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ABSTRACT 

The 2-series eicosanoids are structurally related lipid-soluble hormones synthesized by cyclooxygenase enzymes from 
arachidonic acid. These compounds have well-established roles in the inflammatory response and the coagulation cas-
cade. More recently, the eicosanoids have garnered attention for their potential roles in cancers of the lung, colon, breast, 
and brain. In this paper, we review the contributions of the different cyclooxygenase metabolites (i.e. prostaglandins, 
prostacyclins and thromboxanes) to cancer development, progression and recurrence, with special attention paid to their 
relevance to glioma biology. Our review suggests that 2-series eicosanoids merit further study as possible targets for 
therapy in patients with glioma. 
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1. Introduction 

Despite advances in surgical technique, available chemo- 
therapies, and radiation therapy, the prognosis for pa- 
tients diagnosed with a glioma remains grim. Median 
survival for patients with glioblastoma treated with ag-
gressive multi-modality therapy is fourteen months [1]. 
While significant attention has been given to the genetic 
changes that underlie gliomagenesis, recent work has 
also focused on the importance of signalling within the 
tumor milieu and intratumoural communication in glio- 
ma development, progression and recurrence. In this re- 
view, we will focus on eicosanoid signalling and its pos- 
sible role in glioma biology. 

Eicosanoid signaling has long been a therapeutic target 
in inflammatory conditions. More recent research has 
delineated a role for eicosanoids in the development and 
progression of multiple cancers, including those of the 
breast [2], lung [3], colon [4], kidney [5], prostate [6] and 
brain [7]. Eicosanoids have been proposed to activate 
oncogenes [8] and the epithelial-to-mesenchymal transi-
tion (EMT) [9], to inhibit tumor suppressor genes [10], to 
participate in tumor cell evasion of the immune response 
[3], and to initiate angiogenesis [4]. In Table 1, we high-
light the known roles of the 2-series eicosanoids in CNS 
and systemic cancers.  

Eicosanoid synthesis begins with phospholipase A2, 
which releases arachidonic acid (AA) from membrane- 

bound phospholipids. AA is subsequently converted to 
prostaglandin H2 (PGH2) by the cyclooxygenase enzymes 
(COX-1, COX-2 and COX-3), which are also known as 
prostaglandin H synthase (PGHS) [11]. PGH2 subse-
quently serves for the substrate for the 2-series eicosa- 
noids, a group of compounds that includes prostagland- 
ins-D2 (PGD2), E2 (PGE2), F2α (PGF2α), and J2 (PGJ2)- 
prostacyclin (PGI2) and thromboxane (TxA2) (Figure 1). 
Owing to their inherently unstable chemical structure, 
eicosanoids decay rapidly and are thus only able to me- 
diate local (i.e. paracrine or autocrine) signaling. The 
2-series eicosanoids signal in one of two ways: they ei-
ther activate a G protein-coupled receptor (GPCR) [3]— 
which in turn affects the levels of second messengers like 
cyclic adenosine monophosphate (cAMP) or calcium 
(Ca2+)—or bind to nuclear receptors that alter DNA 
transcription [12,13]. Given the diverse roles of eico-
sanoids in human disease, there has been significant re-
search in developing new drugs that can modulate eico-
sanoid signaling in a selective manner. 

Gliomas represent a unique therapeutic challenge in 
part because they are chemically isolated from the rest of 
the body. In the context of cancer therapy, the blood- 
brain barrier (BBB) is a significant obstacle as it can 
prevent chemotherapeutic agents that are active in the 
periphery from achieving therapeutic concentrations in 
the CNS. The drug tamoxifen, for example, is an agent 
that is profoundly effective in the treatment of metastatic 
breast cancer, but that has limited efficacy against brain  *Corresponding author. 
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Table 1. Reported associations of eicosanoids in tumor biology. 

 Systemic Cancers Central Nervous System Cancers 

PGD2 

 Potential for protection against colorectal cancer  
development [35] 

 Anti-proliferative effects on glioma cells and induction  
of apoptosis [36] 

 Loss of lipocalin-type PGDS in malignant transformation  
of GBM [36] 

 PKC regulates L-PGDS expression in medulloblastoma cells [38]

PGE2 

 Production regulated by Wnt/β-catenin signaling [2] 
 PGE2 mediates NR4A2-dependent 5-fluorouracil 

resistance [63] 
 FoxP3+ Treg induction [19] 
 VEGF-dependent angiogenesis[4]  
 hTERT induction [71] 
 EP4-Rap-dependent migration [5]  
 Antagonism of PTEN tumor-suppressor [10] 

 Suppression of host immune response in glioma and  
glioblastoma [73-74]  

 PKC-dependent PGE2 synthesis drives glioblastoma  
migration [80]  

 Induction of Bax-dependent apoptosis in GBM [81] 
 mPGES-1-dependent growth promotion via PKA signaling [78] 
 EP1- and EP3-dependent cancer proliferation in  

medulloblastoma cells [82] 

PGF2α 
 Potential marker for breast and bladder cancer  

progression [88] 
 Induction of angiogenesis via Ras/Raf, Tcf and CYR61 [93]  

PGI2  Potential protective effect against lung cancer [96]  
 Induction of inward Ca2+ currents upon stimulation by 

angiotensin [101] 

PGJ2 

 MEK/ERK-dependent chaperone induction and 
tumor suppression [12]  

 Antagonism of LIF-dependent and HIF2α/IRP1-dependent
stem cell phenotypes [47]  

 Activation of p38 and p42/p44 MAPK pathways  
(osteosarcoma) [48] 

 Induction of apoptosis in lung cancer cells [49] 
 Suppression of breast cancer proliferation by EGR1  

induction [51]  

 Anti-proliferative effects [55] on glioma cells and  
ROS-dependent induction of apoptosis [56] 

TxA2 
 Potential role as therapeutic target in lung cancer [105] 
 Interaction with RhoA in prostate cancer progression [6]  

 Overproduction of IL-6 in astrocytoma cells via p38 MAPK  
and PKA pathways [107]  

 Cerebral edema dependent on RhoA activity [108] 
 TXAS expression correlates with resistance to chemotherapy  

[111] and radiotherapy [110]  

 
metastases because it is excluded from the CNS by the 
BBB[14]. Due to their lipid-soluble structure, derivatives 
of 2-series eicosanoids have the potential to cross the 
BBB and overcome this problem. In the following sec-
tions, we discuss the signaling pathways associated with 
COX and each of the 2-series eicosanoids, and compare 
their roles in systemic cancers and glioma. In Table 2, 
we list pharmacologic agents that have been used to tar- 
get different eicosanoid pathways. 

1.1. Role of COX in Systemic Cancers 

Early studies recognized that growth factors, tumor pro-
moters, and oncogenes all induce prostaglandin synthesis 
[15]. More recent studies have demonstrated that COX-2 
has an important role in cancer generation and progres-
sion, but that the role of prostaglandins varies in a tu-
mor-specific manner. Analysis of normal and neoplastic 
human breast tissue samples has shown that COX-2 ex-
pression correlates with expression of oncogenes such as 
HER-2/neu [16]. COX-2 may also contribute to drug 
resistance in MCF-7 breast cancer cells via concomitant 
effects on the phosphoinositide-3-kinase (PI3K)/Akt, mi- 
togen-activated protein kinase (MAPK), epidermal grow- 
th factor receptor (EGFR), and matrix metalloproteinase- 

2(MMP2) and -9(MMP9) pathways [8]. For example, 
pharmacologic inhibition of COX-2 decreased invasive- 
ness of MDA-MB-231 human breast cancer cells by 
preventing MMP2 release [17]. Furthermore, transgenic 
loss of COX-2 delayed tumor progression in a mouse 
mammary epithelial cell model of breast cancer. These 
effects were driven by COX-2 genetic deletion, which 
resulted in an enhanced host immune response, and could 
be overcome by providing exogenous PGE2 (a product of 
COX-2 activity) [18]. 

Tumor-induced immune modulation is similarly rele-
vant incolon cancer, where inhibition of the COX-2/ 
PGE2 pathway decreases the levels of FoxP3+ regulatory 
T cells (Tregs) and results in an enhanced antitumor im-
mune response [19]. Long-term COX-2 inhibition also 
appears to have protective benefits against non-small cell 
lung [20] and colon [21] cancers, suggesting a more gen-
eral role for COX-2 in immune surveillance against neo-
plastic cells.  

The role of COX-2 in tumor biology appears to extend 
beyond the immune response. COX-2 inhibitors can in-
duce the expression of tumor-suppressors such as MAGI1 
[22] in colorectal cancer cells (SW480 and HCT116) and 
15-hydroxyprostaglandin deh drogenase (15-PGDH) in  y 
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Figure 1. The 2-Eicosanoid signaling family. 

 
colon (HT29), lung (A549) and glioblastoma (T98G) 
cancer cells [23]. In addition, COX-2 has a direct effect 
on cell proliferation and survival in SGC-7901 and AGS 
gastric cancer cells [24]. In HepG2 human hepatocellular 
carcinoma cells, COX-2 inhibition also results in de-
creased expression of the drug efflux pumps P-glyco- 
protein and MRP1 [25]. Thus, COX-2 inhibitors might 
render tumor cells more sensitive to chemotherapy. Fur-
ther, in HepG2 cells, COX-2 inhibition with nonsteroidal 
anti-inflammatory drugs (NSAIDs) can induce apoptosis 
through oxidative stress and mitochondrial toxicity [26]. 

The pro-apoptotic effect of COX-2 inhibition on hepa-
tocellular carcinoma cells does not, however, hold true 
for all cancers. Treatment with NSAIDs appeared to pro-
tect U937 human hematopoietic cancer cells from apop-

tosis [27]. Furthermore, it is not universally true that 
COX-2 expression correlates with cell proliferation. In a 
T24 bladder cancer cell model of interstitial cystitis, 
anti-proliferative factor (APF) inhibits cell proliferation 
by decreasing β-catenin expression, which results in in-
creased COX-2 expression [28]. The data from T24 cells 
provides the first example of a cancer cell line where 
increased COX-2 expression is associated with decreased 
proliferation. This observation stands in stark contrast to 
the cases of breast and colon cancers previously dis-
cussed where COX-2 activity drives cellular prolifera-
tion. 

1.2. Role of COX in Glioma 

B oth COX-1 and COX-2 are expressed in glioma cells,  
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Table 2. Therapeutic modulation of eicosanoid signaling. 

 
Signal Transduction 
Molecule 

Associated Signal  
Transduction Cascades 

Agonists Antagonists 

COX-1 N/A N/A SC560 [112]  

 

COX-2 N/A 
12-O-tetradecanoylphorbol-13-acetate 
(TPA) [9] [inducer] 

Celecoxib [9,22,72], NS398 [112], 
Rofecoxib [67,113], SC-236 [4] 

H-PGDS N/A N/A 
HQL-79 [114,115], TAS-204 [116], 
TFC-007 [117] 

DP1 
Gαs/cAMP/PKA; 
ERK 
MAPK/RSK1/CREB 

BW245C[32] 
BWA868C [32], Laropiprant [117], 
S5751 [118] 

PGD2 

DP2 Gαi/Ca2+/PI3K DKPGD2[32] Cay104459 [118] 

EP1 Gαq/Ca2+/PKC 
17-phenyl-2-trinor PGE2 [72], Misoprostol [119],
ONO-DI-004 [112,120], Sulprostone  [3] 

AH6809 [3,67,121,122],  
ONO-8713 [72,112,120],  
SC-19220 [119] 

EP2 Gαs/cAMP/PKA 

AH13205 [123], Butaprost [58,123],  
Misoprostol [119],  
ONO-AE1-259-01 [112,120,123],  
CP-544326/PF-04217329 [123] 

AH6809 [3,67,121,122] 

EP3 Gαi; PLCγ; mTOR 
Misoprostol [119], ONO-AE-248 [112,120],  
Sulprostone [58] 

AH6809, L798106 [119],  
ONO-AE3-240 [112,124] 

PGE2 

EP4 Gαs/cAMP/PKA; Rap 
Misoprostol [119], PGE1–OH [3,59],  
ONO-AE1-329 [112,120] 

AH23848 [67,122],  
ONO-AE3-208 [59,112,120], 
L161982 [119] 

PGF2α FP 
Gαq/Ca2+/PKC;  
MEK/ERK/CREB 

Fluprostenol [112,125], Latanoprost [123],  
latanoprost acid [126], bimatoprost acid [126],  
bimatoprost [126], tafluprost acid [126] 

AL8810 [125] 

PGIS N/A N/A U51605 [95] 

IP Gαs/cAMP/PKA 
Beraprost [122], Carbaprostacyclin [95,127],  
Cicaprost [128], Epoprostenol [129-130],  
Iloprost [122,131], Treprostonil [122,132] 

CAY10441 [127],  
RO1138452 [122,128] 

PGI2 

PPARδ N/A GW501516 [95] N/A 

DP2 See PGD2 section 

PGJ2 

PPARγ N/A 
Ciglitazone [133-135], Pioglitazone [136],  
Rosiglitazone [134,137,138] 

GW9662 [44,136,139],  
T0070907 [48,134,135]  

TXAS N/A N/A 
BM-573 [140], Furegrelate 
[110,111,141], Ozagrel [142] 

TxA2 

TP Gαq/Ca2+/PLC U46619 [104,143,144] 
BM-573 [140], ICI192605 [143],  
SQ29548 [32,145], Terutroban [146], 
TM30089 [117] 

 
and expression levels of COX-2 increase with glioma 
grade [29]. COX-2 expression has been found to corre-
late negatively with survival in human astrocytomas and 
can thus be considered a poor prognostic indicator [29]. 
A phase II study of temozolomide, thalidomide and cele- 
coxib combination therapy in glioblastoma patients un- 
fortunately failed to demonstrate a statistically significant 
improvement in patient survival [30]. One reason why 
this study may not have shown a survival benefit is that 
patients did not receive temozolomide during radiother- 
apy, which is now considered the standard of care. It 
remains to be determined whether the combination of 
temozolomide, concomitant radiation therapy and a pro- 
staglandin signaling modulator would confer a survival 
benefit over the current standard-of-care. 

2. PGD2 Signaling 

PGD2 is derived from PGH2 via the action of pros- 
taglandin D synthases (PGDS), of which there are lipo- 
calin (L-PGDS) and hematopoietic (H-PGDS) subtypes. 
L-PGDS shares a structural homology with other mem- 
bers of the lipocalin family, which are extracellular pro- 
teins that bind to a lipophilic substrate. Interestingly, 
H-PGDS is a sigma-class glutathione transferase [31], 
suggesting that PGD2 synthesis could be regulated by 
environmental oxidative stress through depletion of glu-
tathione (GSH). PGD2 can either signal directly by bind-
ing to its cognate receptor or by being converted to PGJ2, 
the actions of which will be discussed later. PGD2 sig- 
naling is mediated by two receptors: DP1 (or DP) and  
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DP2 (also called CRTH2), which are both GPCRs. DP1 
initiates a Gαs/cAMP/protein kinase A (PKA) cascade, 
while DP2 signals through Gαi proteins that mobilize 
Ca2+ store and actives PI3K [32]. 

2.1. PGD2 in Systemic Cancers 

In mice implanted with Lewis lung cancer cells, admini-
stration of a synthetic DP1 agonist impairs angiogenesis 
[33]. PGD2 appears to inhibit prostate cancer cell prolif-
eration in tumors expressing aldoketoreductase 1C3 
(AKR1C3, also called 17β-hydroxysteroid dehydroge- 
nase (17β-HSD) type 5) [34]. Likewise, a study of tu-
mor-prone ApcMin/+ mice showed that high levels of H- 
PGDS can suppress colon tumorigenesis [35]. Together, 
these observations establish PGD2 as a tumor-suppress- 
ing molecule that could be exploited as an anti-cancer 
and anti-angiogenesis therapeutic. 

2.2. PGD2 in Glioma 

PGD2 has long been known to inhibit cell proliferation in 
glioma cell lines (NCE-G 2,3,7,8,17) in vitro [7]. More 
recently, loss of L-PGDS expression was found to be a 
defining event in the progression of Grade II to Grade III 
astrocytomas; further, PDGS expression was noted to 
vary inversely with survival across all glioma grades [36]. 
Treatment of A172 glioma cells in culture with PGD2 

inhibits cell proliferation and induces apoptosis; these 
effects were amplified by concomitant inhibition of 
COX-2 [36]. Interestingly, PKC, which is driver of EMT 
[37], activates PGDS in TE671 medulloblastoma cells 
[38]. Thus, the effect of PGD2 appears to be tumor-spe- 
cific even among tumors of the CNS. Regardless, these 
findings establish a potential role for exogenous PGD2 
analogues in the treatment of glioma. 

3. PGJ2 Signaling 

15-deoxy-Δ12,14-prostaglandin J2 (15-d-PGJ2) is pro-
duced in vivo by the metabolism of PGD2. 15-d-PGJ2 
signals via the DP2 and PPARγ receptors, but also has 
direct effects on glycolytic enzymes, molecular chaper- 
ones and cytoskeletal proteins in neuronal membranes 
[39,40]. An unusual aspect of 15-d-PGJ2 signaling is its 
ability to signal by redox reactions. 15-d-PGJ2 induces 
Akt and Nrf2 signaling by forming a covalent adduct 
with GSH [41]. This does not appear to be an isolated 
phenomenon, but a normal process in 15-d-PGJ2 signal- 
ing. In addition, 15-d-PGJ2 oxidizes p38 at cysteine resi- 
dues near the protein surface resulting inp38 inactivation 
[42]. Similarly, Δ12-PGJ2 reacts with human serum albu- 
min to form a covalent adduct with histidine-146, a reac- 
tion which chemically stabilizes the bound prostaglandin 
[43]. 

3.1. PGJ2 in Systemic Cancers 

Of all the prostaglandins, PGJ2 exerts the broadest range 
of effects in cancer, echoing its biochemical diversity. 
15-d-PGJ2 induces expression of the tumor suppressor, 
HtrA3, in 786-O and RCC4 renal cell carcinoma lines 
through a mechanism dependent on MEK/ERK signaling, 
but not PPARγ [12]. 15-d-PGJ2 also augments the anti- 
tumor activity of the alkylating agent, camptothecin, 
against Caki-2 renal cell carcinoma cellsin a manner in-
dependent of topoisomerase-II and PPARγ signaling 
pathways [44]. 

In addition to its effect on tumor suppressor pathways, 
15-d-PGJ targets molecular drivers of stem cell identity 
and proliferation. In 786-O cells, 15-d-PGJ2 inhibits ex-
pression of hypoxia-inducible factor 2α (HIF2α)—which 
has been implicated in modulating cancer stem cell iden-
tity [45]—by binding to iron regulatory protein-1 (IRP1) 
[46]. In a mouse model, 15-d-PGJ2 inhibited proliferation 
of embryonic stem cells by antagonizing the leukemia 
inhibitory factor (LIF)-Tyk2-Stat3 signal transduction 
pathway [47].  

Moreover, 15-d-PGJ2 signaling appears to modulate 
cell survival and apoptosis pathways in multiple cancer 
types.15-d-PGJ2 signaling induces expression of EGFR 
and COX-2 in MG-63 osteosarcoma cells via reactive 
oxygen species (ROS) and the p38 and p42/p44 MAPK 
pathways [48]. On the one hand, PGJ2-dependent in-
flammation and induction of EGFR could promote can-
cer genesis and survival. Conversely, ROS formation by 
15-d-PGJ2 has been shown to induce apoptosis in A549 
lung cancer cells [49] and synergistically enhance histone 
deacetylase inhibitor-driven apoptosis in DLD-1 colon 
cancer cells [50]. In MCF-7 breast cancer cells, 15-d- 
PGJ2 activates a Ca2+-ERK1/2 signal transduction cas-
cade that increases levels of the transcription factor, 
EGR1, which acts as an inhibitor of breast cancer cell 
proliferation [51]. EGR1 is also a positive regulator of 
the tumor suppressor gene, PTEN [52]. In MCF-7 cancer 
cells, 15-d-PGJ2 also reacts with GSH to form a 15-d- 
PGJ2-GSH conjugate, which subsequently activates Akt 
and Nrf2 and results in MRP1-dependent export of the 
15-d-PGJ2-GSH molecules [41]. Depletion of the intra-
cellular GSH pool is in turn believed to trigger apoptosis, 
while relatively moderate depletion of GSH stores is 
thought to augment adaptation of cancer cells to external 
stresses. This mechanism suggests that one could exploit 
the anti-cancer effects of 15-d-PGJ2 by concomitant ad-
ministration of selective inhibitors of MRP1. 

Studies examining the function of 15-d-PGJ2 in normal 
cells have revealed other novel effects of this molecule 
on cellular physiology that could be relevant to human 
disease and cancer therapy. For example, 15-d-PGJ2 sig-
naling has been found to modulate CRM1 transporter- 
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dependent nuclear protein export [53]. Altering traffick-
ing between the nucleus and cytosol using modulators of 
15-d-PGJ2 signaling could be used to perturb the actions 
of oncogenes by limiting their access to their nuclear tar- 
gets. Also interesting, in murine cell lines 15-d-PGJ2 sig- 
naling inhibits mitochondrial fission activities, which 
leads to subsequent remodeling of mitochondrial proteins 
[54] and results in increased ROS formation. Conceiva- 
bly, 15-d-PGJ2 signaling could be used to therapeutically 
trigger apoptosis in malignant cells. 

3.2. PGJ2 in Glioma 

Like PGD2, Δ
12-PGJ2 alters the morphology of C6BU-1 

rat glioma cells and substantially slows their proliferation 
[55]. Furthermore, 15-d-PGJ2 has been shown to induce 
caspase-independent apoptosis in human A172 glioma 
cells through ROS formation and mitochondrial damage 
[56]. Curiously, 15-d-PGJ2 was found to protect rat C6 
glioma cells from methylmercury toxicity-precisely by 
preventing damage to the mitochondrial membrane [57]. 
Further study is needed to determine under what circum-
stances PGJ2 signaling is cytotoxic or cytoprotectivebe-
fore modulators of PGJ2 signaling can be considered for 
treatment of human gliomas. 

4. PGE2 Signaling 

PGE2 signals through four receptors—EP1, EP2, EP3 
and EP4—which are all GPCRs. EP2 and EP4 are linked 
to Gαs and activate a cAMP/PKA pathway, EP1 is 
thought to be linked to Gαq, and EP3 to Gαi

3. EP3 also 
appears to be linked to PLCγ signaling [58]. Not surpris-
ingly, PGE2 has the most diverse physiologic effects of 
any of the prostaglandins. Its activities include effects on 
the inflammatory response, lipid metabolism, tumori- 
genesis, neurotransmission (via GABA and dopamine), 
and B cell survival [59]. 

4.1. PGE2 in Systemic Cancers 

Inhibitors of PGE2 synthesis, such as curcumin, are being 
tested in clinical trials as agents for cancer prevention. 
Phase IIa studies have shown that curcumin can prevent 
the formation of aberrant crypt foci in the colon, which 
are thought to precede development of colon cancer [60]. 

Treatment of the human colon cancer cell line HT-29 
with epinephrine stimulated cell proliferation and in-
creased PGE2 synthesis and release, which in turn in-
creased vascular endothelial growth factor (VEGF) se-
cretion (likely via EP4 signaling [61]) and MMP9 activ-
ity4. Protein kinase CK2 and the Wnt/β-catenin pathway 
also activate production of PGE2, with subsequent pro-
liferation of human colon (HT29-US and DLD-1) and 
breast (ZR-75) cancer cells. In addition to its effects as a 

promoter of cell proliferation and angiogenesis in colon 
cancer, PGE2 has also been shown to help colon cancer 
cells evade the immune response and advantageously 
alter their energy metabolism. In LS-174T and HCT-116 
colon cancer cells, PGE2 signaling activates the nuclear 
orphan receptor NR4A2, which increases fatty acid oxi-
dation as an alternative fuel source to glucose [62]. This 
activity could promote tumor survival under conditions 
of starvation. Inhibition of PGE2 synthesis has also been 
associated with decreased incidence of colon cancer in 
murine studies and decreased levels of tumor-cell protec-
tive FoxP3+Tregs_ENREF_19 [19].  

Interestingly, NR4A2, under the regulation of PGE2, is 
involved in the development of drug resistance in human 
oral squamous cell carcinoma. In HSC3, HSC4, Ho-1- 
u-1 and Ca9-22 lines, PGE2 was shown to promote 5- 
fluorouracil resistance of EGFR-dependent tumors by 
induction of NR4A2 [63]. 

As in colon cancer, PGE2 is a stimulator of angiogene- 
sis in breast cancer. Apoptotic MCF-7 breast cancer cells 
were shown to signal via the sphingosine-1-phosphate 
(S1P) S1P1 and S1P3 receptors in order to induce PGE2 
production in macrophages. The activated macrophages 
then released PGE2, thereby triggering vascular endothe-
lial cell migration and subsequent angiogenesis in breast 
tumors [64]. As is the case in colon cancer, PGE2 also 
appears to plays a role in immune evasion in breast can- 
cer. PGE2 produced ad secreted by breast cancer cells 
suppresses NK cell function through activation of the 
EP4 receptor. PGE2 also induces expression of the onco- 
gene aromatase in breast adipose fibroblasts in a pathway 
that involves JunD and JunB [65]. Aromatase activity 
subsequently results in elevated levels of estradiol. This 
finding could explain why clinical studies have shown 
that COX-1 levels correlate with high levels of serum 
estradiol in patients with breast cancer [66]. In fact, 
therapeutic agents targeting the PGE2 signaling pathway 
have been studied as potential adjuncts for breast cancer 
treatment. The natural PGE2 antagnoists frondoside A 
(which inhibits EP2 and EP4 receptors) [67] and saponin 
(which also acts via an AMP-activated protein kinase 
pathway to inhibit COX-2) [68] have been shown to slow 
breast cancer progression and induce apoptosis in Balb/ 
cfC3H mouse and MCF-7 human breast cancer cells, re- 
spectively. 

Current understanding of the role of PGE2 in other 
cancer types is more fragmented, but several recent find-
ings are worth noting. PGE2 expression by blood mono-
nuclear cells induced by AsPC-1 and MiaPaCa-2 pancre-
atic cancer cell lines is critical to generate a supportive 
tumor microenvironment [69]. PGE2 has also been shown 
to induce the crucial oncogene telomerase (hTERT) in a 
signaling cascade dependent on EP4 and Sp1 in both 
lung (H1838 and H1792) [70] and cervical (HeLa, SiHa, 
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Caski) [71] cancer cell lines. In renal cell carcinoma cell 
lines (RCC7 and Caki-1), PGE2 stimulates tumor cell 
migration and invasion via the EP4-Rap pathway [5]. 
Microsomal prostaglandin E synthase-1 (mPGES-1) is 
known to inhibit the tumor suppressor protein phosphate 
and tensin homolog (PTEN), which supports biliary tract 
cancer progression [10]. This effect could be an exten-
sion of the normal function of EP1, which signals via 
Gαq, leading to Ca2+ mobilization [3] and PI3K activation, 
which directly antagonizes PTEN. A similar role for EP1 
signaling through Ca2+ mobilization has been postulated 
inthe development of melanoma [72]. Importantly, the 
biological effects of PGE2 signaling on cancer progres-
sion do not appear to be isolated from one another; rather, 
they appear to be related by a more fundamental process, 
the EMT. Vaid et al. demonstrated that natural products 
isolated from grape seeds can reverse EMT in melanoma 
cell lines (A375 and Hs294) and that this effect was du-
plicated by inhibiting PGE2 with celecoxib [9]. Thus, one 
can conclude that PGE2 signaling affects all the essential 
processes of tumor generation and malignant progres-
sion–from antagonizing tumor suppressor genes and ac-
tivating oncogenes, to stimulating immune system eva-
sion, angiogenesis, cell migration and the EMT. 

4.2. PGE2 in Glioma 

As in colon cancer, PGE2 released by glioma cells has an 
inhibitory effect on host immunity. Release of PGE2 by 
glioblastoma cells decreases induction and cytotoxicity 
of anti-tumor lymphocytes [73]. PGE2 secretion by MG- 
377 glioblastoma cells can also stimulate CD11c+ den-
dritic cells to induce CD4+Tregs, which again results in 
suppression of the host immune response [74]. It also 
appears that human U251 and T98G glioblastoma cells 
secrete soluble factors that drive macrophages to produce 
PGE2 [75]. In an induced glioma mouse model, blockade 
of systemic PGE2 synthesis using COX-2 inhibitors or 
knock-out of COX-2 suppressed gliomagenesis, possibly 
due to an increase in host immune surveillance [76]. In-
terestingly, macrophages that are capable of killing T9 
rat glioma cells are resistant to the immunosuppressive 
effects of PGE2 [77]. 

The role of PGE2 inglioma biology extends beyond its 
effects as an immunomodulator. In U87-MG glioma 
xenografts, mPGES-1 drives tumor cell proliferation and 
tumor growth via activation of type II PKA [78], which 
in turn inhibits ERK and increases CREB transcriptional 
activity [79]. This mechanism mirrors the inhibitory ef-
fect of mPGES-1on PTEN seen in biliary tract cancers 
[10].There also seems to be a role for PGE2 in glioma 
cell invasion via its activation of PKC [80]. 

Thus far, it appears that PGE2 signaling almost uni-
versally drives cancer proliferation and migration, but 

this may not uniformly be the case. In one study, PGE2 
was found to induce Bax-dependent apoptosis in primary 
glioblastoma cells, and patients expressing a high level of 
mPGES-1 were found longer survival times than those 
with low levels of mPGES-1 [81]. In principle, this trend 
could be explained by pro-apoptotic PGE2 signaling 
through the EP4 receptor [59]. Whereas the EP4 receptor 
may mediate the clinically important effects of PGE2 in 
gliomas, in medulloblastoma it appears that the EP1 and 
EP3 receptors are more crucial. Specifically, EP1 and 
EP3 drive proliferation of medulloblastoma cells [82]. 
These differing roles of PGE2 in different cancers and 
contexts speak to the intricacy of prostaglandin signaling, 
and how development of prostaglandin-based therapies 
will require an appreciation of this complexity. 

Finally, these observations suggest that EP1 and EP3 
modulators could provide a novel means of treating 
gliomas by augmenting the host anti-tumor immune re-
sponse, similar to the use of ipilimumab in the treatment 
of metastatic melanoma [83]. 

5. PGF2α Signaling 

In humans, aldoketoreductase (AKR) 1B1 is the primary 
enzyme that produces PGF2α from PGH2 [84], while 
AKR1C3 plays a minor role in PGF2α synthesis [34]. The 
PGF2α receptor FP is a GPCR linked to Gαq, which af-
fects Ca2+ homeostasis and regulates smooth muscle cell 
contraction, most notably in the intestines [85] and uterus 
[86]. PGF2α analogues (e.g. latanoprost) are also used 
clinically to lower intraocular pressure in the treatment of 
glaucoma [87]. 

5.1. PGF2α in Systemic Cancers 

The PGF2α metabolite 8-isoPGF2α has been found to be a 
reliable marker of cancer progression in a rat breast can-
cer model [88]. Levels of 8-isoPGF2α have also been 
monitored to track cellular damage associated with renal 
oxidative stress [89] and bladder obstruction [90] ,which 
are considered risk factors for the development of renal 
cell and uroepithelial cancers, respectively. 

5.2. PGF2α in Glioma 

In NG108-15 hybrid neuroblastoma-glioma cells, PGF2α 
(and also PGD2 and PGE2) raises intracellular Ca2+ levels 
via a cGMP-dependent mechanism [91]. Since these 
early studies, very little attention has been given to the 
role of PGF2α in CNS cancers. The few described effects 
of PGF2α in glioblastoma have focused on its roleon tu-
mor-associated vasculature. Glioma cells appear to syn-
thesize high levels of both PGF2α and TxA2, but the dis-
proportionate increase in TxA2 synthesis over PGF2α 
synthesis is believed to contribute to the changes seen in 
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vascular permeability and the resulting cerebral edema 
[92]. It appears that PGF2α signaling is also involved in 
the remodeling of cerebral vascular architecture: in 
SV40-transfected microglial cells, PGF2α acts via a 
Ras/Raf- and Tcf-pathway dependent to increase produc-
tion of the CYR61 protein [93], which induces physio- 
logic angiogenesis in the corpus luteum [94].Thus, build-
ing on the work of Kesari et al. [30], modulators of 
PGF2α signaling might be good targets as angiogenesis 
inhibitors in the treatment of glioblastoma multiforme. 

6. PGI2 Signaling 

PGI2 is synthesized in vascular endothelial cells by pro- 
stacyclin synthase (PGIS) through the catalysis of PGH2. 
The PGI2 receptor (IP) is a rhodopsin-like GPCR that 
signals via Gαs to activate cAMP synthesis. PGI2 may 
also signal through Gαq, Gαi and the PPARδ pathways 
[13]. A recent mouse model has shown that maternal 
PGI2 signaling through fetal PPARδ is key for blastocyst 
hatching and subsequent implantation [95]. 

6.1. PGI2 in Systemic Cancers 

The PGI2 analogue iloprost has been investigated as a 
potential agent for lung cancer prevention. A phase II 
placebo-controlled randomized study showed that ilo-
prost significantly reduced dysplasia in lung tissue biop-
sies obtained from former smokers [96]. Whether PGI2 
signaling levels have a meaningful effect on cancer sur-
vival remains unclear. An observational study of patients 
in Ireland with various forms of lung cancer showed that 
overall PGI2 synthase (PGIS) expression was decreased 
in lung cancer, but PGIS expression levels did not corre-
late with survival [97]. On the other hand, a recent case 
study showed that a patient with lung cancer treated with 
iloprost showed no evidence of cancer progression in the 
absence of conventional chemotherapy [98]. 

6.2. PGI2 in Glioma 

The role of PGI2 signaling in gliomas is not well under-
stood. Many CNS tumors express endogenous PGI2 re-
ceptors (IP). PGI2 signaling results in cAMP and cGMP 
accumulation in N4TG3 murine neuroblastoma cells, but 
notin 1321N1 human astrocytoma cells [99]. Angiotensin 
is known to induce release of PGI2 from rat C6 glioma 
cells [100] and the IP receptor can generate inward Ca2+ 
currents in hybrid rodent NG108-15 glioma-neuroblas- 
toma cells [101]. Activation of the IP receptor, however, 
is subject to desensitization in response to prolonged 
stimulation in these cells [102]. Surprisingly, the IP re-
ceptor in NG108-15 cells does not activate the ERK1/2 
pathways, as would be expected from IP-driven cAMP 
production [103]. In these experiments, PI3K- and PKC- 

dependent currents were observed in CHO but not glio- 
ma cells. Further work is needed to determine whether 
PGI2 signaling has functional relevance in glioblastoma. 

7. TxA2 Signaling 

Thromboxane A2 (TxA2) is produced by the thrombox-
ane synthesis enzyme (TXAS) and signals via the TP 
receptor, a GPCR linked to Gαq. Like some of the other 
prostaglandin receptors, TP exerts its effects by mobiliz-
ing Ca2+ stores, most notably in the processes of coagula-
tion and regulation of vascular smooth muscle tone [104]. 

7.1. TxA2 in Systemic Cancers 

Binding of TxA2 to the TP receptor results in enhanced 
activity of the protein kinase C-related kinase (PRK)1. 
PRK1 signals downstream of RhoA and is implicated in 
the development and progression of prostate cancer [6]. 
Though not as extensively described as a therapeutic 
target as PGE2, TxA2 has shown promise for as a target 
for investigation in lung [105] and prostate [6] cancers. 

7.2. TxA2 in Glioma 

TxA2 synthesis is known to be elevated in gliomas, and 
increases with increasing tumor grade [106]. TxA2 sig-
naling results in CREB-dependent induction of IL-6 by 
human 1321N1 astrocytoma cells through activation of 
the p38 MAPK and PKA pathways [107]. Furthermore, 
TxA2 induces cell swelling in 1321N1 cells in a mecha-
nism dependent on Gαq, RhoA, the Na+/H+ exchange 
pump, and aquaporins [108]. Since aquaporins are known 
to be involved in migration and proliferation of human 
glioma cell lines (D54, D65, STTG1, U87, U251) [109], 
this discovery regarding the role of TxA2 in astrocytoma 
cells raises the question of whether TxA2 inhibition could 
be used to inhibit glioma invasion. Inhibition of TxA2 
signaling by blocking TXAS also renders glioma cells 
more sensitive to apoptosis when subjected to -radiation 
[110] or alkylating chemotherapy (U87 glioblastoma cells) 
[111]. Thus, inhibition of TxA2 signaling may be a valu- 
able adjunct to radiation therapy in glioma. 

8. Conclusion 

The 2-series eicosanoids have diverse roles in the biol-
ogy of systemic cancers and glioma. These effects vary 
drastically in a cancer- and context-specific manner. The 
list of cancer cell processes affected by prostaglandin 
signaling is impressive and includes modulation of the 
immune system, induction of the EMT, modulation of 
tumor cell migration and invasion, changes in the cell 
metabolic state, and alterations in the balance between 
oncogene and tumor-suppressor activity. New therapies 
based on eicosanoid biology could provide valuable 
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therapies to currently intractable cancers. One possible 
strategy would be to combine the purported anti-prolif- 
erative and pro-apoptotic effects of PGD2, PGI2 and PGJ2 
while inhibiting the oncogenic effects of the other 2-se- 
ries eicosanoids. Our current knowledge suggests that the 
2-series eicosanoids merit further study as possible thera- 
peutic targets in patients with glioblastoma and other 
cancers. 
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