. As a result, gigantic repositories that include data, texts, and media have rapidly grown during recent 
years [5]-[9]. Nowadays, we create as much information in every two days as we have done since the dawn of 
civilization [10] [11]. Several huge repositories are freely available for the public use on the World Wide Web 
causing another problem—the relevant information is buried in the irrelevant ones. 

To combat the problem to lose the relevant information in the overwhelming amount of data, a number of 
search engines have proliferated recently, which can aid users in searching contents which are relevant to them 
[8]. As the web pages are heterogeneous and consist of varying quality, they put limitations on search technolo-
gies [12] [13]. Moreover, the relationships among the words (polysemy, synonymy, and homophony) and sen-
tences (paraphrase, entailment, and contradiction), and ambiguities (lexical and structural) diminish the search 
engines’ power [14] [15]. Hence, the search engines often return inconsistent, uninteresting, and unorganized 
results [9] [12]. Web users have to devote substantial time and effort to differentiate meaningful items from the 
results returned by the search engines [9] [16] [17]. In order to facilitate and enhance relevant information 
access to the web users, it is essential for search engines to deal with ambiguities and imprecision [18] [19]. The 
need to enhance the search engines’ capabilities has been felt such that the search engines can not only generate 
results of the web users’ queried terms, but also can filter and organize meaningful items from the irrelevant 
ones [20]-[22]. 

Many effective search engines, such as MedEvi, EBIMed, MEDIE, PubNet, GoPubMed, Argo, and Vivisimo, 
have provided capabilities to fit search results to the users’ intent. These search engines can discover latent se-
mantic (relationships between a set of documents and the terms they contain) in the search engine generated 
documents and classify these documents into homogeneous semantic clusters [23]-[33]. In these search engines, 
each semantic cluster is considered as a topic, which indicates a summary of the generated documents. Later, the 
users can explore the topics that are relevant to their intent. For example, upon using these search engines, a 
query term, APC (Adenomatous Polyposis Coli), can yield abstracts of the relevant PubMed articles. In this case, 
the generated results will consist of not only abstracts about Adenomatous Polyposis Coli, but also others such 
as Antigen Presenting Cells (APC), Anaphase Promoting Complex (APC), and Activated Protein C (APC). The 
users need to find articles which are relevant to their intent (here Adenomatous Polyposis Coli) after going 
through the abstracts generated from the search. In summary, rather than providing huge number of web links 
related to the queried terms, search engines need to generate results relevant to users’ intent. 

In the past, many algorithms/techniques have been deployed to develop semantic search engines as described 
in the previous paragraph [25]. For instance, deterministic search techniques have provided metadata-enhanced 
search facility, where a user pre-selects different facets to generate more relevant search results [18] [19]. How-
ever, scaling metadata-enhanced search facility to the web is difficult and requires many experts to define con-
trolled-vocabulary in order to create unique labels for the concepts having the same terminology [34] [35]. Luhn 
pointed out that the frequency of terms and their relative positions within a sentence in a document can be used 
to compute a relative measure of significance, first for the individual words and then for the sentences [36]. 
Word usage in a document collection tends to follow Zipf’s distribution, in which a few words are used very 
frequently, but the vast majority only rarely [37]. Therefore, Salton and McGill addressed the tf idf−  scheme, 
which is a measure of each basic element (term) in a document collection to reveal the significance of elements 
within the collection [38]. For each document in the collection, the tf idf−  value of each term is determined 
by the term frequency, that is, the number of occurrences of each term in the document but is offset by the fre-
quency of the word in the corpus, which helps to adjust for the fact that some words appear more frequently in 
general. We may view each document as a vector with one component corresponding to each term together with 
a weight for each component. Thus, the tf idf−  scheme can reduce documents of arbitrary length to fixed- 
length lists of numbers. The tf idf−  weighting schemes are often used by search engines as a central tool in 
scoring and ranking a document’s relevance given a user query. In addition, tf idf−  can be successfully used 
for stop-words filtering in various subject fields including text summarization and classification. No doubt, the 
revolutionary change was realized in the information retrieval field with the introduction of tf idf−  scheme 
and its variants. However, in the tf idf−  scheme, the document collection is presented as a document-by-term 
matrix, which is usually enormously high-dimensional and sparse [38]-[40]. Often, for a single document, there 
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are more than thousands of terms in the matrix, and most of the entries are zero. The tf idf−  scheme can bring 
down some terms; yet, it provides a relatively small amount of reduction, which is not enough to reveal the sta-
tistical measures within a document or between documents. 

In the last decades, some other dimension reduction techniques, such as Latent Semantic Indexing, Probabil-
istic Latent Semantic Indexing, and Latent Dirichlet Allocation models have been proposed to overcome the 
shortcomings of earlier search engines. But, all these are based on bag-of-words models. The bag-of-words 
models follow Aldous and de Finetti theorem of exchangeability where the order of terms in a document or or-
der of documents in a corpus can be neglected [41]-[43]. As the spatial information conveyed by the terms in the 
document or documents in the corpus was highly neglected in these approaches, we found a statistical issue at-
tached with these bags-of-words models [42]-[45]. In the probability theory, the random variables (here referred 
as terms) 1 2, , , Nt t t  are said to be exchangeable if the joint distribution ( )1 2, , , NF t t t  is invariant under 
permutation of its arguments, so that ( ) ( )1 2 1 2, , , , , ,N NF z z z F t t t=   whenever ( )1 2, , , Nz z z  is a permu-
tation of ( )1 2, , , Nt t t . However, these terms are exchangeable and the relationship between them can be estab-
lished if the terms are located in proximity. For instance, we have a document describing products, such as lap-
tops, mobile phones, and notepads. The appearance of the word “apple” can be associated with a company if it 
appears in proximity to words laptop, mobile phone, and notepad. However, in case, the word “apple” appears 
after several words or pages in the document, the relationship between “laptop, mobile phone or notepad” and 
“apple” weakens. Therefore, the criteria-the order of terms in a document can be neglected-should be modified 
to order of terms in a relationship of a document can be neglected. Likewise, the order of documents in a corpus 
can be neglected should be modified to the ordering documents in relationships of a corpus can be neglected. 
For instance, a search term “network” would yield different topics if it occurs nearby to a term, such as comput-
er, traffic, artificial neural, or biological neural; and  hence, the order of in-relationship terms might be neg-
lected [46]. 

As we can see from the literature review and our arguments that there is a need to enhance search engines’ 
capabilities to reveal latent semantics in high-dimensional web data while preserving the relationship and order 
of term(s) or document(s). We proposed a novel algorithm called Latent Semantic Manifold (LSM), which iden-
tifies homogeneous groups in web data while preserving the spatial information about terms in a document or 
documents in the corpus. This paper aims to explain the Latent Semantic Manifold algorithm (from now on, 
LSM algorithm), its deployment, and performance evaluation. 

2. Methods 
This study consists of three key components: proposing and describing the LSM algorithm, its deployment, and 
evaluation. They are described in the following subsections. 

2.1. Algorithm 
The proposed LSM algorithm is based upon the concepts of probability and topology, which identifies the latent-
semantic in data. Figure 1 and Table 1 provide the high-level view of the algorithm. The concepts deployed in 
the LSM algorithm are explained in the following four steps. 

Step 1 (Identifying relevant fragment from the user query generated documents): A user can enter a query using 
a search engine, which generates a set of documents. The relevant fragments (paragraphs in the LSM) are identi-
fied from the generated documents. The identification of the fragments is handled by the “document preprocess-
sor” of the search engine, which typically normalizes the document stream to a predefined format, breaks the 
document stream into desired retrievable unit, and isolates and metatags subdocument pieces. 

Step 2 (Recognizing named-entity and constructing heterogeneous manifold): It is crucial to extract significant 
“terms” from the fragments (identified in Step 1) to construct heterogeneous manifolds. Notably, we can extract 
various types of terms with a large number of training documents. However, extracting different types of terms 
and calculating their marginal and conditional probabilities is highly computation-intensive [47]-[51]. Therefore, 
we stick to identifying nouns (words or phrases) or named-entities in the LSM framework. Hidden Markov Mod- 
els (HMMs) are often used for part-of-speech tagging and sequential labeling [52] [53]. Yet, in the last decade, 
discriminative linear chain Conditional Random Field (CRF) models have been used for tagging and sequential 
labeling of features in the corpus because of its advantages over the HMMs [54]-[56]. The primary advantage of 
CRFs over HMMs is their conditional nature. A CRF is a simple framework for labeling and segmenting data that  
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Figure 1. Illustration of LSM algorithm.                                                                                    
 
models a conditional distribution P(z|x) by selecting the label sequence z, a named category, to label a novel ob-
servation sequence x with an associated undirected graph structure that obeys the Markov property. When  
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Table 1. LSM algorithm that construct semantic manifold.                                                                                                                           

Algorithm 

Require: A collection of returned documents from a search query. 
Ensure: A collection of semantic manifolds. 

Step 1 Perform feature extractions using discriminative linear chain Conditional Random Field method to generate  
named entities. 

Step 2 Construct a manifold from the set of named entities generated from the document collection. 

Step 3 

Classify the manifold into isomorphic (homogeneous) categories by using the Graph-based Tree-width Decomposition 
algorithm starting from a fixed dimension local manifold. 
Require: { }1 2, , , Nt tV t=   is the vertex set of named entities that each ti is associated with its named categories 
equipped with a weighted probability. 
Ensure: { }1 2, , , nM M M M=   is the set of isomorphic semantic manifolds. 

where { }No is a subset of ,i ij ij ikM M M M j k= ≠ . 

Step 3.1 
Let a semantic topic set: { }1 2, , , mC Z Z Z=  . Let G = (V, E) be the undirected connected graph generated 
from the returned documents. 

Step 3.2 

Given a tree-width d, find a semantic manifold Mj generated from single named entities for each semantic 
category zi initially in which |Mj| = d and the semantic mapping ( )ijf M C∈  with a probability

( ) [ ], 0,1ij kP M z ∈ , and quantity ( )ij kf M z=  

Step 3.3 Perform graph decompositions on G starting from Mj. 

 
conditioned on the observations that are given in a particular observation sequence, the CRF defines a single 
log-linear distribution over the labeled sequence. The CRF model does not need explicitly to present the depen-
dencies of input variables x affording the use of rich and global features of the input, thus allows relaxation of 
the strong independence assumptions required by HMMs in order to ensure tractable inference. The relation-
ships among these named-entities construct a complex structure called a heterogeneous manifold. 

The named-entities are indicated with their marginal probabilities, and the correlations among named-entities 
are indicated with their conditional probabilities. For example, the jaguar is considered as a named-entity, and it is 
assigned to the animal or vehicle type depending on the overall context of the fragment. The named-entities are 
indicated with their marginal probabilities, and the correlations among the named-entities are indicated with their 
conditional probabilities. As illustrated in Figure 2, Jaguar is a named-entity with three possible types-animal, 
vehicle, and instrument. It has marginal probabilities, such as Panimal (Jaguar), Pvehicle (Jaguar), and Pinstru-
ment (Jaguar). Likewise, it has conditional probabilities, such as P (Jaguar, Car|Vehicle), P (Jaguar, Motor-
cycle|Vehicle). 

Step 3 (Decomposing a heterogeneous manifold into homogeneous manifolds): As mentioned in Step 2, the he- 
terogeneous manifold consists of a complex structure of named-entities, including estimates of marginal and con- 
ditional probabilities. A collection of fragment vectors lies on the heterogeneous manifolds, which contains some 
local spaces resembling Euclidean spaces of a fixed number of dimensions. Every point of the n-dimensional he- 
terogeneous manifold has a neighborhood homeomorphic to the n-dimensional Euclidean space Rn. In addition, 
all the points in the local spaces are strongly connected. As the heterogeneous manifold is overly complex, and 
the semantic is latent in local spaces; thus, instead of retaining just one heterogeneous manifold, we break it into a 
collection of homogeneous manifolds. The topological and geometrical concepts can be used to represent the la- 
tent semantics of a heterogeneous manifold as a collection of homogeneous manifolds. A Graph-based Tree-width 
Decomposition algorithm is used to decompose a heterogeneous manifold into a collection of homogeneous ma- 
nifolds [57]. As shown in Figure 3, assuming Jaguar as the heterogeneous manifold, we can decompose it into 
three homogeneous manifolds bounded by dotted lines in three different colors. In the Graph-based Tree-width 
Decomposition algorithm, we start selecting a random fixed dimension local manifold to be a separator as shown 
in Figure 4 [58]. Afterward, the local manifold is decomposed into two local manifolds that are not adjacent. This 
decomposition is recursive until no further decomposition is possible. We can express the above concept formally,  
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Figure 2. An example to demonstrate named-entities, its types, and associated 
marginal and conditional probabilities.                                                              

 

 
Figure 3. An example to demonstrate Graph-based Tree-width Decomposition.                                                              

 

 
Figure 4. An example to demonstrate the concept of separator under Graph-based 
Tree-width decomposition.                                                              
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let a heterogeneous manifold Mi for fragmenti be the set of homogeneous manifolds, such that  

{ }No is a subset of ,i ij ij ikM M M M j k= ≠ . The semantics generated from fragment homogeneous manifolds  

are independent. In addition, a semantic topic set { }1 2, , , mC Z Z Z=  . of the returned documents is associated  
with semantic mapping ( )ijf M C∈  with a probability ( ) [ ], 0,1ij kP M z ∈ , and quantity ( )ij kf M z= . The  

probabilities indicate the number of documents that are relevant to a homogeneous manifold and match the user’s 
intent. To induce homogeneous manifolds, it is crucial to extract significant terms from fragments. In addition, we 
should demonstrate the relevance of each fragment to the homogeneous manifold. The users can refer only ho-
mogeneous manifold associated fragments, which they want. 

Step 4 (Exploring the homogeneous manifolds): The relevant fragments cluster around their related homoge-
neous manifolds. For instance, a user query for the term APC, the fragments have aggregated into a collection of 
homogeneous manifolds as shown in Figure 5. Each fragment is assigned to a particular homogeneous mani-
fold. 

2.2. Deployment of the LSM Algorithm 
The LSM algorithm was deployed to develop a search tool. A team of three researchers including an expert in 
the Java programming language developed the tool using the Eclipse Software Development Kit. The LSM tool 
was used for two years at two places in Taiwan: 1) Taipei Medical University Library, Taipei; and 2) Biomedi-
cal Engineering Laboratory, Institute of Biomedical Engineering, National Taiwan University, Taipei. The 
members of the library and lab used the LSM tool to perform semantic searches in the PubMed database. 

2.3. Performance Evaluation of the LSM Algorithm 
Data sets: Two data sets, Reuters-21578-Distribution-1 and OHSUMED, were used to evaluate the performance  
 

 
Figure 5. An example to demonstrate heterogeneous manifold, homogeneous manifolds and documents associated with ho-
mogeneous manifolds.                                                                                                                           
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of the LSM algorithm. The Reuters-21578-Distribution-1 is a standard benchmark for the text categorization, 
which consists of Newswire articles classified into 135 topics [59]. In our tests, the documents with multiple 
topics (category labels) and single topic were separated. The topics that had less than five documents were re-
moved. Table 2 shows the summary of the Reuters-21578-Distribution-1 collection. OHSUMED is clinically 
oriented a Medline collection consisting of 348,566 references. It covers all the references from 270 medical 
journals belonging to 23 disease categories over a five-year period (1987-1991) [60]. 

Evaluation criteria: Effectiveness and efficiency were measured as an experimental evaluation of the LSM 
algorithm. Effectiveness is defined as the ability to identify the right cluster (collection of documents). As 
shown in Table 3, the generated clusters were verified by human experts to measure the effectiveness. The three 
measures of the effectiveness (Precision, Recall, and Fβ ) were calculated using the contingency in Table 3. 
Precision and Recall are respectively defined as follows: 

Precision i
i

i i

TP
TP FP

=
+

 

Recall i
i

i i

TP
TP FN

=
+

 

Moreover, Fβ  measure, which combines Precision and Recall, is defined as follows: 

( )2

2

1 Precision Recall

Precision Recall
i i

i i

Fβ

β

β

+ × ×
=

× +
 

1F  measure is used in this paper, which is obtained assigning β  to be 1, which means that precision and re-
call have equal weight in evaluating the performance. In case, many categories are generated and compared, the 
overall precision and recall are calculated as the average of all precisions and recalls belonging to various catego-
ries. F1 is calculated as the mean of all results, which is a macro-average of the categories. 

In addition, two other evaluation metrics, Normalized Mutual Information (NMI) and overall F-measure, were 
also used [61]-[63]. Given the two sets of topics C and Cl, let C denote the topic set defined by experts, and Cl 
denotes the topic set generated by a clustering method, and both derived from the same corpora X. Let N(X) de-
note the number of total documents; N(z, X) denotes the number of documents in topic z; and N(z, z', X) denotes 
the number of documents both in topic z and topic z', for any topics in C. The Normalized Mutual Information 
metric MI(C, C') is defined as: 

( ) ( ) ( )
( ) ( )2

,

,
, , Log

z C z C

P Z Z
MI C C P Z Z

P Z P Z′ ′∈ ∈

′ 
′ ′=   ′ 

∑  

where ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

, , , ,
, , and ,

N z X N z X N Z Z X
P z P z P z z

N X N X N X
′ ′

′ ′= = =  

 
Table 2. Statistics of reuters-21,578 corpora.                                                                                                                           

Statistics Number of topics Number of documents Documents on a topic 

Origin 135 21,578 0 - 3945 

Single topic 65 8649 1 - 3945 

Single topic (≥5 documents) 51 9494 5 - 3945 

 
Table 3. Contingency table for category (ci, where i = natural number)a.                                                              

Category Clustering results 

 Yes No 

Expert 
Judgment 

Yes iTP  iFN  

No iFP  iTN  
aTP: True Positive; FP: False Positive; FN: False Negative; TN: True Negative. 
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The Normalized Mutual Information metric MI(C, C') will return a value between zero and 
( ) ( )( )max ,H C H C′ , where H(C) and H(C') define the entropies of C and C' respectively. A higher ( ),MI C C′  

value means that two topics are almost identical, whereas a lower value indicates the independence of topics. 
Therefore, the Normalized Mutual Information metric ( ),MI C C′  is 

( ) ( )
( ) ( )( )

,
,

max ,
MI C C

MI C C
H C H C

′
′ =

′
 

Let iF  be an F-measure for each cluster iZ  defined above. The overall F-measure can be defined as 

( ) ( )* max ,
z Cz C

F P z F Z Z
∈′ ′∈

′ ′= ×∑  

where F(z, z') calculates the F-measure between z and z'. 
Efficiency is the clustering time for a search query with a fixed number of features for each clustering scheme, 

where features set is fixed. 
Experiments: The experiments were conducted using Reuters-21578-Distribution-1 and OHSUMED data sets. 

The clusters ranging from two to ten topics were randomly selected to evaluate the LSM with other clustering 
methods. For each clustering method, each test run was conducted on a selected topic, and Normalized Mutual 
Information of the topic and its corresponding cluster was calculated. After conducting fifty test runs on a fixed 
number of k’s topics, where 2 10k≤ ≤ , the final performance scores were obtained by averaging mutual in- 
formation measures from these 50 test runs [61]. The t-test assessed whether homogeneous clusters generated by 
the two methods (LSM vs. other methods) were statistically different from each other as shown in Table 4 and 
Figure 6 in the result section. We also calculated the overall F-measure in combination of arbitrary k clusters by 
uniquely assigning to topics from the Reuters-21578-Distribution-1 data set where k was 3, 15, 30, and 60 [64]. 
Fifty test-runs were also performed using these LSM results to compare Frequent Itemset-based Hierarchical 
Clustering (FIHC) and bisecting k-means as shown Table 5 and Figure 7 in the Result section [64] [65].  

 
Table 4. Normalized Mutual Information comparison of LSM algorithm with other sixteen methods using Reuters-21578- 
Distribution-1 datasetb.                                                                                                                           

k 2 3 4 5 6 7 8 9 10 Average 

LSM 0.461 0.505 0.622 0.686 0.714 0.792 0.893 0.884 0.9 0.717 

CCF 0.569 0.563 0.607 0.62 0.605 0.624 0.633 0.647 0.676 0.616 

GMM 0.475 0.468 0.462 0.516 0.551 0.522 0.551 0.557 0.548 0.517 
NB 0.466 0.348 0.401 0.405 0.409 0.404 0.435 0.411 0.418 0.411 

GMM + DFM 0.47 0.466 0.45 0.513 0.531 0.506 0.535 0.535 0.536 0.505 
KM 0.404 0.402 0.461 0.525 0.561 0.548 0.583 0.597 0.618 0.522 

KM-NC 0.438 0.462 0.525 0.554 0.592 0.577 0.594 0.607 0.618 0.552 
SKM 0.458 0.407 0.499 0.561 0.567 0.558 0.591 0.598 0.619 0.54 

SKM-NCW 0.434 0.423 0.515 0.556 0.577 0.563 0.593 0.602 0.612 0.542 
BP-NCW 0.391 0.377 0.431 0.478 0.493 0.5 0.519 0.529 0.532 0.472 

AA 0.443 0.415 0.488 0.531 0.571 0.542 0.587 0.594 0.611 0.531 

NC 0.484 0.461 0.555 0.592 0.617 0.594 0.64 0.634 0.643 0.58 

RC 0.417 0.381 0.505 0.46 0.485 0.456 0.548 0.484 0.495 0.47 

NMF 0.48 0.426 0.498 0.559 0.591 0.552 0.603 0.601 0.623 0.548 
NMF-NCW 0.494 0.5 0.586 0.615 0.637 0.613 0.654 0.659 0.658 0.602 

CF 0.48 0.429 0.503 0.563 0.592 0.556 0.613 0.609 0.629 0.553 
CF-NCW 0.496 0.505 0.595 0.616 0.644 0.615 0.66 0.66 0.665 0.606 

bLSM: Latent semantic manifold; CCF-k: clique community finding algorithm; GMM: Gaussian mixture model; NB: Naive Bayes clustering; GMM 
+ DFM: Gaussian mixture model followed by the iterative cluster refinement method; KM: Traditional k-means; KM-NCL Traditional k-means and 
spectral clustering algorithm based on normalized cut criterion; SKM: Spherical k-means; SKM-NCW: Normalized-cut weighted form; BP-NCW: 
Spectral clustering based bipartite normalized cut; AA: Average association criterion; NC: Normalized cut criterion; RC: Spectral clustering based on 
ratio cut criterion; NMF: Non-negative matrix factorization; NMF-NCW: Nonnegative Matrix Factorization-based clustering; CF: Concept factoriza-
tion; CF-NCW: Clustering by concept factorization. 
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Table 5. Precision, recall, overall F-measure, and Normalized Mutual Information (NMI) of Latent Semantic Manifold on 
Reuters-21578-Distribution-1 dataset.                                                                                                                           

k 2 3 4 5 6 7 8 9 10 

Precision 0.9845 0.9579 0.9385 0.9352 0.8909 0.9013 0.9148 0.8913 0.8859 

Recall 0.7085 0.6384 0.6453 0.6056 0.5916 0.6543 0.6822 0.6688 0.6805 

Overall F-measure 0.7988 0.7297 0.7399 0.6986 0.6822 0.7329 0.7562 0.7343 0.7472 

NMI 0.4617 0.5051 0.6221 0.6866 0.7148 0.7925 0.8936 0.8848 0.9006 

 

 
Figure 6. Mutual information values of 2 to 10 clusters built by LSM algorithm and other sixteen methods using Reu-
ters-21578-Distribution-1 datasetsc. c. LSM: Latent semantic manifold; GMM-Gaussian mixture model; NB: Naive Bayes 
clustering; GMM + DFM: Gaussian mixture model followed by the iterative cluster refinement method; KM: Traditional 
k-means; KM-NC: Traditional k-means and spectral clustering algorithm based on normalized cut criterion; SKM: Spherical 
k-means; SKM-NCW: Normalized-cut weighted form; BP-NCW: Spectral clustering based bipartite normalized cut; AA: 
Average association criterion; NC: Normalized cut criterion; RC: Spectral clustering based on ratio cut criterion NMF: 
Non-negative matrix factorization; NMF: NCW-Nonnegative Matrix Factorization-based clustering; CF: Concept factoriza-
tion; CF-NCW: Clustering by concept factorization; CCF: k-clique community finding algorithm.                                                              

 
The average precision, recall, overall F-measure, and Normalized Mutual Information of LSM, LST, PLSI, PLSI 
+ AdaBoost, LDA, and CCF were evaluated using the Reuters-21578-Distribution-1 data set; and LSM, LST, 
and CCF were evaluated on an OHSUMED data set, as shown in Table 6, in the Result section [44] [66]-[69]. 
Besides the effectiveness, the efficiency tests of LSM, LST, and CCF were performed as shown in Figure 8 in 
the Result section. 

3. Results 
Normalized Mutual Information comparison of the LSM algorithm with the other sixteen methods using Reu-
ters-21578-Distribution-1 data setis shown in Table 4 and Figure 6 [61] [69]-[71]. The four metrics (precision, 
recall, overall F-measure, and Normalized Mutual Information) of LSM that used Reuters-21578-Distribution-1 
data set for different k are listed in Table 5. In addition, the overall F-measure is compared with FIHC and bi-
secting k-means as shown in Figure 7. The average precision, recall, overall F-measure, and Normalized Mutual 
Information of 1) LSM, LST, PLSI, LDA, and CCF, which used Reuters-21578-Distribution-1 data set; 2) LSM, 
LST and CCF, which used OHSUMED data set are shown in Table 6. The efficiency tests results of the three 
methods, LSM, LST, and CCF, are shown in Figure 8. 
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Figure 7. Overall F-measure of three methods, LSM, FIHC, and bisecting k-means, on Reuters-21578-Distribution-1 data set, 
where k (x-axis) is 3, 15, 30, 60 clusters.                                                                                                                           
 

 
Figure 8. Efficiency of three clustering methods, wherein x-axis is the number of features and y-axis is run time in millise-
conds (LSM: Latent semantic manifold; LST: Latent Semantic Topology; CCF: k-Clique Community Finding).                                                              
 
Table 6. The average precision, recall, overall F-measure, and Normalized Mutual Information (NMI) of LSM, LST, PLSI, 
PLSI + AdaBoost, LDA, and CCF on Reuters-21578-Distribution-1 dataset; and LSM, LST and CCF on OHSUMEDd.                                                              

Dataset Method Precision Recall Overall F-measure NMI 

Reuters 

LSM 0.81 0.773 0.786 0.717 

LST 0.779 0.745 0.754 0.633 

PLSI 0.649 0.627 0.636 0.54 

PLSI + AdaBoost 0.772 0.812 0.697 N/A 

LDA 0.66 0.714 0.686 0.61 

CCF 0.727 0.73 0.723 0.616 

OHSUMED 

LSM 0.59 0.479 0.522 0.315 

LST 0.586 0.388 0.456 0.257 

CCF 0.514 0.54 0.513 0.214 
dLSM: Latent semantic manifold; LST: Latent semantic topology; PLSI: Probabilistic latent semantic indexing; PLSI + AdaBoost: Probabilistic latent 
semantic indexing + additive boosting methods; LDA: Latent Dirichlet allocation; CCF: k-clique community finding algorithm. 

http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
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4. Discussion 
Our findings suggest that the LSM algorithm, which can discover the latent semantics in high-dimensional web 
data, might play an instrumental role in enhancing the search engine functionality. LSM carries out searches 
based on both keywords and meaning, which can assist researchers to perform semantic searches on databases. 
For example, a researcher can search APC with Adenomatous Polyposis Coli as his or her intended meaning in 
the PubMed database (the output of a user queried term APC is shown in Figure 9). 

APC can also have other meanings, such as Antigen-Presenting Cells, Anaphase Promoting Complex, or 
Activated Protein C. Suppose, in a homogeneous manifold, we find APC, Colorectal Cancer, and gene-related 
documents are assembled, the homogeneous manifoldwould point out the meaning of APC as Adenomatous 
Polyposis Gene. Similarly, suppose APC, Major Histocompatibility Complex, and T-cells-related documents are 
assembled, it would indicate the meaning of APC as Antigen Presenting Cells. Figure 9 shows that documents 
returned from the queried term APC can automatically associate to various homogeneous manifolds (semantic 
topics). In addition, the researcher can obtain a different vantage point based on the underlying data. For exam-
ple, a search for the medical term NOD2 that was performed within the PubMed database retrieved almost 300 
abstracts of published or in-press articles (Figure 10 shows latent semantic topics as a clustering result). 

According to the result, inflammatory bowel disease and its type (Crohn’s disease and ulcerative colitis) are 
associated with gene NOD2. The term NOD2 was found to be evenly spread over these three topics-inflamma- 
tory bowel disease, Crohn’s disease, and ulcerative colitis. Some evolving topics, such as the bacterial compo-
nent were also discovered. However, the result was different when we searched NOD2 on Genia Corpus (Figure 
11) which supports the argument the researcher can obtain a different meaningful vantage point based on the 
underlying data, using the “same” LSM algorithm [72]. 

We can see that results (Figure 10 and Figure 11) are meaningfully structured with a possibility of semantic 
navigation in both databases. This indicates that the generalization capability of the LSM algorithm. We used 
concepts of topology in designing LSM algorithm. LSM has shown much better performance than the other six-
teen clustering methods, especially when the number of clusters gets larger (Table 4 and Table 5, and Figure 6 
and Figure 7). In general, we found that LSM could produce more accurate results than others could. We used 
paired t-test to assess the clustering results of the same topics by any two methods-LSM, LST, and CCF. The 
results of LSM were significantly better than the results of LST where we used 63 clusters in the experiments  

 

 
Figure 9. Result of query term, APC.                                                                                                 
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Figure 10. Clustering result of the query term, NOD2, retrieved from PubMed.                                                 
 

 
Figure 11. Clustering result of the query term, NOD2, retrieved from Genia Corpus.                                                  
 
(p-value < 0.05) (Table 6). Similarly, with a p-value less than 0.05, the results of LSM were significantly better 
than the results of the CCF in 48 randomly selected clusters out of 72 (Table 6). The efficiency evaluation of 
three methods, LSM, LST, and CCF, demonstrated that LSM performed better than the others did. In the case of 
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LSM, the time needed to build a latent semantic manifold does not increase significantly when the data became 
larger (Figure 8). 

Limitation and future studies: This study has a few limitations that open up the scope of future studies. First, 
to identify and discriminate the correct topics in the collection of documents, a combination of features and their 
co-occurring relationships serve as clues, and probabilities display their significance. All features in documents 
comprise a topological probabilistic manifold, associate to probabilistic measures, and denote the underlying 
structure. This complex structure is decomposed into inseparable components at various levels (in various levels 
of skeletons) so that each component corresponds to topics in the collection of documents. This process is a 
computation-intensive and time-consuming, which strongly depend on features and their identifications (named- 
entities). Second, some terms with similar meanings, such as anticipate, believe, estimate, expect, intend, and 
project, were separated into independent topics. Likewise, some terms were repeatedly specified in many topics. 
These issues might be addressed by utilizing thesauri and some other adaptive methods [73]. Third, some tools, 
such as MedEvi, EBIMed, MEDIE, PubNet, GoPubMed, Argo, and Vivisimo, also perform a latent semantic 
search in high dimensional web data [23]-[33]. However, in this study, we did not compare LSM algorithm 
based tool with others. Some further study is needed to compare the LSM algorithm based tool with already ex-
isting tools to find a space of synergy. Fourth, in this study, the evaluation was carried out mainly by comparing 
with other latent semantic indexing (LSI) algorithms. However, many alternative approaches for searching, 
clustering, and categorization exist. Further study is needed to compare this approach with alternatives. Fifth, 
there are some already existing knowledge bases or resources in the biomedical domain, such as MeSH (Medical 
Subject Headings) [74] [75]. Some studies are needed to verify whether LSM algorithm based tool might be 
adapted to the existing knowledge bases or resources. 

5. Conclusion 
We found that the LSM algorithm can discover the latent semantics in high-dimensional web data and can or-
ganize them into several semantic topics. This algorithm can be used to enhance the functionality of currently 
available search engines. 
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