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Abstract 
Real-time anomaly detection of massive data streams is an important research 
topic nowadays due to the fact that a lot of data is generated in continuous 
temporal processes. There is a broad research area, covering mathematical, 
statistical, information theory methodologies for anomaly detection. It ad-
dresses various problems in a lot of domains such as health, education, 
finance, government, etc. In this paper, we analyze the state-of-the-art of data 
streams anomaly detection techniques and algorithms for anomaly detection 
in data streams (time series data). Critically surveying the techniques’ per-
formances under the challenge of real-time anomaly detection of massive 
high-velocity streams, we conclude that the modeling of the normal behavior 
of the stream is a suitable approach. We evaluate Holt-Winters (HW), Tay-
lor’s Double Holt-Winters (TDHW), Hierarchical temporal memory (HTM), 
Moving Average (MA), Autoregressive integrated moving average (ARIMA) 
forecasting models, etc. Holt-Winters (HW) and Taylor’s Double Holt-Winters 
(TDHW) forecasting models are used to predict the normal behavior of the 
periodic streams, and to detect anomalies when the deviations of observed 
and predicted values exceeded some predefined measures. In this work, we 
propose an enhancement of this approach and give a short description about 
the algorithms and then they are categorized by type of prediction as: predic-
tive and non-predictive algorithms. We implement the Genetic Algorithm 
(GA) to periodically optimize HW and TDHW smoothing parameters in ad-
dition to the two sliding windows parameters that improve Hyndman’s 
MASE measure of deviation, and value of the threshold parameter that de-
fines no anomaly confidence interval [1]. We also propose a new optimiza-
tion function based on the input training datasets with the annotated anoma-
ly intervals, in order to detect the right anomalies and minimize the number 
of false ones. The proposed method is evaluated on the known anomaly de-
tection benchmarks NUMENTA and Yahoo datasets with annotated anoma-
lies and real log data generated by the National education information system 

How to cite this paper: Hasani, Z. and 
Krrabaj, S. (2019) Survey and Proposal of 
an Adaptive Anomaly Detection Algorithm 
for Periodic Data Streams. Journal of 
Computer and Communications, 7, 33-55. 
https://doi.org/10.4236/jcc.2019.78004 
 
Received: July 10, 2019 
Accepted: August 26, 2019 
Published: August 29, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2019.78004
http://www.scirp.org
https://doi.org/10.4236/jcc.2019.78004
http://creativecommons.org/licenses/by/4.0/


Z. Hasani, S. Krrabaj 
 

 

DOI: 10.4236/jcc.2019.78004 34 Journal of Computer and Communications 
 

(NEIS)1 in Macedonia. 
 

Keywords 
Anomaly Detection, Periodic Time Series, HOLT Winters Algorithm, Genetic 
Algorithm GA, MASE, HTM 

 

1. Introduction 

Anomaly detection in real-time massive data streams (practically infinite flow 
of data, pouring in as time goes, each piece of data having its own timestamp) 
is one of the important research topics nowadays due to the fact that the most 
of the world data generation is a continuous temporal process. Many sophisti-
cated and highly effective anomaly detection methods exist that run-in batch 
mode, where the data is collected and processed after the occurrence. Howev-
er, identifying anomalies long after they happened isn’t our primary goal. On 
the contrary, real-time data processing, requests continual input, time-critical 
manner processing, and instant output (e.g. alarm) if anomaly happened. In-
stead of searching for the unknown anomalies we can, in advance, model a 
normal behavior of the data stream and compare it to the observed one. Con-
sequently, predicting the values of a stream one-time step ahead are used, the 
deviation between the predicted values and the observed values are measured, 
and a decision mechanism, if an observed value exceeds normal behavior, is 
established. Yet other questions arise. The real-time streams are infinite, can 
have a high rate of data appearance in time unite (high volume, high velocity) 
and can evolve over time. Thus, the development of the model of normal be-
havior must adapt to these challenges to maintain detection accuracy: be itera-
tive, use only a part of the stream (even before it is permanently stored), and 
be implemented as a positive feedback in the learning process (e.g. repeated 
anomalies labeling in the supervised process). Due to the need for the 
real-time detection process, detection algorithms have to be robust, with low 
processing time (low complexity), even at the cost of the accuracy. Currently, 
the most intensively developed anomaly detection methods that consider un-
derlined challenges are based on machine learning, neural networks, predictive 
and statistical time series forecasting models. 

In this paper, we are interested in anomaly detection of real data streams that 
have seasonal patterns. There are a number of studies in this area. The most 
adequate and often used models are Moving Average (MA) [2], the AutoRegres-
sive Moving Average (ARMA) and AutoRegressive Integrated Moving Average 
(ARIMA) [2], exponential smoothing algorithms HW [3] and TDHW [4], Hie-
rarchical Temporal Memory (HTM) [5] algorithm and sliding windows [6] [7]. 

However, our work brings several benefits [1]: 
• Review and classification of existing literature for anomaly detection;  

 

 

1http://ednevnik.edu.mk/. 
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• From all the reviewed literature for anomaly detection, we assessed methods 
and algorithms for anomaly detection in data streams (time series) which are 
proper and capable to respond to the challenges that massive data streams 
and real-time detection have;  

• We propose an enhancement of the additive HW and TDHW algorithms 
that answers the stated challenges. The algorithm is implemented as a posi-
tive feedback optimization with a periodic adaptation of the algorithm para-
meters; 

• Starting with ideas of numerous papers [4] [7]-[13], we use the GA optimiza-
tion process, to optimize α, β, γ, ω, the HW and TDHW smoothing parame-
ters, where we added optimization of the three new parameters k, n and δ; 

• Improvement is made in the new definition of the optimization function 
based on the input training datasets with the annotated anomaly intervals, 
enhanced Hyndman’s MASE [14] definition where k and n define the two 
sliding windows intervals, and δ is the threshold parameter; 

• The positive feedback learning process is achieved if the anomalies detected 
in the next time frame, by the proposed detection engine based on the com-
puted optimal parameters from the annotated anomalies of previous one, are 
verified/acknowledged by human and reused for parameter optimization; 

• The results of the experiments performed on the sets of synthetic and real data 
periodic streams show that our proposed HW algorithm, with GA optimized 
parameters and with improved MASE, outperforms the other algorithms.  

The data used for experiments are known as anomaly detection benchmarks 
NUMENTA [12] and Yahoo [15] datasets with annotated anomalies and our real 
log data from the Macedonian national education system e-dnevnik1.  

The rest of this paper has the following structure: in the second section is re-
lated work; in the third section proposed a model for real-time data streams 
anomaly detection is described, in the fourth section are the experimental re-
sults; and the last section contains conclusions and further work. 

2. Review and Classification of Methods for Anomaly  
Detection 

In this section, we have shown some algorithms used for anomaly detection clas-
sified by type of data, type of anomalies, application area, type of supervision 
and also is done classification of algorithms as predictive and non-predictive. 

In Figure 1 below is shown the classification which is done for anomaly de-
tection algorithms for different fields. 

2.1. Classification of Anomaly Detection Methods by Type of Data 

Kalinichenko et al., 2014 [2] categorize the data (and related methods) into three 
categories: the metric data, evolving data, and multi-structured data.  

The Metric Data  
The methods used are the distance between objects, the correlation between  
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Figure 1. Classification of anomaly detection methods. 

 
them, and the probabilistic distribution of data. Further subdivision is based on 
the notion of distance (clustering methods, K nearest neighbors and their deriv-
atives), based on the correlations (method of linear regression, PCA-Principal 
component analysis), data distributions, an iterative algorithm based on the 
maximum likelihood method, and methods related to the data with high dimen-
sion (methods of dimensionality reduction).  

The Evolving Data (Discrete Sequences Data and Time Series Data)  
The methods for Discrete Sequences Data are distance-based, frequency-based 

and Hidden Markov Model that measure the deviation of a specific value or 
whole sequence. In the survey [1], the methods are divided into three groups: 
sequence-based, contiguous subsequence-based and pattern-based. The first 
group includes Kernel Based Techniques, Window Based Techniques, Marko-
vian Techniques, contiguous subsequence methods include Window Scoring 
Techniques and Segmentation Based Techniques. Pattern-based methods in-
clude Substring Matching, Subsequence Matching, and Permutation Matching 
Techniques. For the category of Time series data, the methods that are used are 
based on well-developed apparatus of time series analysis, including predictive 
methods, Kalman Filtering, Autoregressive Modeling, detection of unusual 
shapes with the Haar transform and various statistic techniques. 

Multi-Structured Data  
The data are categorized into two categories: text data and graph data. The 

methods used for outlier detection in text data are LSA (Latent semantic analy-
sis) which makes it possible to group text, integrating it with the standard ano-
maly detection methods, and tf-idf measure. For graph data, the methods are 
Minimal Description Length principle, Bayesian Models, Markov Random Field, 
Ising Model, EM and LOF algorithm. 

2.2. Classification of Methods by Type of Anomalies 

Unlike previous authors, in their comparative research Chandola et al., 2009 [1] 
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and Pokrajac et al., 2008 [16] classify methodologies according to the type of 
anomaly (point, contextual, and collective anomaly).  

The widest range of methodologies is devoted to the simplest one, a point ano-
maly detection. These are classification methodologies, supervised, semi-supervised 
and unsupervised (based on the rules, neural networks and SVM), methodolo-
gies based on the nearest neighbor (density, distance, local outlier factor LOF), 
clustering (transformation of data multidimensional signals), statistical (para-
metric, nonparametric) methods based on the information theory, and statistical 
probability, spectral-based visualization and others. Contextual anomalies (also 
called conditional anomalies’2). Often occur in data such as time series [17] [18], 
and spatial data [19] and the choice of the methodologies is often associated with 
the application domain. Unlike point anomalies, for the contextual anomalies, 
there is not a wide range proposed methodology. They fall into two categories: 
using separate transformations to reduce the problem into a point anomaly de-
tection in a particular context, for example, the methodology illustrated in the 
[20] and predictive sequence and time series in methodologies (mostly regres-
sion-based techniques for time series). 

The collective anomaly occurs when the collection of instances deviates in re-
lation to other data. For example, an individual event in the computer system 
does not necessarily mean anomaly, but a certain sequence of events can mean a 
hacker attack. The collective anomaly may exist if the data are associated with 
certain relations. It is investigated in a series of data [21] [22], time series [23], 
graphs [24] and spatial data [19]. The discovery of collective anomalies is more 
complex in terms of point and contextual anomalies since it requires a separate 
examination of the structure. 

2.3. Classification of Methods by Application Area 

Due to the wide number of areas for anomaly detection, the authors of some 
comparative studies limited themselves to the comparison of methods and 
techniques of detection of anomalies by a separate research field, data type or 
application area. Thus Phua et al. 2004 [25], Dua and Du [26] Sreevidya et al., 
2014 [27], compare methods in the field of data mining, Chandola et al., 2009 
[3] methods for data type of discrete series, Gogoi et al., 2011 [28] and Ransh-
ous et al., 2013 [29], Lazarevic et al., 2003 [9] methods for detecting anomalies 
in networks, Zwietasch, 2014 [30] detection of anomalies in the log files, 
Viaene, 2014 [31] for selecting the best methodology in integrated manage-
ment. Significant comparative research is given by Gupta et al. 2014 [4], who 
from the perspective of IT researchers classify and compare the methodologies 
for anomaly detection in the temporal and spatial data, data streams and time 
series with reference to accounting and H/S features. In most of the compara-
tive studies, the authors discuss methodology advantages/disadvantages in 

 

 

2For the first time the term is mentioned in: Xiuyao Song, Mingxi Wu, Christopher Jermaine, Sanjay 
Ranka, Conditional Anomaly Detection, IEEE Transactions on Data and Knowledge Engineering, 
2006. 
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terms of the application field, the type of anomaly, the data characteristics, and 
computational complexity. 

2.4. Classification of Methods by Type of Supervision 

The other significant classification of methods is by type of supervision. A 
training data set is required by techniques which involve building an explicit 
predictive model. The labels associated with a data instance denote if that in-
stance is normal or an outlier. Based on the extent to which these labels are uti-
lized Chandola et al., 2009 [1], outlier detection techniques divide into the three 
categories: supervised, semi-supervised and unsupervised outlier detection tech-
niques.  

2.5. Review of Predictive and Not Predictive Algorithms for  
Real-Time Anomaly Detection in Massive Data Streams  
(Contextual Anomalies) 

Usually, authors of newly proposed algorithms for anomaly detection compare 
their results with the results of the state-of-the-art techniques (for example, LOF, 
k-NN), but often, they do not take into account a possibility of real-time detec-
tion in a huge amount of incoming data. The starting goal of this work was to 
evaluate different categories of algorithms, (we divided them into predictive and 
non-predictive (statistical) algorithms), for which we expected to be fast and 
with satisfactory detection rate (sensitivity-recall and precision [32] [33]) and so 
suitable for real-time anomaly detection of massive data streams.  

Several algorithms were explored, MAD, runMAD [34], Boxplot [35], Twitter 
ADVec [36], DBSCAN [37] [38], our proposal combination of runMAD and 
Boxplot, ARIMA [39], Moving Range Technique [40] [41], Statistical Control 
Chart Techniques [39], Moving Average [42], Hierarchical Temporal Memory 
(HTM), Holt-Winters and Taylor’s Double Seasonality Holt-Winters. 

Autoregressive (AR) and Moving Average (MA) forecasting models have 
been in existence since the early 1900s. Exponential Smoothing Methods, as a 
forecasting tool, are introduced in the 1950s. Detailed history, statistical 
theory, and classification depending on the time series characteristics can be 
found in [43].  

Following is a more detailed review of the research papers dealing with 
Holt-Winters and Taylor’s Double Seasonality Holt-Winters forecast modeling 
of normal data streams behavior. Papers are grouped in studies where HW and 
TDHW models are used for anomaly detection and their model parameters cal-
culated by exponential formula or decided experimentally [3] [44] [45], studies 
that deal with optimization of the model parameters for the best fitted forecast 
[4] [8] [9] [10] [46], parameter optimization are done using classical optimiza-
tion methods (e.g. using excel solver) [47] [48], or different metaheuristic algo-
rithms as GA [8] [9] [46], Particle Swarm (PS) [9], Artificial Bee Colony algo-
rithm (BEE) [4], Differential Evolution (DE) [48], Hill climber (HC) and Simu-
lated Annealing (SA) [9], etc. 
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J. Brutlag [44] for the first time in the 2000 year, used a model based on HW 
forecasting. He integrated it into the Cricket/RRDtool open source monitoring 
tools to detect automatically, in the real-time, aberrant behavior of the WebTV 
services streams. He proposed usage of the exponential formulas for calculation 
of the smoothing parameters. The anomaly is detected if the new observed data 
stream value yt falls outside the interval, determined by the measure of deviation 
dt for each time point in the seasonal cycle. Deviation dt is a weighted average of 
absolute deviation, updated via exponential smoothing (calculated with the same 
parameter γ as a sessional factor in HW). While perhaps not optimal, this solu-
tion was shown as a flexible, efficient, and effective tool for automatic detection. 
Authors in [3] implement the same idea in multiplicative HW forecasting mod-
el, as a part of a test platform that collects real IP flow, based on open source 
software Nfsen/RRDtool. Calculation of the parameters was as in [44]. They 
used Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) as 
suitable to compare different forecasting methods and Mean Absolute Percen-
tage Error (MAPE), to compare how a forecasting method suits forecasting dif-
ferent time series. In [45] author emphases the need of close examination of the 
stream behavior before choosing the forecast model: trend existence, characteri-
zation of single/multiple seasons, threshold determination concerning the im-
portance of a number of correct and false detections, and a number of detected 
anomalies in time unit to signal an alarm. 

Optimization of parameters in forecasting model is dating back to 1996 [8]. 
GA optimization is applied to determine HW smoothing parameters α, β, γ, in-
cluding variable s, a seasonality interval, and corresponding start-up values for 
level, trend, and seasonality, by minimizing the evaluation function forecasting 
Mean Square Error (MSE). As the forecasting task presented in this thesis did 
not require a great precision for the parameters and the start-up values, a binary 
GA (not a real-valued one) is used. Authors underline the great applicability of 
GA in such type of prediction tasks, especially when a large number of parame-
ters is required.  

Similarly to the previous paper, in the [46], optimization of HW parameters 
are done along with tuning of the GA initialization, population size, and cros-
sover probability, that enable the comparative study of the best accuracy predic-
tion (minimum value) of MAPE. The data used in this study are monthly data 
set for the total number of tourist arrivals in the ten years period. 

In some of the works, authors used classical non-linear optimization methods 
with constrained values of variables, to optimize HW parameters. In [47] au-
thors used the MS Excel Nonlinear Solver, a spreadsheet-based non-linear opti-
mizer, to find the values of the smoothing parameters, together with an initial 
forecast that minimize a measure of forecast error MAD or MSE. A detailed de-
scription is given to avoid problems reported by several other authors. Similar 
work is given in [48] where spreadsheet modeling of additive and multiplicative 
HW is given to identify optimal smoothing parameters by minimizing MSE with 
MS Excel Nonlinear Solver and DE heuristics. 
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In Ashraf [4] authors improved prediction accuracy MSE by employing Ar-
tificial Bee Colony algorithm to optimize smoothing parameters of the multip-
licative multi sessional HW forecasting model. Cloud workload with mul-
ti-seasonal cycle’s data stream is forecasted to scale in advance computational 
resources. Performance of the proposed algorithm has been evaluated with 
double and triple exponential smoothing methods using MAPE and RMSE. 

In [9] authors optimize α, β, γ, δ, smoothing parameters, φ damped parameter 
and λ adjustment for the first-order autocorrelation error, of the multiplicative 
double seasonality and additive damped trend forecast HW. They compare the 
results of minimization of the sum of squared errors equation (SSE) by several 
meta-heuristic methods: local improved procedure HC and SA, Evolutionary 
Algorithms (EA), GA, PS. Optimization is implemented in MATLAB for Portu-
guese three months electricity demand stream of data. The conclusion is that the 
values obtained for the forecasting equation’s parameters using different me-
ta-heuristic algorithms were similar as well as the post-sample forecasting per-
formance which suggests that HC algorithm for its simplicity is a good solution. 

In [10] authors use PS metaheuristic minimizing the Residual Standard Error 
(RSE), Sum of Squared Errors (SSE), Mean of Squared Errors (MSE) or Mean 
Absolute Deviation (MAD) to determine optimal smoothing parameters of the 
additive Holt model. The direction of the exchange rate and the actual exchange 
rate values for the Dollar-Peso and Euro-Peso is accurately forecasted.  

In [7] work is interesting due to proposed ideas of optimization of the sliding 
time windows that defines set of time legs used to build various forecasting me-
thods and also define the number of the model inputs, using the Genetic and 
Evolutionary Algorithms (GEA) with a real-valued representative.  

Ideas for using metaheuristic optimization of parameters of similar forecast-
ing models exist. In [49], Seasonal Autoregressive Integrated Moving Average 
SARIMA forecasting model parameters are optimized by GA. In [11], authors 
compared slightly modified HW (that instead of using the time intervals imme-
diately before the analyzed ones for the forecasting calculation, used the time in-
tervals that are equal to the current and relating to the prior seasonal cycle), with 
the Ant Colony Optimization (ACO) cluster model. 

For more details about the suitable algorithms and their classification are giv-
en in the following section.  

3. Methods 

Next are presented the algorithms which are used to compare the proposed me-
thod and are shown the proposed method [1]. 

3.1. Algorithms for Anomaly Detection in Real-Time Massive Data  
Streams 

Suitable to the need for the real-time alarm and semi-supervised or unsupervised 
procedures for massive streaming data anomaly detection, algorithms have to be 
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robust with low processing time, eventually at the cost of the accuracy. 
The studied algorithms we categorize into two classes: 
1) Non-predictive, statistical (Boxplot, DBSCAN, MAD); 
2) Predictive (HTM, ARIMA, HW, TDHW). 
We choose to analyze algorithms with rather low computational complexity 

runMAD [34], Twitter ADVec [36], Boxplot [35], Moving range technique [40] 
[41], Statistical Control Charts [39], ARIMA [39], Moving Average [42], 
DBSCAN [37] [38], HTM [5], HW [45] and TDHW [43]. All of them we im-
plement in R language [50] except HTM, which is already implemented in NAB 
environment [12].   

DBSCAN algorithm is a density-based clustering algorithm. It works by gree-
dily agglomerating points that are close to each other. Outliers are considered 
clusters with few points in them [38]. This algorithm has two main parts: a pa-
rameter ε that specifies a distance threshold under which two points are consi-
dered to be close; and the minimum number of points that have to be within a 
point’s ε-radius before that point can start agglomerating.  

The Tukey (1977) BoxPlot does not make any distribution assumptions nor 
does it depend on a mean or standard deviation. The lower quartile (q1-the 25th 
percentile), and the upper quartile (q3-the 75th percentile) of the data define the 
inter-quartile range (IQR) and lines (whiskers) are indicating variability outside 
the upper and lower limits (9th and 91st percentile or 1.5 IQR over and below 
IQR defining anomalies. 

RunMAD3 (Median Absolute Deviation of Moving Windows) for streaming 
data is the median of the absolute deviations from the data’s median for the de-
fined window. As such does not make any distribution assumptions. Similar 
window functions are runmin, runmax, runmed, runquartile, etc. Depending on 
the stringency of the researcher’s criteria, which should be defined and justified 
by the researcher, the author [51] proposes the values of k = 3 (very conserva-
tive), k = 2.5 (moderate conservative) or even k = 2 (poor conservative) for 
anomaly detection that are outside Median ± k*MAD.  

Twitter ADVec [36] proposed by Twitter is composed of different algo-
rithms. The primary algorithm, Seasonal Hybrid ESD (S-H-ESD), builds upon 
the Generalized ESD test for detecting anomalies. S-H-ESD can be used to 
detect both global and local anomalies. This is achieved by employing time se-
ries decomposition and using robust statistical metrics, viz., median together 
with ESD. In addition, for long time series such as 6 months of minute data, 
the algorithm employs piecewise approximation. This is rooted in the fact that 
trend extraction in the presence of anomalies is non-trivial for anomaly detec-
tion.  

Statistical control chart technique [39] is a graph used to study how a process 
changes over time and control of repetitive processes. In general, the chart has a 
central line that represents the mean value of the in-control process and the oth-
er two lines, the upper control limit, and the lower control limit. These control 

 

 

3http://svitsrv25.epfl.ch/R-doc/library/caTools/html/runmad.html. 
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limits are chosen so that almost all the data points will fall within these limits as 
long as the process remains in control. Data could be a chart of individual data, 
aggregated by a time parameter (e.g. hour), moving range, moving average and 
others. 

In statistics and econometrics, and in particular in time series analysis, an 
autoregressive integrated moving average (ARIMA) model is a generalization 
of an autoregressive moving average (ARMA) model. Both of these models are 
fitted to time series data either to better understand the data or to predict fu-
ture points in the series (forecasting) Moving average. In time series analysis, 
the moving average (MA) model is a common approach for modeling univa-
riate time series. Together with the autoregressive (AR) model, the mov-
ing-average model is a special case and key component of the more general 
ARMA and ARIMA models of time series, which have a more complicated 
stochastic structure.  

Hierarchical Temporal Memory (HTM) [5] is a machine learning algorithm 
based on the input stream and prediction of the next value. Raw anomaly score 
that measures the deviation between the model’s predicted input and the actual 
input is calculated. The distribution is modeled as a rolling normal distribution 
where the sample mean and variance are continuously updated from previous 
anomaly scores. The recent short-term average of anomaly scores is using to ap-
ply as mean to the Gaussian tail probability to decide whether to declare an 
anomaly. HTM can robustly detect anomalies in a variety of conditions. The re-
sulting system is efficient, extremely tolerant to noisy data, continually adapts to 
changes in the statistics of the data, and detects very subtle anomalies while mi-
nimizing false positives.  

3.2. The Adaptive Algorithm for Anomaly Detection 

In Figure 2, the positive feedback optimization method for continuous adapta-
tion of the anomaly detection parameters is shown. The method is composed of 
four different stages [1].  
 

 
Figure 2. Model for a proposed method for anomaly detection [1]. 
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First is the annotation of the anomalies in the training dataset. The anomaly 
annotation is defined as a time interval where an anomaly is located. The anno-
tation is done by a human or an oracle.  

The second stage is the computation of anomaly detection parameters for our 
algorithm using GAs, i.e. computation of HW or TDHW parameters, together 
with δ, k and n. GAs have been successfully applied to solve optimization prob-
lems, both for continuous (whether differentiable or not) and discrete functions” 
[14]. This enables us to find near-optimal values of the anomaly detection para-
meters very successfully. 

The third stage is the actual anomaly detection engine based on the computed 
optimal parameters from the second stage. This stage outputs the detected ano-
malies with our proposed algorithm.  

The fourth stage is the human acknowledgment of the output data, and clas-
sifies the output data into TP (true positive), FP (false positive) and FN (false 
negative). The result of the verification/acknowledgment stage is then used 
again in the second stage for further optimization of the anomaly detection 
parameters. 

In the rest of this section, we present the improved algorithm for anomaly de-
tection of real data streams with sessional patterns, based on well-known HW 
and TDHW [3] [4] additive forecasting models. 

The first improvement is done by modification of the Mean Absolute Scaled 
Error (MASE) [52], and the second one by optimization of the model parame-
ters. 

3.2.1. Standard Algorithms for Anomaly Detection and MASE  
Modification 

Additive HW trend forecast prediction 1ˆty +  is defined iteratively (1) by three 
components, level lt, trend bt and seasonality st using restricted real smoothing 
constants 0 ≤ α, β, γ ≤ 1: 

Forecast equation: 1 1ˆt t t t ml b sy + − += + +  
Level: ( ) ( )( )1 11t t t m t tl y s l bα α− − −= − + − +  
Trend:  

( ) ( )1 11t t t tb l l bβ β− −= − + −                      (1) 

Seasonality: ( ) ( )1t t t t ms y l sγ γ −= − + −   
where m is the periodicity of the one whole seasonal cycle, i.e. the number of 
time steps of one season. Good initial values l0, b0 and s0 (2) can be achieved by 
having ty  streaming data of two full sessional cycles 2m. 

Initial level component: 1 2
0

. my y y
l

m
+ +… +

=  

Initial trend component:  
2

1 1
0 2

m m
t tt m ty y

b
m

= + =
−

= ∑ ∑                       (2) 

Initial seasonal component: 0i is y l= − , 1, 2, ,i m=  . 
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Additive TDHW, trend forecast prediction 1ˆty +  (3) is defined iteratively by 
four components: level lt, trend bt, m1 seasonality and m2 seasonality, using re-
stricted real smoothing constants 0 ≤ α, β, γ, ω ≤ 1. 

Forecast equation: 1ˆt t t t tl b Dy W+ = + + +  
Level: ( ) ( )( )

1 2 1 11t t t m t m t tl y D W l bα α− − − −= − − + − +  
Trend:  

( ) ( )1 11t t t tb l l bβ β− −= − + −                    (3) 

m1 seasonality: ( ) ( )
2 1

1t t t t m t mD y l W Dγ γ− −= − − + −  
m2 seasonality: ( ) ( )

1 2
1t t t t m t mW y l D Wω ω− −= − − + −  

For example, if the stream values ty  are observed every minute a daily cycle 
m1 = 24 × 60 = 1440 and a weekly cycle m2 = 24 × 60 × 7 = 10,080 [53]. Possible 
initial values are: 

0 1l y=  

0 0b =  

10,1 0,2 0, 0mD D D= = = =  

20,1 0,2 0, 0mW W W= = = =  

Measurement of the forecast accuracy (by using MASE), defined by Hynde-
man [52] is calculated as follows: 

12

ˆ
1

1

t t
t

l
i ii

y y
q

y y
l −=

−
=

−
− ∑

                     (4) 

1

1MASE
t

i
i

q
t =

= ∑  

where l is a number of values in the training stream. In the anomaly detection 
models based on HW or TDHW models [3] [44] [53], if MASE > δ, where δ is 
a predefined threshold, the new arrived stream data yt is determined as an 
anomaly.  

We propose [1] an adoption of the MASE definition (5) by adding two win-
dow parameters k and n, to the current iterative processes (1) and (3) with 
smoothing parameters α, β, γ and ω. For the HW forecast, MASE depends on 
parameters α, β, γ, δ, k, n and for TDHW, MASE depends on parameters α, β, γ, 
δ, k, n. 

( ), , , ,

1

ˆ
1k

t t
t

t k
i ii t

y y
q

y y
k

α β γ δ −
−=

−
=

−∑
, 

( ), , , , ,

1

ˆ
1k

t t
t

t k
i ii t

y y
q

y y
k

α β γ ω δ −
−=

−
=

−∑
      (5) 

where k t< . 

( ) ( ), , , , , , , ,, , ,

1MASE
k n k n

t n
t ii t q

nα β γ δ α β γ δ

−

=
= ∑ , 

( ) ( ), , , , , , , , , , , ,

1MASE
k n k n

t n
t ii t q

nα β γ ω δ α β γ ω δ

−

=
= ∑     

where n t< .  
The anomaly is declared if MASEt δ> , where δ is threshold. 
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3.2.2. Finding the Optimal Values of the Algorithm Parameters  
The goal of our proposed algorithm is to find the optimal parameter values for 
the anomaly detection algorithm in order to achieve the correct TP and zero FP 
and FN. 

The evaluation of the optimization parameters for the anomaly detection is 
based on input datasets and annotated anomaly intervals. We define the follow-
ing procedures for counting the TP, FP and FN: 
• TP (true positive) is the number of anomalies annotated intervals with at 

least one detected anomaly; 
• FP (false positive) is the number of detected anomalies outside of all anno-

tated intervals; 
• FN (false negative) in the number of annotated intervals with 0 detected 

anomalies. 
Having defined these values, we use the following evaluation function for our 

genetic algorithm optimization:  

( )1 2 3 4 1 2 3 4, , , , , , , , , ,EF TP FP FNk n w w w w w w w wα β γ ω δ δ= ∗ − ∗ − ∗ − ∗      (6) 

where w1, w2, w3 and w4 are weight factors (constants) that are given based on 
the importance of the targeted goals. In our case, we favor to achieve correct TP, 
and minimal FP and FN, hence the w1 is 100 and w2, w3 and w4 are 1. 

Based on the defined EF (6), we use a real-valued GA optimization for para-
meters optimization using the following constraints:  

0 1α< ≤  

0 , , 1β γ ω≤ ≤  

max0 δ δ< <  

0 , 2n k m< ≤ ∗  

EF starts with a calculation of a prediction using additive HW (1). Then based 
on this prediction, we calculate MASEt  (4) and evaluate its value against δ. 
δmax is defined experimental based on the dataset (in our case 50). If our algo-
rithm detects an anomaly, we add the timestamp to a list of anomalies for fur-
ther evaluation. The next step is an evaluation of the anomaly list against the 
anomaly annotated intervals, thus deriving TP, FP and FN, and finally calculat-
ing the EF value.  

The GA optimization is very effective: we use small populations with less than 
100 individuals, and achieve the optimal solutions in less than 20 iterations. The 
proposed algorithm is implemented in R language. 

4. Experimental Results 

In this section, the datasets used in the experiments are described. The main part 
of the section is a comparison of the results (TP, FP, FN, detection rate, precision) 
achieved with our proposed algorithms HW GA and DTHW GA, compared to 
several older variations of HW, DTHW and ARIMA, MA, HTM algorithms. 
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4.1. Experimental Datasets 

To evaluate the proposed algorithm, we have used the most known benchmarks 
from Yahoo, Webscope dataset “data-labeled-time-series-anomalies-v1_0” [15], 
NAB [12] “artificial With Anomaly” and our real data log-file, generated by 
NEIS.  

We have exploited the first 4 out of 100 Yahoo synthetic A2 and real A3 and 
A4 time-series benchmarks, with tagged anomaly points. The datasets are 
suitable for testing the detection accuracy of various anomaly-types including 
outliers and change-points. The synthetic dataset consists of time-series with the 
varying trend, noise and seasonality, while the real one consists of time-series 
representing the metrics of various Yahoo services. Some datasets have a weekly 
and some a weekly and daily seasonality Part of the datasets A4 is shown in Fig-
ure 3 below.  

NAB contains artificially-generated datasets with varying types of tagged 
anomalies and a daily seasonality. The NEIS dataset has weekly and daily seaso-
nality. Anomalies are unknown but are analyzed and tagged by a human. All the 
datasets contain a timestamp and single value based on the log. 

4.2. Results and Discussion 

In order to evaluate if the optimization of the parameters works well, we have 
separated the datasets into training and test sets. The optimal values of the pa-
rameters are determined on the training set and then they are verified on the test 
set. 

Our proposed algorithm (HW GA) with GA optimized parameters (α, β, γ, δ, 
k, n) and with improved 

( ), , , , ,
MASE

k nt α β γ δ
 is compared with ARIMA, MA (im-

plemented in our previous work [54]), HTM [5] algorithm,  
HW where smoothing parameters are calculated by formula and default 

MASE (HW calc. MASE), HW by default smoothing parameters (optimized in 
R) and default MASE (HW def. MASE), HW by default smoothing parameters 
and improved ,MASEk n  (HW def. MASE(k, n)).  

 

 
Figure 3. Yahoo A4 benchmark time series. 
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HW GA [1] counts automatically the number of TP, FP and FN that is not 
possible with other compared algorithms. The smoothing parameters can be 
calculated by Formula (7) were for the total weight we take 0.95: 

( )log 1 total weights as%
1 exp

# of time points
α

− 
= −  

 
                 (7) 

A number of points (frequency) for Yahoo benchmark stream, with week 
seasonality, is 24 × 7 = 168, having data each hour. A number of points for the 
Numenta benchmark stream are 12 × 24 = 288 having data every 5 minutes. 

To be able to compare the results we use detection rate (recall) in % (d.r.) and 
precision (prec.), the statistical performance measures of a binary classification 
test. Due to the big number of the TN-True Negative values, specificity (the true 
negative rate) and accuracy are not applicable measures for the time series data. 

In Tables 1-5 below, a number of detected TP, FP and FN for NUMENTA, 
Yahoo, and NEIS on training and test sets are given. 

Similarly, the Taylor’s Double Holt Winters GA (TDHA GA) with optimized 
parameters (α, β, γ, ω, δ, k, n) and with improved 

( ), , ,, , ,
MASE

k nt α β γ δ
, is compared 

with the same algorithms as for HW, where HW type algorithms are replaced 
with TDHW.  

In Table 6 below are shown experiments for double seasonality for both 
training sets and test sets for NEIS data. 

The last rows indicated by gray color show the results of our HW GA. As can 
be seen in all the cases it outperforms or is equal to the results of the other algo-
rithms. Direct comparison of the result achieved on the same benchmark data-
sets can be done between proposed HW GA algorithm and HTM anomaly de-
tection algorithm [5] (online implemented in [1]). HW GA and HTM have given 
equally good results on NUMENTA datasets, while HW GA (100% detection 
rate and 0% false positive) significantly outperform HTM on all the Yahoo 
benchmark datasets as also our e-dnevnik dataset. HW GA outperforms the best 
results (detection rate 84.67%, and false positive 10.12%) of HW forecasting al-
gorithm with parameter maximum likelihood estimates optimization in [53], as 
also results of another type of algorithms (sliding windows) applied on the simi-
lar type of data streams reported in [6]. 

The other important achievement of the HW GA [1] is that the algorithm is 
self-learning and can be implemented as a positive feedback optimization with a 
periodic adaptation of the parameters of the algorithm. In Table 2 the first data-
set is used as a training set. Anomalies detected on the second dataset (test set) 
are verified/acknowledged by human and reused for new parameter optimiza-
tion. With such newly optimized parameters detection is implemented on the 
third set and so on. 

Correct results are achieved even in the case when there are no anomalies in 
the training set, while the test set has anomalies (example in Table 3). 

In Tables 3-6 below, the parameters used by various algorithms are shown. 
Parameters δ, k, n, tagged by (*) are defined experimentally.  
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Table 2. The result from all tested algorithms for Yahoo benchmark (DR and precision). 

Yahoo Training and Test Sets 

A2 s_1 s_2 s_3 s_4 

 
TP FP FN d.r. prec. TP FP FN d.r. prec. TP FP FN d.r. prec. TP FP FN d.r. prec. 

Anotated 4 0 0 100 100 9 0 0 100 100 1 0 0 100 100 2 0 0 100 100 

ARIMA 3 2 1 75 60 9 0 0 100 100 1 2 0 100 33 2 3 0 100 40 

MA 4 3 0 100 57 9 0 0 100 100 1 3 0 100 25 1 1 1 50 50 

HTM 4 0 0 100 100 6 0 3 67 100 1 0 0 100 100 2 0 0 100 100 

HW calc. MASE 4 0 0 100 100 9 0 0 100 100 1 0 0 100 100 2 0 0 100 100 

HW def. MASE 
4 1 0 100 80 9 1 0 100 90 1 0 0 100 100 2 0 0 100 100 

4 0 0 100 100 0 0 9 0 - 0 0 1 0 - 0 0 2 0 - 

HW def. MASE(k, n) 4 0 0 100 100 9 0 0 100 100 1 0 0 100 100 2 0 1 67 100 

HW GA 4 0 0 100 100 9 0 0 100 100 1 0 0 100 100 2 0 0 100 100 

A3 A3-TS1 A3Benchmark-TS2 A3Benchmark-TS3 A3-TS4 

Anotated 11 0 0 100 100 16 0 0 100 100 6 0 0 100 100 6 0 0 100 100 

ARIMA 8 7 3 73 53 6 0 10 38 100 3 2 3 50 60 3 4 3 50 43 

MA 9 3 2 82 75 4 0 12 25 100 5 3 1 83 63 6 3 0 100 67 

HTM 5 0 6 45 100 1 0 15 6 100 0 0 6 0 - 3 0 3 50 100 

HW calc. MASE 4 84 7 36 5 16 5 0 100 76 6 0 0 100 100 6 30 0 100 17 

HW def. MASE 
10 233 1 91 4 16 150 0 100 10 6 180 0 100 3 6 205 0 100 3 

2 26 9 18 7 16 0 0 100 100 6 0 0 100 100 6 0 0 100 100 

HW def. MASE(k, n) 7 12 4 64 37 16 0 0 100 100 6 0 0 100 100 6 0 0 100 100 

HW GA 11 0 0 100 100 16 0 0 100 100 6 0 0 100 100 6 0 0 100 100 

A4 A4-TS1 A4-TS2 A4-TS3 A4-TS4 

Anotated 13 0 0 100 100 5 0 0 100 100 6 0 0 100 100 6 0 0 100 100 

ARIMA 7 3 6 54 70 4 3 1 80 57 4 0 2 67 100 6 5 0 100 55 

MA 6 5 7 46 55 3 2 2 60 60 3 1 3 50 75 5 3 1 83 63 

HTM 1 0 12 8 100 0 0 5 0 - 2 0 4 33 100 3 0 3 50 100 

HW calc. MASE 13 10 0 100 57 5 0 0 100 100 5 0 1 83 100 6 0 0 100 100 

HW def. MASE 
13 20 0 100 39 5 3 0 100 63 5 13 1 83 28 6 2 0 100 75 

8 2 5 62 80 5 0 0 100 100 4 2 2 67 67 6 0 0 100 100 

HW def. MASE(k, n) 2 38 11 15 5 3 0 2 60 100 0 0 6 0 - 2 0 4 33 100 

HW GA 13 0 0 100 100 5 0 0 100 100 6 0 0 100 100 6 0 0 100 100 

 
Table 3. Part of Numenta training set and test set optimal parameters. 

NUMENTA Benchmark 

art_daily_flatmiddle 1 - 7 Training set 8 - 14 Test set 

Anotated 0 0 0 1 0 0 

HTM 0 0 0 1 0 0 

 α Β γ δ k n TP FP FN TP FP FN 

HW calc. MASE 0.2209222 0.01034794 0.3481637 22* / / 0 0 0 1 0 0 

HW def. MASE 
0.730153 0 0.02568603 15* / / 0 0 0 1 1 0 

0.730153 0 0.02568603 20* / / 0 0 0 1 1 0 
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Continued 

 0.730153 0 0.02568603 25* / / 0 0 0 1 0 0 

HW def. MASE(k, n) 0.730153 0 0.02568603 4.5* 150* 4* 0 0 0 1 0 0 

HW GA 0.1415149 0.2648334 0.2101766 3.143707 75.26209 6.844539 0 0 0 1 0 0 

 
Table 4. Part of Yahoo training set and test set optimal parameters. 

Yahoo Webscope_S5 

A3Benchmark A3-TS1 A3-TS2 A3-TS3 A3-TS4 

Anotated 11 0 0 16 0 0 6 0 0 6 0 0 

HTM 5 0 6 1 0 15 0 0 6 3 0 3 

HW calc. 
MASE 

0.95 0.1173 0.3481 1* / / 4 84 7 16 5 0 6 0 0 6 30 0 

HW def. 
MASE 

0.1548 0.1163 0.0433 0.1* / / 10 233 1 16 150 0 6 180 0 6 205 0 

0.1548 0.1163 0.0433 0.5* / / 6 124 5 16 60 0 6 18 0 6 100 0 

0.1548 0.1163 0.0433 1* / / 2 44 9 16 0 0 6 0 0 6 9 0 

0.1548 0.1163 0.0433 1.2* / / 2 26 9 16 0 0 6 0 0 6 0 0 

HW def. 
MASE(k, n) 

0.1548 0.1163 0.0433 0.9* 12* 8* 7 12 4 16 0 0 6 0 0 6 0 0 

HW GA 0.7120 0.6217 0.1068 2.2235 15.6346 4.744 11 0 0 16 0 0 6 0 0 6 0 0 

 
Table 5. e-Dnevnil training set and test set TDHW GA optimal parameters. 

e-Dnevnik Training Set Test Set 

Detectors Optimal parameters (Two weeks) (One week) 

 
α Β γ ω Δ k n TP FP FN d.r. prec. TP FP FN d.r. prec. 

Anotated - - - - - - - 6 0 0 100 100 3 0 0 100 100 

ARIMA - - - - - - - 6 7 0 100 46 3 4 0 100 43 

MA - - - - - - - 6 13 0 100 32 3 11 0 100 21 

HTM - - - - - - - 0 0 6 0 - 0 0 3 0 - 

TDHW calc. 
MASE 

0.95 0.1173 0.3482 0.0021 20* / / 6 23 0 100 21 1 0 2 33 100 

TDHW def. 
MASE 

0.0746 0.0169 0.0040 0.2655 10* / / 6 341 0 100 2 3 12 0 100 20 

0.0746 0.0169 0.0040 0.2655 40* / / 2 35 4 33 5 0 0 3 0 - 

TDHW def. 
MASE(k, n) 

0.0746 0.0169 0.0040 0.2655 5.1* 1000* 11* 4 1770 2 67 0.2 1 0 2 33 100 

TDHW GA 0.8490 0.2853 0.0125 0.6798 7.0886 322.4625 8.5165 5 100 1 83 5 2 0 1 67 100 

 
Table 6. Percentage of TP anomalies found depending on and the GA iteration. 

e-Dnevnik Training Set Test Set 

Detectors Optimal parameters (Two weeks) (One week) 

 
α Β γ Δ k n TP FP FN d.r. prec. TP FP FN d.r. prec. 

Anotated - - - - - - 6 0 0 100 100 3 0 0 100 100 

ARIMA - - - - - - 6 7 0 100 46 3 4 0 100 43 
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MA - - - - - - 6 13 0 100 32 3 11 0 100 21 

HTM - - - - - - 0 0 6 0 - 0 0 3 0 - 

HW calc. 
MASE 

0.95 0.0487 0.3482 10* / / 6 230 0 100 3 3 3 0 100 50 

HW def. 
MASE 

0.6579 0 0 10* / / 6 230 0 100 3 3 3 0 100 50 

0.6579 0 0 20* / / 5 50 1 83 9 1 0 2 83 100 

0.6579 0 0 30* / / 3 10 3 50 23 1 0 2 50 100 

0.6579 0 0 40* / / 2 4 4 33 33 0 0 3 33 - 

HW def. 
MASE(k, n) 

0.6579 0 0 3* 115* 10* 3 13 3 50 18.8 3 30 0 50 9 

HW GA 0.4075 0.5093 0.5325 7.2826 330.6001 11.0024 6 0 0 100 100 3 0 0 100 100 

5. Conclusions 

As a conclusion, we may say that anomaly detection in real-time massive data 
streams nowadays is very important in different domains. From the reviewed 
and classified literature, we came to the conclusion that there is a broad research 
area, covering mathematical, statistical, information theory methodologies for 
anomaly detection. A big number of methods (distance-based, clustering, classi-
fication, machine learning, predictive based) coming from these areas are in re-
lation with the various factors and problems of anomaly detection we have (the 
type of data, type of anomaly, availability of annotated anomalies in training set).  

In this paper, we restricted ourselves to study algorithms for anomaly detec-
tion in data streams (time series data) due to problem area we investigate ano-
maly detection in log files streams. 

In order to choose the appropriate algorithm, we have studied several algo-
rithms suitable for anomaly detection in real-time massive data streams from 
where we chose to further test several of them (MA, ARIMA, HTM) and togeth-
er with standard HW and TDHW to propose our algorithm as a future work. 

Based on the experimental evaluation of the detection rate and precision, per-
formed on sets of synthetic and real data periodic streams, we can conclude that 
our proposed HW with GA [1] optimized parameters (α, β, γ, δ, k, n) and with 
improved MASE outperforms the other algorithms. This can’t be concluded for 
the TDHW with GA optimization. Due to the HW iterative procedures, detec-
tion time is appropriate for the real-time anomaly detection. Optimization with 
GA that is also rather fast, with rather a small number of iterations (about 25 - 
30 iterations are needed to achieve all tagged anomalies recognition in the train-
ing sets), can be done in batch mode on training sets, as also re-optimization 
with verified newly detected anomalies. In our future work, we will incorporate 
HW GA in our implemented infrastructure [14] for anomaly detection in mas-
sive data streams. We plan further investigation and tuning of the TDHW with 
GA optimization and generalization of the optimization function by including 
additional parameters in optimization like seasonality and initial values. Ongo-
ing work is motivated by the need for real-time alarm in the case of anomalies in 
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the national online educational system. 
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Link: http://ednevnik.edu.mk/. 
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• NEIS—National education information system 
• GA—Genetic Algorithm 
• MASE—Mean Absolute Scaled Error 
• TP—True positive 
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